STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LIV, Number 1, March 2009

INTEGRAL PROPERTIES OF SOME FAMILIES OF MULTIVALENT FUNCTIONS WITH COMPLEX ORDER

H. ÖZLEM GÜNEY AND DANIEL BREAZ

Abstract. In the present paper, we study integral properties of two families of p-valently analytic functions of complex order defined of the derivative operator of order m. The obtained results improve known results.

1. Introduction

Let $\mathcal{A}_p(n)$ denote the class of functions of the form

$$f(z) = z^p - \sum_{k=n+p}^{\infty} a_k z^k \quad (a_k \ge 0; n, p \in \mathbb{N} := \{1, 2, 3, \cdots\}), \tag{1}$$

which are analytic and p-valent in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Upon differentiating both sides (1) m-times with respect to z, we have

$$f^{(m)}(z) = \frac{p!}{(p-m)!} z^{p-m} - \sum_{k=n+p}^{\infty} \frac{k!}{(k-m)!} a_k z^{k-m}$$
(2)

where $n, p \in \mathbb{N}; m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}; p > m$.

Making use of the function $f^{(m)}(z)$ given by (2), Srivastava and Orhan [1]introduced the subclasses $\mathcal{R}_{n,m}^p(\lambda, b)$ and $\mathcal{L}_{n,m}^p(\lambda, b)$ of the p-valently analytic function class $\mathcal{A}_p(n)$, which consist of functions f(z) satisfying the following inequality, respectively:

$$\left|\frac{1}{b} \left(\frac{zf^{(1+m)}(z) + \lambda z^2 f^{(2+m)}(z)}{\lambda z f^{(1+m)}(z) + (1-\lambda) f^{(m)}(z)} - (p-m)\right)\right| < 1$$
(3)

and

$$\frac{1}{b} \left(f^{(1+m)}(z) + \lambda z f^{(2+m)}(z) - (p-m) \right) \bigg| < p-m, \tag{4}$$

Received by the editors: 03.10.2008.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45,\ 33C20.$

Key words and phrases. analytic function, p-valent function, integral operator.

where $z \in \mathbb{U}; p \in \mathbb{N}; m \in \mathbb{N}_0; p > m; 0 \le \lambda \le 1; b \in \mathbb{C} \setminus \{0\}.$

Also, in [1], Srivastava and Orhan proved the following characterization theorems of these subclasses.

Theorem A. Let $f(z) \in \mathcal{A}_p(n)$ be given by (1). Then $f(z) \in \mathcal{R}^p_{n,m}(\lambda, b)$ if and only if

$$\sum_{k=n+p}^{\infty} \frac{(k+|b|-p)k![\lambda(k-m-1)+1]}{(k-m)!} a_k \le \frac{|b|p![\lambda(p-m-1)+1]}{(p-m)!}.$$
 (5)

Theorem B. Let $f(z) \in \mathcal{A}_p(n)$ be given by (1). Then $f(z) \in \mathcal{L}^p_{n,m}(\lambda, b)$ if and only if

$$\sum_{k=n+p}^{\infty} \binom{k}{m} (k-m) [\lambda(k-m-1)+1] a_k \le (p-m) \left[\frac{|b|-1}{m!} + \binom{p}{m} [\lambda(p-m-1)+1] \right].$$
(6)

Also, let $\mathcal{I}_c : \mathcal{A}_p(n) \to \mathcal{A}_p(n)$ be an *integral operator* defined by $g = \mathcal{I}_c(f)$, where $c \in (-p, \infty), f \in \mathcal{A}_p(n)$ and

$$g(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt.$$
 (7)

We note that if $f \in \mathcal{A}_p(n)$ is a function of the form (1), then

$$g(z) = \mathcal{I}_c(f)(z) = z^p - \sum_{k=n+p}^{\infty} \frac{c+p}{c+k} a_k z^k.$$
(8)

The main object of the present work is to investigate the integral properties of p-valently functions belonging to the subclasses $\mathcal{R}_{n,m}^p(\lambda, b)$ and $\mathcal{L}_{n,m}^p(\lambda, b)$.

Our properties of the function classes $\mathcal{R}_{n,m}^p(\lambda, b)$ and $\mathcal{L}_{n,m}^p(\lambda, b)$ are motivated essentially by several earlier investigations including in [2].

