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A FRICTIONLESS ELASTIC-VISCOPLASTIC CONTACT PROBLEM
WITH NORMAL COMPLIANCE, ADHESION AND DAMAGE

LAMIA CHOUCHANE AND LYNDA SELMANI

Abstract. We study a quasistatic frictionless contact problem with nor-

mal compliance, adhesion and damage for elastic-viscoplastic material.The

adhesion of the contact surfaces is modeled with a surface variable, the

bonding field, whose evolution is described by a first order differential equa-

tion. The mechanical damage of the material, caused by excessive stess or

strains, is described by a damage function whose evolution is modeled by

an inclusion of parabolic type. We provide a variational formulation of the

problem and prove the existence and uniqueness of a weak solution. The

proofs are based on time-dependent variational equalities, classical results

on elliptic and parabolic variational inequalities, differential equations and

fixed point arguments.

1. Introduction

We consider a mathematical model for a quasistatic process of frictionless

contact between an elastic-viscoplastic body and an obstacle, within the framework

of small deformation theory. The contact is modeled with normal compliance. The

effect of damage due to the mechanical stress or strain is included in the model. Such

situation is common in many engeneering applications where the forces acting on

the system very periodically leading to the appearence and growth of microcracks

which may deteriorate the mechanism of the system. Because of the safety issue
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of mechanical equipments, considerable efforts were been devoted to modeling and

numerically simulating damage.

Early models for mechanical damage derived from the termodyamical consid-

erations appeared in [9, 10], where numerical simulations were included. Mathemat-

ical analysis of one-dimensional problems can be found in [11]. In all these papers

the damage of the material is described with a damage function α, restricted to have

values between zero and one. When α = 1 there is no damage in the material, when

α = 0, the material is completely damaged, when 0 < α < 1 there is partial damage

and the system has a reduced load carrying capacity. Quasistatic contact problems

with damage have been investigated in [13, 14, 17]. In this paper, the inclusion used

for the evolution of the damage field is

.
α− k4 α + ∂ϕK (α) 3 Φ (σ, ε (u) , α) ,

where K denotes the set of admissible damage functions defined by

K =
{
ξ ∈ H1 (Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω

}
,

k is a positive coefficient, ∂ϕK represents the subdifferential of the indicator function

of the set K and Φ is a given constitutive function which describes the sources of the

damage in the system. In the present paper we consider a rate type elastic-viscoplastic

material with constitutive relation

.
σ = Eε

( .
u
)

+ G (σ, ε (u) , α) ,

where E is a fourth order tensor, G is a nonlinear constitutive function and α is

the damage field and the adhesion between the body and the obstacle is taken into

account during the conact. The adhesive contact between bodies, when a glue is

added to keep surfaces from relative motion, is receiving increased attention in the

mathematical literature. Analysis of models for adhesive contact can be found in

[2, 3, 4, 6, 12, 15, 20]. The novelty in all the above papers is the introduction of a

surface internal variable, the bonding field, denoted in the paper by β; it describes

the pointwise fractional density of active bonds on the contact surface, and sometimes
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referred to as the intensity of adhesion. Following [7, 8], the bonding field satisfies the

restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion is

complete and all the bonds are active, when β = 0 all the bonds are inactive, severed,

and there is no adhesion; when 0 < β < 1 the adhesion is partial and only a fraction

β of the bonds is active. We refer the reader to the extensive bibliography on the

subject in [16,18,19].

The paper is structured as follows. In section 2 we present the notation

and some preliminaries. In section 3 we present the mechanical problem, we list the

assumptions and in section 4 we give and prove our main existence and uniqueness

result, Theorem 4.1. The proof is based on monotone operator theory, classical results

on parabolic inequalities and Banach fixed point arguments.

2. Notation and preliminaries

In this short section, we present the notation we shall use and some prelimi-

nary material. For more details, we refer the reader to [5]. We denote by Sd the space

of second order symmetric tensors on Rd,( d = 2, 3), while (.) and |.| represent the

inner product and the Euclidean norm on Sd and Rd, respectively. Let Ω ⊂ Rd be a

bounded domain with a regular boundary Γ and let ν denote the unit outer normal

on Γ. we shall use the notation

H = L2(Ω)d = {u = (ui) / ui ∈ L2(Ω)},

H = {σ = (σij) / σij = σji ∈ L2(Ω)},

H1 = {u = (ui) ∈ H / ε(u) ∈ H},

H1 = {σ ∈ H / Div σ ∈ H},

where ε : H1 → H and Div : H1 → H are the deformation and divergence operators,

respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j).

