HARMONIC MULTIVALENT FUNCTIONS DEFINED BY INTEGRAL OPERATOR

LUMINITA-IOANA COTÎRLĂ

Abstract

We define and investigate a new class of harmonic multivalent functions defined by integral operator. We obtain coefficient inequalities, extreme points and distortion bounds for the functions in our classes.

1. Introduction

A continuous complex-valued function $f=u+i v$ defined in a complex domain D is said to be harmonic in D if both u and v are real harmonic in D. In any simply connected domain we can write $f=h+\bar{g}$, where h and g are analytic in D. A necessary and sufficient condition for f to be locally univalent and sense preserving in D is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|, z \in D$. (See Clunie and Sheil-Small [2]).

Denote by H the class of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the unit disc $U=\{z:|z|<1\}$ so that $f=h+\bar{g}$ is normalized by $f(0)=h(0)=f_{z}^{\prime}(0)-1=0$.

Recently, Ahuja and Jahangiri [5] defined the class $H_{p}(n)(p, n \in \mathbb{N})$, consisting of all p-valent harmonic functions $f=h+\bar{g}$ that are sense preserving in U and h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}, \quad g(z)=\sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1}, \quad\left|b_{p}\right|<1 . \tag{1.1}
\end{equation*}
$$

The integral operator I^{n} is defined (see [4], for $p=1$) by:
(i) $I^{0} f(z)=f(z)$;
(ii) $I^{1} f(z)=I f(z)=p \int_{0}^{z} f(t) t^{-1} d t$;

Received by the editors: 01.10.2008.
2000 Mathematics Subject Classification. harmonic univalent functions, integral operator.
Key words and phrases. 30C45, 30C50, 31A05.
(iii) $I^{n} f(z)=I\left(I^{n-1} f(z)\right), n \in \mathbb{N}, f \in \mathcal{A}$,
where $\mathcal{A}=\left\{f \in \mathcal{H}: f(z)=z+a_{2} z^{2}+\ldots\right\}$ and $\mathcal{H}=\mathcal{H}(U)$.
For $f=h+\bar{g}$ given by (1.1) the integral operator of f is defined as

$$
\begin{equation*}
I^{n} f(z)=I^{n} h(z)+(-1)^{n} \overline{I^{n} g(z)}, \quad p>n \tag{1.2}
\end{equation*}
$$

where

$$
I^{n} h(z)=z^{p}+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n} a_{k+p-1} z^{k+p-1}
$$

and

$$
I^{n} g(z)=\sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n} b_{k+p-1} z^{k+p-1}
$$

For $0 \leq \alpha<1, n \in \mathbb{N}, z \in U$, let $H_{p}(n, \alpha)$ denote the family of harmonic functions f of the form (1.1) such that

$$
\begin{equation*}
\operatorname{Re}\left(\frac{I^{n} f(z)}{I^{n+1} f(z)}\right)>\alpha \tag{1.3}
\end{equation*}
$$

where I^{n} is defined by (1.2).
The families $H_{p}(m, n, \alpha)$ and $H_{p}^{-}(m, n, \alpha)$ include a variety of well-known classes of harmonic functions as well as many new ones. For example $H S(\alpha)=$ $\overline{H_{1}}(1,0, \alpha)$ is the class of sense-preserving,harmonic univalent functions f which are starlike of order $\alpha \in U$, and $H K(\alpha)=\overline{H_{1}}(2,1, \alpha)$ is the class of sensepreserving, harmonic univalent functions f which are convex of order α in U, and $\overline{H_{1}}(n+1, n, \alpha)=\bar{H}(n, \alpha)$ is the class of Sălăgean-type harmonic univalent functions.