2. Integral properties of the class $\mathcal{R}_{n,m}^p(\lambda, b)$

Theorem 1. Let $p \in \mathbb{N}$; $m \in \mathbb{N}_0$; p > m; $b \in \mathbb{C} \setminus \{0\}$ and $c \in (-p, \infty)$. If $f \in \mathcal{R}^p_{n,m}(\lambda, b)$ and $g = \mathcal{I}_c(f)$, then $g \in \mathcal{R}^p_{n,m}(\lambda, \gamma)$ where

$$|\gamma| = \frac{(c+p)|b|}{(c+p+n+|b|)}$$
(9)

and $|\gamma| < |b|$. The result is sharp. 102 INTEGRAL PROPERTIES OF SOME FAMILIES OF MULTIVALENT FUNCTIONS

Proof. From Theorem A and from (8), we have $g \in \mathcal{R}^p_{n,m}(\lambda, \gamma)$ if and only

$$\sum_{k=n+p}^{\infty} \frac{(k+|\gamma|-p)k!(p-m)![\lambda(k-m-1)+1](c+p)}{(k-m)![\gamma|p![\lambda(p-m-1)+1](c+k)]} a_k \le 1.$$
(10)

We note that for $k \ge n + p$ the inequalities

$$\frac{(k+|\gamma|-p)k!(p-m)![\lambda(k-m-1)+1](c+p)}{(k-m)![\gamma|p![\lambda(p-m-1)+1](c+k)]} \le \frac{(k+|b|-p)k!(p-m)![\lambda(k-m-1)+1]}{(k-m)![b|p![\lambda(p-m-1)+1]}$$
(11)

imply (10), because $f \in \mathcal{R}^p_{n,m}(\lambda, b)$ and it is satisfies (5). This inequality is equivalent to

$$\frac{(k+|\gamma|-p)(c+p)}{|\gamma|(c+k)} \leq \frac{(k+|b|-p)}{|b|}$$

and we obtain

if

$$|\gamma| \ge \frac{(k-p)(c+p)|b|}{(k+|b|-p)(c+k)-|b|(c+p)} \; ; \; k \ge n+p \; ; \; \gamma = \gamma(p,k,c,b). \tag{12}$$

And now, we show that $|\gamma|$ is a decreasing function of $k, k \ge n + p$. Indeed, let

$$h(x) = \frac{(x-p)(c+p)|b|}{(x+|b|-p)(c+x) - |b|(c+p)} \quad ; x \in [n+p,\infty) \subset [n,\infty).$$
(13)

We have

$$h'(x) = \frac{-(x-p)^2(c+p)|b|}{((x+|b|-p)(c+x)-|b|(c+p))^2} < 0.$$
(14)

This implies

$$|\gamma(p,k,c,b)| \le |\gamma| = |\gamma(p,n+p,c,b)| \; ; k \ge n+p.$$
 (15)

The result is sharp, because

$$\mathcal{I}_c(f_b) = f_\gamma \tag{16}$$

where

$$f_b(z) = z^p - \frac{|b|p!(n+p-m)![\lambda(p-m-1)+1]}{(p-m)!(n+p)![n+|b|][\lambda(n+p-m-1)+1]} z^{n+p}$$
(17)

and

$$f_{\gamma}(z) = z^{p} - \frac{|\gamma|p!(n+p-m)![\lambda(p-m-1)+1]}{(p-m)!(n+p)![n+|\gamma|][\lambda(n+p-m-1)+1]} z^{n+p}$$
(18)

103

are extremal functions of $\mathcal{R}_{n,m}^p(\lambda, b)$ and $\mathcal{R}_{n,m}^p(\lambda, \gamma)$, respectively. Indeed we have

$$\mathcal{I}_{c}(f_{b})(z) = z^{p} - \frac{|b|p!(n+p-m)![\lambda(p-m-1)+1](c+p)}{(p-m)!(n+p)![n+|b|][\lambda(n+p-m-1)+1](c+p+n)} z^{n+p}$$
(19)