Here and below, the indices i and j run between 1 to d, the summation

convention over repeated indices is used and the index that follows a comma indicates
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a partial derivative with respect to the corresponding component of the independent

variable. The spaces H,H,H1 and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u,v)H =
∫

Ω

uividx ∀u,v ∈H,

(σ, τ )H =
∫

Ω

σij τ ijdx ∀σ, τ ∈H,

(u,v)H1
= (u,v)H + (ε (u) , ε (v))H ∀u,v ∈H1,

(σ, τ )H1
= (σ, τ )H + (Div σ, Div τ )H ∀σ, τ ∈H1.

The associated norms on the spaces H,H,H1 and H1 are denoted by | |H , | |H ,

| |H1
and | |H1

, respectively. Let HΓ = H1/2 (Γ)d and let γ : H1 → HΓ be the

trace map. For every element v ∈ H1 we also use the notation v to denote the trace

γv of v on Γ and we denote by vν and vτ the normal and tangential components of

v on the boundary Γ given by

vν = v.ν, vτ = v−vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd, we define its normal and

tangential components by

σν = (σν) .ν, στ = σν − σνν, (2.2)

and we recall that the following Green’s formula holds

(σ, ε (v))H + (Div σ,v)H =
∫

Γ

σν.v da ∀v ∈ H1. (2.3)

Finally, for any real Hilbert space X, we use the classical notation for the spaces

Lp (0, T ;X) and W k,p (0, T ;X) , where 1 ≤ p ≤ +∞, and k ≥ 1. We denote by

C (0, T ;X) and C1 (0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X, respectively, with the norms

|f |C(0,T ;X) = max
t∈[0,T ]

|f (t)|X ,

|f |C1(0,T ;X) = max
t∈[0,T ]

|f (t)|X + max
t∈[0,T ]

∣∣∣ .

f (t)
∣∣∣
X

,
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respectively. Moreover, we use the dot above to indicate the derivative with respect

to the time variable and, for a real number r, we use r+ to present its positive part,

that is r+ = max {0, r}. Finally, for the convenience of the reader, we recall the

following version of the classical theorem of Cauchy-Lipschitz (see, e.g., [21, p. 60]).

Theorem 1. Assume that (X, |.|X) is a real Banach space and T > 0. Let F (t, .) :

X → X be an operator defined a.e. on (0, T ) satisfying the following conditions: 1- ∃

LF > 0 such that |F (t, x)− F (t, y)|X ≤ LF |x− y|X ∀x, y ∈ X, a.e. t ∈ (0, T ). 2-

∃ p ≥ 1 such that t 7−→ F (t, x) ∈ Lp (0, T ;X) ∀x ∈ X. Then for any x0 ∈ X, there

exists a unique function x ∈ W 1,p (0, T ;X) such that

.
x (t) = F (t, x (t)) a.e. t ∈ (0, T ) ,

x (0) = x0.

Theorem 2.1 will be used in section 4 to prove the unique solvability of the

intermediate problem involving the bonding field.

Moreover, if X1 and X2 are real Hilbert spaces, then X1 × X2 denotes the

product Hilbert space endowed with the canonical inner product (., .)X1×X2
.

3. Problem statement

A viscoplastic body occupies the domain Ω ⊂ Rd with the boundary Γ di-

vided into three disjoint measurable parts Γ1,Γ2 and Γ3 such that meas (Γ1) > 0.

The time interval of interest is [0, T ] where T > 0. The body is clamped on Γ1 and so

the displacement field vanishes there. A volume force of density f0 acts in Ω× (0, T )

and surface tractions of density f2 act on Γ2 × (0, T ). We assume that the body is

in adhesive frictionless contact with an obstacle, the so called foundation, over the

potential contact surface Γ3. Moreover, the process is quasistatic, i.e. the inertial

terms are neglected in the equation of motion. We use an elasto-viscoplastic consti-

tutive law with damage to model the material’s behavior and an ordinary differential

equation to describe the evolution of the bonding field. The mechanical formulation

of the frictionless problem with normal compliance is as follows.
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Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field

σ : Ω × [0, T ] → Sd, a damage field α : Ω × [0, T ] → R and a bonding field β :

Γ3 × [0, T ] → [0, 1] such that

.
σ = Eε

( .
u
)

+ G (σ, ε (u) , α) , (3.1)

.
α− k4 α + ∂ϕK (α) 3 Φ (σ, ε (u) , α) , (3.2)

Div σ + f0 = 0 in Ω× (0, T ), (3.3)

u = 0 on Γ1 × (0, T ), (3.4)

σν = f2 on Γ2 × (0, T ), (3.5)

−σν = pν (uν)− γν β2 (−R (uν))+ on Γ3 × (0, T ), (3.6)

στ = 0 on Γ3 × (0, T ), (3.7)

∂α

∂ν
= 0 on Γ× (0, T ), (3.8)

.