Let we denote the subclass $H_{p}^{-}(n, \alpha)$ consists of harmonic functions $f_{n}=$ $h+\bar{g}_{n}$ in $H_{p}^{-}(n, \alpha)$ so that h and g_{n} are of the form

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1} \quad \text { and } \quad g_{n}(z)=(-1)^{n-1} \sum_{k=1}^{\infty} b_{k+p-1} z^{k+p-1} \tag{1.4}
\end{equation*}
$$

where $a_{k+p-1}, b_{k+p-1} \geq 0,\left|b_{p}\right|<1$.
For the harmonic functions f of the form (1.1) with $b_{1}=0$, Avei and Zlotkiewich in [1] show that if

$$
\sum_{k=2}^{\infty} k\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1
$$

then $f \in S H(0)$, where $H S(0)=\overline{H_{1}}(1,0,0)$ and if

$$
\sum_{k=2}^{\infty} k^{2}\left(\left|a_{k}\right|+\left|b_{k}\right|\right) \leq 1
$$

then $f \in H K(0)$, where $H K(0)=\overline{H_{1}}(2,1,0)$.
For the harmonic functions f of the form (1.4) with $n=0$, Jahongiri in [3] showed that $f \in H S(\alpha)$ if and only if

$$
\sum_{k=2}^{\infty}(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty}(k+\alpha)\left|b_{k}\right| \leq 1-\alpha
$$

and $f \in \overline{H_{1}}(2,1, \alpha)$ if and only if

$$
\sum_{k=2}^{\infty} k(k-\alpha)\left|a_{k}\right|+\sum_{k=1}^{\infty} k(k+\alpha)\left|b_{k}\right| \leq 1-\alpha .
$$

2. Main results

In our first theorem, we deduce a sufficient coefficient bound for harmonic functions in $H_{p}(n, \alpha)$.

Theorem 2.1. Let $f=h+\bar{g}$ be given by (1.1). If

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\psi(n, p, k, \alpha)\left|a_{k+p-1}\right|+\theta(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\} \leq 2 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\psi(n, p, k, \alpha) & =\frac{\left(\frac{p}{k+p-1}\right)^{n}-\alpha\left(\frac{p}{k+p-1}\right)^{n+1}}{1-\alpha} \\
\theta(n, p, k, \alpha) & =\frac{\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}}{1-\alpha}, \\
a_{p} & =1, \quad 0 \leq \alpha<1, \quad n \in \mathbb{N} .
\end{aligned}
$$

Then f is sense preserving in U and $f \in H_{p}(n, \alpha)$.
Proof. According to (1.2) and (1.3) we only need to show that

$$
\operatorname{Re}\left(\frac{I^{n} f(z)-\alpha I^{n+1} f(z)}{I^{n+1} f(z)}\right) \geq 0
$$

The case $r=0$ is obvious.

For $0<r<1$, it follows that

$$
\begin{aligned}
& =\operatorname{Re}\left\{\frac{\operatorname{Re}\left(\frac{I^{n} f(z)-\alpha I^{n+1} f(z)}{I^{n+1} f(z)}\right)}{z^{p}+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{n+1} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1}}\right. \\
& \left.+\frac{(-1)^{n} \sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] \bar{b}_{k+p-1} \bar{z}^{k+p-1}}{} \begin{array}{l}
z^{p}+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{n+1} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1}
\end{array}\right\} \\
& = \\
& =\operatorname{Re}\left\{\frac{(1-\alpha)+\sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] a_{k+p-1} z^{k-1}}{1+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k-1}+(-1)^{n+1} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right. \\
& \left.+\frac{(-1)^{n} \sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}{1+\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k-1}+(-1)^{n+1} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} \bar{b}_{k+p-1} \bar{z}^{k+p-1} z^{-p}}\right\} \\
&
\end{aligned}
$$

For $z=r e^{i \theta}$ we have

$$
\begin{aligned}
& A\left(r e^{i \theta}\right)= \sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] a_{k+p-1} r^{k-1} e^{(k-1) \theta i} \\
&+(-1)^{n} \sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i} \\
& B\left(r e^{i \theta}\right)=\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} r^{k-1} e^{(k-1) \theta i} \\
&+(-1)^{n+1} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}
\end{aligned}
$$