Thus we deduce

$$\frac{|\gamma|}{n+|\gamma|} = \frac{|b|(c+p)}{[n+|b|](c+p+n)}$$
(20)

and this implies (16). From $\frac{|\gamma|}{n+|\gamma|} = \frac{|b|(c+p)}{[n+|b|](c+p+n)}$, we obtain $|\gamma| > 0$. Also, we have $|\gamma| < |b|$. Indeed,

$$|\gamma| - |b| = -\frac{[n+|b|]|b|}{|b| + (c+p+n)} < 0.$$
⁽²¹⁾

Remark 1. In Theorem 1, if we take $p = 1, m = 0, b = 1 - \alpha$ and $\gamma = 1 - \beta$, we obtain

$$\beta = 1 - \frac{(c+1)(1-\alpha)}{2-\alpha+c+n}$$
(22)

which was proved by Salagean [2].

3. Integral properties of the class $\mathcal{L}_{n,m}^p(\lambda, b)$

Theorem 2. Let $p \in \mathbb{N}$; $m \in \mathbb{N}_0$; p > m; $b \in \mathbb{C} \setminus \{0\}$ and $c \in (-p, \infty)$. If $f \in \mathcal{L}^p_{n,m}(\lambda, b)$ and $g = \mathcal{I}_c(f)$, then $g \in \mathcal{L}^p_{n,m}(\lambda, \beta)$ where

$$|\beta| = \frac{(c+p)|b| + n(1 - \frac{p!}{(p-m)!}[\lambda(p-m-1)+1])}{c+p+n}$$
(23)

and $|\beta| < |b|$. The result is sharp.

Proof. Using similar arguments as given by Theorem 1, we can get the result.

Remark 2. In (7), for p = n = 1, we obtain the integral operator of Bernardi

$$I_c: \mathcal{A}_1(1) \to \mathcal{A}_1(1)$$

defined by $h = \mathcal{I}_c(f)$, where c > -1, $f \in \mathcal{A}_1(1)$,

$$h(z) = \frac{c+1}{z^c} \int_{0}^{z} t^{c-1} f(t) dt.$$

104

[3],

INTEGRAL PROPERTIES OF SOME FAMILIES OF MULTIVALENT FUNCTIONS

Also, for p = c = n = 1, we obtain the integral operator of Libera [4],

$$I_1: \mathcal{A}_1(1) \to \mathcal{A}_1(1)$$

defined by $h_1 = \mathcal{I}_1(f)$, where $f \in \mathcal{A}_1(1)$,

$$h_1(z) = \frac{2}{z} \int_0^z f(t)dt.$$

Corollary 1.Let $b \in \mathbb{C} - \{0\}$, $c \in (-1, \infty)$. If $f \in \mathcal{L}^{1}_{1,0}(\lambda, b)$ and $h = I_{c}(f)$ is the Bernardi operator, then $h \in \mathcal{L}^{1}_{1,0}(\lambda, \beta)$, where

$$\left|\beta\right| = \frac{c+1}{c+2} \left|b\right|.$$

Proof. In Theorem 2, we consider p = n = 1 and m = 0.

Corollary 2.Let $b \in \mathbb{C} - \{0\}$. If $f \in \mathcal{L}^1_{1,0}(\lambda, b)$ and $h_1 = I_1(f)$ is the Libera operator, then $h \in \mathcal{L}^1_{1,0}(\lambda, \beta)$, where

$$|\beta| = \frac{2}{3} \left|b\right|.$$

Proof. In Theorem 2, we consider p = n = 1, m = 0 and c = 1.

References

- Srivastava, H.M. and Orhan, H., Coefficient inequalities and inclusion relations for some families of analytic and multivalent functions, Applied Mathematics Letters, Article in Press.
- [2] Sălăgean, G.S., Integral properties of certain classes of analytic functions with negative coefficients, International Journal of Mathematics and Mathematical Sciences, 1(2005), 125-131.
- [3] Bernardi, S.D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
- [4] Libera, R.J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1965), 755-758.

H. ÖZLEM GÜNEY AND DANIEL BREAZ

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND ART, UNIVERSITY OF DICLE 21280, DIYARBAKIR, TURKEY *E-mail address:* ozlemg@dicle.edu.tr

"1 Decembrie 1918" University of Alba Iulia, Alba Iulia, str. N. Iorga, no 11-13, 510009, Alba, Romania *E-mail address*: dbreaz@uab.ro