β = −
[
γνβ

[
(−R (uν))+

]2 − εa

]
+

on Γ3 × (0, T ), (3.9)

u(0) = u0,σ(0) = σ0, α(0) = α0 in Ω, (3.10)

β(0) = β0 on Γ3. (3.11)

The relation (3.1) represents the viscoplastic constitutive law with damage, the evo-

lution of the damage field is governed by the inclusion given by the relation (3.2),

k is a constant, ∂ϕK denotes the subdifferential of the indicator function ϕK of K

which represents the set of admissible damage functions satisfying 0 ≤ α ≤ 1 and Φ

is a given constitutive function which describes damage sources in the system. (3.3)

represents the equilibrium equation, (3.4) and (3.5) are the displacement and traction

boundary conditions, respectively. (3.6) represents the normal compliance contact

condition with adhesion in which γν and εa are given adhesion coefficients and R is

the truncation operator defined by

R (s) =


−L if s ≤ −L,

s |s| < L,

L if s ≥ L.

(3.12)
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Here L > 0 is the caracteristic length of the bond, beyonding which it does not offer

any additional traction. The introduction of R is motivated by the mathematical

arguments but it is not restrictive for physical point of view, since no restriction on the

size of the parameter L is made in what follows. Also, pν is a given positive function

which will be decribed below. In this condition the interpenetrability between the

body and the foundation is allowed, that is uν may be positive on Γ3. The contribution

of the adhesive to normal traction is represented by the term γνβ (−R (uν))+, the

adhesive traction is tensile, and is proportional, with proportionality coefficient γν ,

to the square of the intensity of adhesion, and to the normal displacement, but as in

various papers see e.g. [2, 3] and the references threin. Condition (3.7) represents

the frictionless contact condition and shows that the tangential stress vanishes on

the contact surface during the process. (3.8) represents a homogeneous Newmann

boundary condition where ∂α
∂ν represents the normal derivative of α. Next, equation

(3.9) represents the ordinary differential equation which describes the evolution of

the bonding field and it was already used in [2], see also [19] for more details. Here,

γν and εa are given adhesion coefficients which may depend on x ∈ Γ3 and R is the

truncation operator given by (3.12). Notice that in this model once debonding occurs

bonding connot be reestablished since, as it follows from (3.9),
.

β ≤ 0. In (3.10), we

consider the initial conditions where u0 is the initial displacement, σ0 is the initial

stress and α0 is the initial damage. Finally, (3.11) is the initial condition, in which

β0 denotes the initial bonding field. Let Z denote the bonding fields set

Z =
{
β ∈ L2 (Γ3) / 0 ≤ β ≤ 1 a.e. on Γ3

}
,

and for displacement field we need the closed subspace of H1 defined by

V = {v ∈ H1|v = 0 on Γ1}.

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant CK > 0,

that depends only on Ω and Γ1 such that

|ε (v)|H ≥ CK |v|H1
∀v ∈V.
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On V we consider the inner product and the associated norm given by

(u,v) = (ε (u) , ε (v))H , |v|V = |ε (v)|H ∀u,v ∈ V.

It follows from Korn’s inequality that |.|H1
and |.|V are equivalent norms on V and

therefore (V, |.|V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem,

there exists a constant C0, depending only on Ω, Γ1 and Γ3 such that

|v|L2(Γ3)
d ≤ C0 |v|V ∀v ∈ V. (3.13)

In the study of the mechanical problem (3.1)-(3.11), we make the following assump-

tions. The operator E : Ω× Sd → Sd satisfies


(a) E = (eijkh) / eijkh ∈ L∞ (Ω) ,

(b) E σ . τ = σ . A . τ ∀σ, τ ∈Sd, a.e. in Ω,

(c) E σ . σ ≥mE |σ|2 ∀σ ∈Sd, for some mE > 0.

(3.14)

The operator G : Ω× Sd × Sd × R → Sd satisfies



(a) There exists a constant LG > 0 such that

|G(x,σ1, ε1, α1)− G (x,σ2, ε2, α2)| ≤ LG (|σ1 − σ2|+ |ε1 − ε2|+ |α1 − α2|)

∀σ1, σ2, ε1, ε2 ∈ Sd, α1, α2 ∈ R, a.e. x ∈ Ω;

(b) x 7−→ G (x,σ, ε, α) is a Lebesgue measurable function on Ω

∀σ, ε ∈ Sd, ∀α ∈ R;

(c) x 7−→ G (x,0,0, 0) ∈ H.