Setting

$$
\frac{(1-\alpha)+A(z)}{1+B(z)}=(1-\alpha) \frac{1+w(z)}{1-w(z)}
$$

the proof will be complete if we can show that $|w(z)| \leq 1$. This is the case since, by the condition (2.1), we can write

$$
\begin{aligned}
& |w(z)|=\left|\frac{A(z)-(1-\alpha) B(z)}{A(z)+(1-\alpha) B(z)+2(1-\alpha)}\right| \\
& =\frac{\sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\left(\frac{p}{k+p-1}\right)^{n+1}\right] a_{k+p-1} r^{k-1} e^{(k-1) \theta i}}{2(1-\alpha)+\sum_{k=2}^{\infty} C(n, p, k, \alpha) a_{k+p-1} r^{k-1} e^{(k-1) \theta i}+(-1)^{n} \sum_{k=1}^{\infty} D(n, p, k, \alpha) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}} \\
& \left.\frac{(-1)^{n} \sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\left(\frac{p}{k+p-1}\right)^{n+1}\right] \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}}{\sum_{k=2}^{\infty} C(n, p, k, \alpha) a_{k+p-1} r^{k-1} e^{(k-1) \theta i}+(-1)^{n} \sum_{k=1}^{\infty} D(n, p, k, \alpha) \bar{b}_{k+p-1} r^{k-1} e^{-(k+2 p-1) \theta i}} \right\rvert\, \\
& \leq \frac{\sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|a_{k+p-1}\right| r^{k-1}}{2(1-\alpha)-\sum_{k=2}^{\infty} C(n, p, k, \alpha)\left|a_{k+p-1}\right| r^{k-1}-\sum_{k=1}^{\infty} D(n, p, k, \alpha)\left|b_{k+p-1}\right| r^{k-1}} \\
& +\frac{\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|b_{k+p-1}\right| r^{k-1}}{2(1-\alpha)-\sum_{k=2}^{\infty} C(n, p, k, \alpha)\left|a_{k+p-1}\right| r^{k-1}-\sum_{k=1}^{\infty} D(n, p, k, \alpha)\left|b_{k+p-1}\right| r^{k-1}} \\
& =\frac{\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|a_{k+p-1}\right| r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(n, p, k, \alpha)\left|a_{k+p-1}\right|+D(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\} r^{k-1}} \\
& +\frac{\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|b_{k+p-1}\right| r^{k-1}}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(n, p, k, \alpha)\left|a_{k+p-1}\right|+D(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\} r^{k-1}} \\
& <\frac{\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|a_{k+p-1}\right|}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(n, p, k, \alpha)\left|a_{k+p-1}\right|+D(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\}}
\end{aligned}
$$

$$
+\frac{\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\left(\frac{p}{k+p-1}\right)^{n+1}\right]\left|b_{k+p-1}\right|}{4(1-\alpha)-\sum_{k=1}^{\infty}\left\{C(n, p, k, \alpha)\left|a_{k+p-1}\right|+D(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\}} \leq 1
$$

where

$$
C(n, p, k, \alpha)=\left(\frac{p}{k+p-1}\right)^{n}+(1-2 \alpha)\left(\frac{p}{k+p-1}\right)^{n+1}
$$

and

$$
D(n, p, k, \alpha)=\left(\frac{p}{k+p-1}\right)^{n}+(-1)(1-2 \alpha)\left(\frac{p}{k+p-1}\right)^{n+1}
$$

The harmonic univalent functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=2}^{\infty} \frac{1}{\psi(n, p, k, \alpha)} x_{k} z^{k+p-1}+\sum_{k=1}^{\infty} \frac{1}{\theta(n, p, k, \alpha)} \overline{y_{k} z^{k+p-1}} \tag{2.2}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=1$, show that the coefficient bound given by (2.1) is sharp. The functions of the form (2.2) are in $H_{p}(n, \alpha)$ because

$$
\sum_{k=1}^{\infty}\left\{\psi(n, p, k, \alpha)\left|a_{k+p-1}\right|+\theta(n, p, k, \alpha)\left|b_{k+p-1}\right|\right\}=1+\sum_{k=2}^{\infty}\left|x_{k}\right|+\sum_{k=1}^{\infty}\left|y_{k}\right|=2
$$

In the following theorem it is show that the condition (2.1) is also necessary for functions $f_{n}=h+\bar{g}_{n}$, where h and g_{n} are of the form (1.4).