(3.15)

The damage function Φ : Ω× Sd × Sd × R → R satisfies
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

(a) There exists a constant L > 0 such that

|Φ(x,σ1, ε1, α1)− Φ (x,σ2, ε2, α2)| ≤ L (|σ1 − σ2|+ |ε1 − ε2|+ |α1 − α2|)

∀σ1, σ2, ε1, ε2 ∈ Sd, α1, α2 ∈ R, a.e. x ∈ Ω;

(b) x 7−→ Φ (x,σ, ε, α) is a Lebesgue measurable function on Ω

∀σ, ε ∈ Sd, ∀α ∈ R;

(c) x 7−→ Φ (x,0,0, 0) ∈ H.

(3.16)

The normal compliance function pν : Γ3 × Rd → R+ satisfies

(a) There exists Lν > 0 such that

|pν (x, r1)− pν (x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(b) (pν (x, r1)− pν (x, r2)). (r1 − r2) ≥ 0 ∀r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(c) r 7→ pν (., r) is Lebesgue measurable on Γ3, ∀r ∈ Rd.

(d) The mapping pν (., r) = 0 for all r ≤ 0.

(3.17)

The adhesion coefficients satisfy

γν ∈ L∞ (Γ3) , γν ≥ 0, εa ∈ L∞ (Γ3) , εa ≥ 0. (3.18)

We also suppose that the body forces and surface traction have the regularity

f0 ∈ C (0, T ;H) , f2 ∈ C(0, T ;L2 (Γ2)
d). (3.19)

Finally we assume that the initial data satisfy the following conditions

u0 ∈ V, σ0 ∈ H1, (3.20)

α0 ∈ K, (3.21)

β0 ∈ Z. (3.22)

We define the bilinear form a : H1 (Ω)×H1 (Ω) → R by

a(ξ, ϕ) = k

∫
Ω

∇ξ . ∇ϕ dx. (3.23)
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Next, we denote f : [0, T ] → V the function defined by

(f (t) ,v)V =
∫
Ω

f0 (t) .v dx +
∫
Γ2

f2 (t) .v da ∀v ∈ V , a.e. t ∈ (0, T ) . (3.24)

The adhesion functional jad : L∞ (Γ3)× V × V → R defined by

jad(β,u,v) =
∫
Γ3

− γν β2 (−R (uν))+ vν da. (3.25)

In addition to the functional (3.25), we need the normal compliance functional jnc :

V × V → R given by

jnc (u,v) =
∫
Γ3

pν (uν) vν da. (3.26)

Keeping in mind (3.17)-(3.18), we observe that the integrals in (3.25) and (3.26) are

well defined and we note that conditions (3.19) imply

f ∈ C (0, T ;V ) . (3.27)

Finally we assume the following condition of compatibility

(σ0, ε (v))H + jad(β0,u0,v) + jnc (u0,v) = (f (0) ,v)V ∀v ∈V. (3.28)

Using standard arguments based on green’s formula (2.3) we can derive the

following variational formulation of the frictionless problem with normal compliance

(3.1)-(3.11) as follows.

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ :

[0, T ] → H a damage field α : [0, T ] → H1 (Ω) and a bonding field β : [0, T ] → L2 (Γ3)

such that

.
σ (t) = Eε

( .
u (t)

)
+ G (σ (t) , ε (u (t)) , α (t)) , a.e. t ∈ (0, T ) , (3.29)

α (t) ∈ K for all t ∈ [0, T ] , (
.
α (t) , ξ − α (t))L2(Ω) + a(α (t) , ξ − α (t))

≥ (Φ (σ (t) , ε (u (t)) , α (t)) , ξ − α (t))L2(Ω) ∀ξ ∈ K, (3.30)

(σ (t) , ε (v))H + jad(β (t) ,u (t) ,v) + jnc (u (t) ,v)

= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (3.31)
.

β (t) = −
[
γν β (t)

[
(−R (uν (t)))+

]2 − εa

]
+

a.e. t ∈ (0, T ) , (3.32)
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u (0) = u0,σ (0) = σ0, α (0) = α0, β (0) = β0. (3.33)

We notice that the variational problem PV is formulated in terms of displacement,

stress field, damage field and bonding field. The existence of the unique solution of

problem PV is stated and proved in the next section. To this end, we consider the

following remark whose estimates will be used in different places of the paper.

Remark 1. From (3.32) we obtain that β (x, t) ≤ β0 (x) , since β0 (x) ∈ Z then

β (x, t) ≤ 1 for all t ≥ 0, a.e. on Γ3. If β (x, t0) = 0 for all t = t0 it follows from

(3.32) that
.

β (x, t) = 0 for all t ≥ t0, therefore, β (x, t) = 0 for all t ≥ t0. We conclude

that 0 ≤ β (x, t) ≤ 1 ∀t ∈ [0, T ] , a.e. x ∈ Γ3.

In the sequel we consider that C is a generic positive constant which depends

on Ω,Γ1,Γ3, γν , L and may change from place to place. First, we remark that jad and

jnc are linear with respect to the last argument and therefore

jad(β,u,−v) = −jad(β,u,v), jnc (u,−v) = −jnc (u,v) . (3.34)

Next, using (3.25) as well as the properties of the operator R , (3.12), we find

jad(β1,u1,v)− jad(β2,u2,v) =
∫
Γ3

γν β2
1[(−R (u2ν))+ − (−R (u1ν))+] vν da

+
∫
Γ3

γν (β2
2 − β2

1) (−R (u2ν))+ vν da ≤ C

∫
Γ3

|β1 − β2| |v| da,

and from (3.13) we obtain

jad(β1,u1,v)− jad(β2,u2,v) ≤ c |β1 − β2| L2(Γ3)
|v|V . (3.35)

Now, we use (3.26) to see that

|jnc (u1,v)− jnc (u2,v)| ≤
∫
Γ3

|pν (u1ν)− pν (u2ν)| |vν | da,

and therefore (3.17) (a) and (3.13) imply

|jnc (u1,v)− jnc (u2,v)| ≤ C | u1 − u2|V |v|V . (3.36)
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We use again (3.26) to see that

jnc (u1,u2 − u1) + jnc (u2,u1 − u2) =
∫
Γ3

(pν (u1ν)− pν (u2ν)) (u2ν − u1ν) da,

and therefore (3.17) (b) implies

jnc (u1,u2 − u1) + jnc (u2,u1 − u2) ≤ 0. (3.37)

The inequalities (3.35)-(3.37) combined with equalities (3.34) will be used in various

places in the rest of the paper.

4. Well posedness of the problem

The main result in this section is the following existence and uniqueness

result.

Theorem 2. Assume that (3.14)-(3.22) and (3.28) hold. Then, problem PV has a

unique solution {u,σ, β, α} which satisfies

u ∈ C (0, T ;V ) ,

σ ∈ C(0, T ;H1),

β ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
,

α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (4.1)

A quadruplet (u,σ, β, α) which satisfies (3.29)-(3.33) is called a weak solution

to the compliance contact problem P . We conclude that, under the stated assump-

tions, problem (3.1)-(3.11) has a unique weak solution satisfying (4.1). We turn now

to the proof of Theorem 4.1 which is carried out in several steps. To this end, we

assume in the following that (3.14)-(3.22) and (3.28) hold. Below, C denotes a generic

positive constant which may depend on Ω,Γ1,Γ3, E , γν , L and T but does not depend

on t nor of the rest of input data, and whose value may change from place to place.

Moreover, for the sake of simplicity, we supress, in what follows, the explicit depen-

dence of various functions on x ∈ Ω∪Γ. The proof of Theorem 4.1 will be carried out

in several steps. In the first step we solve the differential equation in (3.32) for the
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adhesion field, where u is given, and study the continuous dependence of the adhesion

solution with respect to u.

Lemma 3. For every u ∈C (0, T ;V ), there exists a unique solution

βu ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
satisfying

.

βu (t) = −
[
γν βu (t)

[
(−R (uν (t)))+

]2 − εa

]
+

a.e. t ∈ (0, T ) ,

βu (0) = β0.

Moreover, βu (t) ∈ Z for t ∈ [0, T ], a.e. on Γ3, and there exists a constant C > 0,

such that, for all u1, u2 ∈ C (0, T ;V ) ,∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2V ds ∀t ∈ [0, T ] .

Proof. Consider the mapping F : [0, T ]× L2 (Γ3) → L2 (Γ3) defined by

F (t, β) = −
[
γνβ (t)

[
(−R (uν))+

]2 − εa

]
+

,

∀t ∈ [0, T ] and β ∈ L2 (Γ3) . It follows from the properties of the truncation op-

erator R that F is Lipschitz continuous with respect to the second argument, uni-

formly in time. Moreover, for any β ∈ L2 (Γ3), the mapping t 7−→ F (t, β) belongs to

L∞
(
0, T, L2 (Γ3)

)
. Thus, the existence and the uniqueness of the solution βu follows

from the classical theorem of Cauchy-Lipschitz given in Theorem 2.1. Notice also

that the argument used in Remark 3.1 shows that 0 ≤ βu (t) ≤ 1 for all t ∈ [0, T ],

a.e. on Γ3. Therefore, from the definition of the set Z, we find that βu (t) ∈ Z for all

t ∈ [0, T ], which concludes the proof of the Lemma. Now let u1, u2 ∈ C (0, T ;V ) and

let t ∈ [0, T ] . We have, for i = 1, 2,

βui
(t) = β0 −

∫ t

0

[
γν βui

(t)
[
(−R (uiν (t)))+

]2 − εa

]
+

ds,

and then ∣∣βu1
(t)− βu2

(t)
∣∣
L2(Γ3)
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≤ C

∫ t

0

∣∣∣βu1
(s)

[
(−R (u1ν (s)))+

]2 − βu2
(s)

[
(−R (u2ν (s)))+

]2∣∣∣
L2(Γ3)

ds.