Theorem 2.2. Let $f_{n}=h+\bar{g}_{n}$ be given by (1.4). Then $f_{n} \in H_{p}^{-}(n, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\{\psi(n, p, k, \alpha) a_{k+p-1}+\theta(n, p, k, \alpha) b_{k+p-1}\right\} \leq 2 \tag{2.3}
\end{equation*}
$$

where $a_{p}=1,0 \leq \alpha<1, n \in \mathbb{N}$.
Proof. Since $H_{p}^{-}(n, \alpha) \subset H_{p}(n, \alpha)$, we only need to prove the "only if" part of the theorem. For functions f_{n} of the form (1.4), we note that the condition

$$
\operatorname{Re}\left\{\frac{I^{n} f_{n}(z)}{I^{n+1} f_{n}(z)}\right\}>\alpha
$$

is equivalent to

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{(1-\alpha) z^{p}-\sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] a_{k+p-1} z^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{2 n} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} b_{k+p} \bar{z}^{k+p-1}}\right. \tag{2.4}\\
& \left.+\frac{(-1)^{2 n-1} \sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] b_{k+p-1} \bar{z}^{k+p-1}}{z^{p}-\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} z^{k+p-1}+(-1)^{2 n} \sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} b_{k+p-1} \bar{z}^{k+p-1}}\right\} \geq 0 .
\end{align*}
$$

The above required condition (2.4) must hold for all values of z in U. Upon choosing the values of z on the positive real axis where $0 \leq z=r<1$, we must have

$$
\begin{gather*}
(1-\alpha)-\sum_{k=2}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}-\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] a_{k+p-1} r^{k-1} \\
1-\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} r^{k-1}+\sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} b_{k+p-1} r^{k-1} \tag{2.5}\\
+\frac{-\sum_{k=1}^{\infty}\left[\left(\frac{p}{k+p-1}\right)^{n}+\alpha\left(\frac{p}{k+p-1}\right)^{n+1}\right] b_{k+p-1} r^{k-1}}{1-\sum_{k=2}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} a_{k+p-1} r^{k-1}+\sum_{k=1}^{\infty}\left(\frac{p}{k+p-1}\right)^{n+1} b_{k+p-1} r^{k-1}} \geq 0 .
\end{gather*}
$$

If the condition (2.3) does not hold, then the expression in (2.5) is negative for r sufficiently close to 1 . Hence there exist $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (2.5) is negative.

This contradicts the required condition for $f_{n} \in H_{p}^{-}(n, \alpha)$. So the proof is complete.

Next we determine the extreme points of the closed convex hull of $H_{p}^{-}(n, \alpha)$, denoted by $\mathrm{clco} H_{p}^{-}(n, \alpha)$.

Theorem 2.3. Let f_{n} be given by (1.4). Then $f_{n} \in H_{p}^{-}(n, \alpha)$ if and only if

$$
f_{n}(z)=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{n_{k+p-1}}(z)\right],
$$

LUMINITA-IOANA COTÎRLA

where

$$
h_{p}(z)=z^{p}, \quad h_{k+p-1}(z)=z^{p}-\frac{1}{\psi(n, p, k, \alpha)} z^{k+p-1}, \quad k=2,3, \ldots
$$

and

$$
\begin{aligned}
& g_{n_{k+p-1}}(z)=z^{p}+(-1)^{n-1} \cdot \frac{1}{\theta(n, p, k, \alpha)} \bar{z}^{k+p-1}, \quad k=1,2,3, \ldots \\
& x_{k+p-1} \geq 0, \quad y_{k+p-1} \geq 0, \quad x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}
\end{aligned}
$$