Using the definition of the truncation operator R given by (3.12) and considering

βu1
= βu1

− βu2
+ βu2

we find∣∣βu1
(t)− βu2

(t)
∣∣
L2(Γ3)

≤ C

∫ t

0

∣∣βu1
(s)− βu2

(s)
∣∣
L2(Γ3)

ds +
∫ t

0

|u1 (s)− u2 (s)|L2(Γ3)
d ds

 .

Applying Gronwall’s inequality, it follows that∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2L2(Γ3)
d ds,

and using (3.13) we obtain the second part of Lemma 4.2. �

Now we consider the following viscoplastic problem and we prove an existence

and uniqueness result for (3.29), (3.31) and (3.33) with the corresponding initial

condition.

Problem QV . Find a displacement field u : [0, T ] → V , a damage field

α : [0, T ] → H1 (Ω) and a stress field σ : [0, T ] → H satisfying ( 3.29) and

(σ (t) , ε (v))H + jad(βu (t) ,u (t) ,v) + jnc (u (t) ,v)

= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.2)

u (0) = u0,σ (0) = σ0, α (0) = α0. (4.3)

Let (η,ω) ∈ C(0, T ;H × L2 (Ω)) and let Zη (t) =
∫ t

0

η (s) ds + σ0 − Eε (u0),

then

Zη ∈ C1(0, T ;H),

and consider the following variational problem.

Problem QVη. Find a displacement field u
η

: [0, T ] → V and a stress field

ση : [0, T ] → H such that

ση (t) = Eε(uη (t)) + Zη (t) , ∀t ∈ [0, T ] , (4.4)

(ση (t) , ε (v))H + jad(βuη
(t) ,uη (t) ,v) + jnc(uη (t) ,v)
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= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.5)

uη (0) = u0,ση (0) = σ0. (4.6)

To solve problem QVη we consider θ ∈ C (0, T ;V ) and we construct the following

intermediate problem.

Problem QVηθ. Find a displacement field u
ηθ

: [0, T ] → V and a stress field

σ
ηθ

: [0, T ] → H such that

σηθ (t) = Eε(uηθ (t)) + Zη (t) , (4.7)

(σηθ (t) , ε (v))H + (θ (t) ,v)V = (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.8)

uηθ (0) = u0,σηθ (0) = σ0. (4.9)

Lemma 4. There exists a unique solution (uηθ,σηθ) of the problem QVηθ which sat-

isfies uηθ ∈ C (0, T ;V ), σηθ ∈ C(0, T ;H1).

Proof. We define the operator A : V → V by

(A u,v)V = (Eε (u) , ε (v))H, ∀u, v ∈V. (4.10)

Using (3.14), it follows that A is a strongly monotone Lipschitz operator, thus A is

invertible and A−1 : V → V is also a strongly monotone Lipschitz operator. It follows

that there exists a unique function uηθ which satisfies

uηθ ∈ C (0, T ;V ) , (4.11)

A uηθ (t) = hηθ (t) , (4.12)

where hηθ ∈ C (0, T ;V ) is such that

(hηθ (t) ,v)V = (f (t) ,v)V −(Zη (t) , ε (v))H−(θ (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] . (4.13)

It follows from, (4.12) that uηθ ∈ C (0, T ;V ). Consider σηθ defined in (4.7), since,

Zη ∈ C1(0, T ;H), uηθ ∈ C (0, T ;V ) we deduce that σηθ ∈ C(0, T ;H). Since Divσηθ =

−f0 ∈ C (0, T ;H), we further have σηθ ∈ C(0, T ;H1). This concludes the existence

part of Lemma 4.3. The uniqueness of the solution follows from the unique solvability

of the time-dependent equation (4.12). Finally (uηθ,σηθ) is the unique solution of

problem QVηθ obtained in Lemma 4.3, which concludes the proof. �
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Let Λθ (t) denote the element of V defined by

(Λθ (t) ,v)V = jad(βuηθ
(t) ,uηθ (t) ,v)+jnc(uηθ (t) ,v) ∀v ∈V, ∀t ∈ [0, T ] . (4.14)

We have the following result.

Lemma 5. For each θ ∈ C (0, T ;V ) the function Λθ : [0, T ] → V belongs to

C (0, T ;V ). Moreover, there exists a unique element θ∗ ∈ C (0, T ;V ) such that

Λθ∗ = θ∗.

Proof. Let θ ∈ C (0, T ;V ) and let t1, t2 ∈ [0, T ]. Using (3.35), (3.36) and

(4.14) we obtain

|Λθ (t1)− Λθ (t2)|V ≤ C

(∣∣∣βuηθ
(t1)− βuηθ

(t2)
∣∣∣
L2(Γ3)

+ |uηθ (t1)− uηθ (t2)|V

)
.

(4.15)

By Lemma 4.3, uηθ ∈ C (0, T ;V ) and, by Lemma 4.2, βuηθ
∈ W 1,∞ (

0, T ;L2 (Γ3)
)
,

then we deduce from inequality (4.15) that Λθ ∈ C (0, T ;V ). Let now θ1,θ2 ∈

C (0, T ;V ) and denote uηθi
= ui and βuηθi

= βui
for i = 1, 2. Using again the

relations (3.35), (3.36) and (4.14) we find

|Λθ1 (t)− Λθ2 (t)|2V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣2
L2(Γ3)

+ |u1 (t)− u2 (t)|2V
)

. (4.16)

Then by Lemma 4.2, we have∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2L2(Γ3)
ds,

and by (3.13) we get∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2V ds.

Use the previous inequality in (4.16) to obtain

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

|u1 (t)− u2 (t)|2V +
∫ t

0

|u1 (s)− u2 (s)|2V ds

 . (4.17)

Moreover, from (4.8) it follows that

(Eε (u1)− Eε (u2) , ε (u1)− ε (u2))H + (θ1 − θ2,u1 − u2)V = 0 on (0, T ) . (4.18)
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Hence

|u1 (t)− u2 (t)|V ≤ C |θ1 (t)− θ2 (t)|V ∀t ∈ [0, T ] . (4.19)

Now from the inequalities (4.17) and (4.19) we have

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

|θ1 (t)− θ2 (t)|2V +
∫ t

0

|θ1 (s)− θ2 (s)|2V ds

 ∀t ∈ [0, T ] .

Applying Gronwall’s inequality we obtain

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

∫ t

0

|θ1 (s)− θ2 (s)|2V ds ∀t ∈ [0, T ] .

Reiterating this inequality n times yields

|Λnθ1 − Λnθ2|2C(0,T ;V ) ≤
(CT )n

n!
|θ1 − θ2|2C(0,T ;V ) ,

which implies that for n sufficiently large a power Λn of Λ is a contraction in the

Hilbert space C (0, T ;V ). Then, there exists a unique θ∗ ∈ C (0, T ;V ) such that

Λnθ∗ = θ∗ and θ∗ is also the unique fixed point of Λ. �

Lemma 6. There exists a unique solution of problem QVη satisfying uη ∈ C (0, T ;V ),

ση ∈ C(0, T ;H1).

Proof. Let θ∗ ∈ C (0, T ;V ) be the fixed point of Λ, Lemma 4.3 implies that

(uηθ∗ ,σηθ∗) ∈ C (0, T ;V ) × C(0, T ;H1) is the unique solution of QVηθ for θ = θ∗.

since Λθ∗ = θ∗ and from the relations (4.14), (4.7), (4.8) and (4.9), we obtain that

(uη,ση) = (uηθ∗ ,σηθ∗) is the unique solution of QVη. The uniqueness of the solution

is a consequence of the uniqueness of the fixed point of the operator Λ given in (4.14).

�

Now for (η,ω)∈C(0, T ;H×L2 (Ω)), we suppose that the assumptions of The-

orem 4.1 hold and we consider the following intermediate problem for the damage

field.

Probem PVω. Find a a damage field αω : [0, T ] → H1 (Ω) such that αω (t) ∈

K, for all t ∈ [0, T ] and

(
.

αω (t) , ξ − αω (t))L2(Ω) + a(αω (t) , ξ − αω (t))
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≥ (ω (t) , ξ − αω (t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ) (4.20)

αω (0) = α0 (4.21)

Lemma 7. Problem PVω has a unique soltion αω such that

αω ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (4.22)

Proof. We use (3.21), (3.23) and a classical existence and uniqueness result

on parabolic inequalities (see for instance [1 p. 124]). �

As a consequence of the problems QVη and PVω, we may define the operator

L : C(0, T ;H× L2 (Ω)) → C(0, T ;H× L2 (Ω)) by

L(η,ω) = (G(ση, ε(uη), αω),Φ(ση, ε(uη), αω)), (4.23)

for all (η,ω) ∈ C(0, T ;H× L2 (Ω)). Then we have.

Lemma 8. The operator L has a unique fixed point

(η∗,ω∗) ∈ C(0, T ;H× L2 (Ω)).