In particular, the extreme points of $H_{p}^{-}(n, \alpha)$ are $\left\{h_{k+p-1}\right\}$ and $\left\{g_{n_{k+p-1}}\right\}$.
Proof. For functions f_{n} of the form (2.1),

$$
\begin{gathered}
f_{n}(z)=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{n_{k+p-1}}(z)\right] \\
=\sum_{k=1}^{\infty}\left(x_{k+p-1}+y_{k+p-1}\right) z^{p}-\sum_{k=2}^{\infty} \frac{1}{\psi(n, p, k, \alpha)} x_{k+p-1} z^{k+p-1} \\
\quad+(-1)^{n-1} \sum_{k=1}^{\infty} \frac{1}{\theta(n, p, k, \alpha)} y_{k+p-1} \bar{z}^{k+p-1} .
\end{gathered}
$$

Then

$$
\begin{gathered}
\sum_{k=2}^{\infty} \psi(n, p, k, \alpha)\left(\frac{1}{\psi(n, p, k, \alpha)} x_{k+p-1}\right)+\sum_{k=1}^{\infty} \theta(n, p, k, \alpha)\left(\frac{1}{\theta(n, p, k, \alpha)} y_{k+p-1}\right) \\
=\sum_{k=2}^{\infty} x_{k+p-1}+\sum_{k=1}^{\infty} y_{k+p-1}=1-x_{p} \leq 1,
\end{gathered}
$$

and so $f_{n}(z) \in \operatorname{clcoH}_{p}^{-}(n, \alpha)$.
Conversely, suppose $f_{n}(z) \in c l c o H_{p}^{-}(n, \alpha, \beta)$. Letting

$$
x_{p}=1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1},
$$

let

$$
x_{k+p-1}=\psi(n, p, k, \alpha) a_{k+p-1}
$$

and

$$
y_{k+p-1}=\theta(n, p, k, \alpha) b_{k+p-1}, \quad k=2,3, \ldots
$$

We obtain the required representation, since

$$
\begin{gathered}
f_{n}(z)=z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{n-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1} \\
=z^{p}-\sum_{k=2}^{\infty} \frac{1}{\psi(n, p, k, \alpha)} x_{k+p-1} z^{k+p-1}+(-1)^{n-1} \sum_{k=1}^{\infty} \frac{1}{\theta(n, p, k, \alpha)} y_{k+p-1} \bar{z}^{k+p-1} \\
=z^{p}-\sum_{k=2}^{\infty}\left[z^{p}-h_{k+p-1}(z)\right] x_{k+p-1}-\sum_{k=1}^{\infty}\left[z^{p}-g_{n_{k+p-1}}(z)\right] y_{k+p-1} \\
=\left[1-\sum_{k=2}^{\infty} x_{k+p-1}-\sum_{k=1}^{\infty} y_{k+p-1}\right] z^{p}+\sum_{k=2}^{\infty} x_{k+p-1} h_{k+p-1}(z) \\
+\sum_{k=1}^{\infty} y_{k+p-1} g_{n_{k+p-1}}(z)=\sum_{k=1}^{\infty}\left[x_{k+p-1} h_{k+p-1}(z)+y_{k+p-1} g_{n_{k+p-1}}(z)\right] .
\end{gathered}
$$

The following theorem gives the distortion bounds for functions in $H_{p}^{-}(n, \alpha)$ which yields a covering results for this class.

Theorem 2.4. Let $f_{n} \in H_{p}^{-}(n, \alpha)$. Then for $|z|=r<1$ we have

$$
\left|f_{n}(z)\right| \leq\left(1+b_{p}\right) r^{p}+\left\{\phi(n, p, k, \alpha)-\Omega(n, p, k, \alpha) b_{p}\right\} r^{p+1}
$$

and

$$
\left|f_{n}(z)\right| \geq\left(1-b_{p}\right) r^{p}-\left\{\phi(n, p, k, \alpha)-\Omega(n, p, k, \alpha) b_{p}\right\} r^{p+1},
$$

where

$$
\begin{aligned}
& \phi(n, p, k, \alpha)=\frac{1-\alpha}{\left(\frac{p}{p+1}\right)^{n}-\alpha\left(\frac{p}{p+1}\right)^{n+1}} \\
& \Omega(n, p, k, \alpha)=\frac{1+\alpha}{\left(\frac{p}{p+1}\right)^{n}-\alpha\left(\frac{p}{p+1}\right)^{n+1}}
\end{aligned}
$$

Proof. We prove the right hand side inequality for $\left|f_{n}\right|$. The proof for the left hand inequality can be done using similar arguments. Let $f_{n} \in H_{p}^{-}(n, \alpha)$. Taking the absolute value of f_{n} then by Theorem 2.2 , we obtain:

$$
\begin{aligned}
\left|f_{n}(z)\right|= & \left|z^{p}-\sum_{k=2}^{\infty} a_{k+p-1} z^{k+p-1}+(-1)^{n-1} \sum_{k=1}^{\infty} b_{k+p-1} \bar{z}^{k+p-1}\right| \\
& \leq r^{p}+\sum_{k=2}^{\infty} a_{k+p-1} r^{k+p-1}+\sum_{k=1}^{\infty} b_{k+p-1} r^{k+p-1}
\end{aligned}
$$

$$
\begin{gathered}
\text { LUMINITA-IOANA COTÎRLĂ } \\
=r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{k+p-1} \\
\leq r^{p}+b_{p} r^{p}+\sum_{k=2}^{\infty}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
=\left(1+b_{p}\right) r^{p}+\phi(n, p, k, \alpha) \sum_{k=2}^{\infty} \frac{1}{\phi(n, p, k, \alpha)}\left(a_{k+p-1}+b_{k+p-1}\right) r^{p+1} \\
\leq\left(1+b_{p}\right) r^{p}+\phi(n, p, k, \alpha) r^{p+1}\left[\sum_{k=2}^{\infty} \psi(n, p, k, \alpha) a_{k+p-1}+\theta(n, p, k, \alpha) b_{k+p-1}\right] \\
\leq\left(1+b_{p}\right) r^{p}+\left\{\phi(n, p, k, \alpha)-\Omega(n, p, k, \alpha) b_{p}\right\} r^{p-1} .
\end{gathered}
$$

The following covering result follows from the left hand inequality in Theorem 2.4.
Corollary 2.1. Let $f_{n} \in H_{p}^{-}(n, \alpha)$, the for $|z|=r<1$ we have

$$
\left\{w:|w|<1-b_{p}-\left[\phi(n, p, k, \alpha)-\Omega(n, p, k, \alpha) b_{p}\right] \subset f_{b}(U)\right\} .
$$

Similar results was obtained in [6] by Bilal Şekel and Sevtap Sümer Eker for the differential operator of Sălăgean defined in [4].

References

[1] Avei, Y., Zlotkiewicz, E., On harmonic univalent mappings, Ann. Univ. Marie CurieSklodowska, Sect. A., 44(1991), 1-7.
[2] Clunie, J., Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A.I., Math., 9(1984), 3-25.
[3] Jahongiri, J.M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470-477.
[4] Sălăgean, G.S., Subclass of univalent functions, Lecture Notes in Math., Springer-Verlag, 1013(1983), 362-372.
[5] Jahangiri, J.M., Ahuja, O.P., Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A., LVI(2001), 1-13.
[6] Bilal Şekel, Sevtap Sümer Eker, On Sălăgean type harmonic multivalent functions, General Mathematics, Vol. 15, No. 2-3(2007), 52-63.

Babeģ-Bolyai University,
Faculty of Mathematics and Computer Science,
400084 Cluj-Napoca, Romania,
E-mail address: uluminita@math.ubbcluj.ro