Proof. Let (η1,ω1), (η2,ω2) ∈ C(0, T ;H×L2 (Ω)), let t ∈ [0, T ] and use the

notation uηi = ui, σηi = σi, Zηi = Zi and αωi
= αi for i = 1, 2. Taking into account

the relations (3.15), (3.16) and (4.23), we deduce that

|L(η1,ω1)− L(η2,ω2)|H×L2(Ω)

≤ C
(
|u1 (t)− u2 (t)|V + |α1 (t)− α2 (t)|L2(Ω) + |σ1 (t)− σ2 (t)|H

)
. (4.24)

Using (4.5) we obtain

(Eε (u1)− Eε (u2) , ε (u1)− ε (u2))H = jad(βu2
,u2,u1 − u2)− jad(βu1

,u1,u1 − u2)

+jnc(u2,u1 − u2)− jnc(u1,u1 − u2) + (Z2 − Z1, ε (u1)− ε (u2))H a.e. t ∈ (0, T ) .

(4.25)

Keeping in mind (3.35), (3.37) and (3.14) we find

|u1 (t)− u2 (t)|V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣
L2(Γ3)

+ |Z1 (t)− Z2 (t)|H
)

, (4.26)
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and

|u1 (t)− u2 (t)|2V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣2
L2(Γ3)

+ |Z1 (t)− Z2 (t)|2H
)

.

By Lemma 4.2, we obtain

|u1 (t)− u2 (t)|2V ≤ C

|Z1 (t)− Z2 (t)|2H +
∫ t

0

|u1 (s)− u2 (s)|2V ds


≤ C(

∫ t

0

|η1 (s)− η2 (s)|2H ds +
∫ t

0

|u1 (s)− u2 (s)|2V ds). (4.27)

Applying Gronwall’s inequality yields

|u1 (t)− u2 (t)|2V ≤ C

∫ t

0

|η1 (s)− η2 (s)|2H ds, (4.28)

which implies

|u1 (t)− u2 (t)|V ≤ C

∫ t

0

|η1 (s)− η2 (s)|H ds. (4.29)

Moreover, by (4.4) we find

|σ1 (t)− σ2 (t)|H ≤ C (|u1 (t)− u2 (t)|V + |Z1 (t)− Z2 (t)|H) .

Substituting (4.29) in the previous inequality we obtain

|σ1 (t)− σ2 (t)|H ≤ C

∫ t

0

|η1 (s)− η2 (s)|H ds. (4.30)

From (4.20) we deduce that( .
α1, α2 − α1

)
L2(Ω)

+ a (α1, α2 − α1)

≥ (ω1, α2 − α1)L2(Ω) a.e. t ∈ (0, T ) ,

and ( .
α2, α1 − α2

)
L2(Ω)

+ a (α2, α1 − α2)

≥ (ω2, α1 − α2)L2(Ω) a.e. t ∈ (0, T ) .

Adding the previous inequalities we obtain( .
α1 −

.
α2, α1 − α2

)
L2(Ω)

+ a (α1 − α2, α1 − α2)

≤ |ω1 − ω2|L2(Ω) |α1 − α2|L2(Ω) a.e. t ∈ (0, T ) .
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Integrating the previous inequality on [0, t], after some manipulations we obtain

1
2
|α1 (t)− α2 (t)|2L2(Ω) ≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Ω) |α1 (s)− α2 (s)|L2(Ω) ds

+C

∫ t

0

|α1 (s)− α2 (s)|2L2(Ω) ds.

Applying Gronwall’s inequality to the previous inequality yields

|α1 (t)− α2 (t)|L2(Ω) ≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Ω) ds. (4.31)

Substituting (4.29), (4.30) and (4.31) in (4.24), we obtain

|L(η1,ω1)− L(η2,ω2)|H×L2(Ω)

≤ C

∫ t

0

|(η1,ω1) (s)− (η2,ω2) (s)|H×L2(Ω) ds. (4.32)

Lemma 4.7 is a consequence of the result (4.32) and Banach’s fixed point Theorem.

�

Now, we have all ingredients to solve QV.

Lemma 9. There exists a unique solution (u,σ, α) of problem PV satisfying u ∈

C (0, T ;V ), σ ∈ C(0, T ;H1), α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
.

Proof. Let (η∗,ω∗) ∈ L2(0, T ;H × L2 (Ω)) be the fixed point of L given

by (4.24), by Lemma 4.5, we deduce that (uη,ση) = (uηθ∗ ,σηθ∗) ∈ C (0, T ;V ) ×

C(0, T ;H1) is the unique solution of QVη. Since L(η∗,ω∗) = (η∗,ω∗), from the rela-

tions (4.4), (4.5), (4.6) and Lemma 4.6 we obtain that (u,σ, α) = (uη∗θ∗ ,ση∗θ∗ , αω∗)

is the unique solution of QV . The regularity of the solution follows from Lemma 4.6.

The uniqueness of the solution results from the uniqueness of the fixed point of the

operator L. �

Theorem 4.1 is now a consequence of Lemma 4.2 and Lemma 4.8.
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