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ON MIXED NONLINEAR INTEGRAL EQUATIONS OF
VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT

CLAUDIA BACOŢIU

Abstract. In the present paper we consider the following mixed Volterra-

Fredholm nonlinear integral equation with modified argument:

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+

∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

For this equation, we will study: the existence and the uniqueness of the

solution, the data dependence of the solution and the differentiability of

the solution with respect to parameters.

1. Introduction

Let (X, ‖ · ‖X) be a Banach space.

In this paper we consider the following nonlinear integral equation of Volterra-

Fredholm type:

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (1)

for all (t, x) ∈ [0, T ]× [a, b] := D; u ∈ C(D, Rm), where b > a > 0 and T > 0.

Volterra-Fredholm (VF on short) integral equations often arise from the mathemat-

ical modelling of the spreading, in space and time, of some contagious diseases, in

the theory of nonlinear parabolic boundary value problem and in many physical and
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biological models.

Most results for VF equation establish numerical approximation of the solutions; e.g.

[8], [9], [22], [2], [11], [3], [7].

In [21] H. R. Thieme considered a model for the spatial spread of an epidemic consist-

ing of a nonlinear integral equation of Volterra-Fredholm type which has an unique

solution. The author showed that this solution has a temporally asymptotic limit

which describes the final state of the epidemic and is the minimal solution of another

nonlinear integral equation.

In [4] O. Diekmann described, derived and analysed a model of spatio-temporal de-

velopment of an epidemic. The model considered leads (see [13]) to the following

nonlinear integral equation of Volterra-Fredholm type:

u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(u(t− τ, ξ))S0(ξ)A(τ, x, ξ)dξdτ (2)

for all (t, x) ∈ [0,∞]× Ω, where Ω is a bounded domain in Rn.

In [13] B. G. Pachpatte considered the integral equation

u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(t, x, s, y, u(s, y))dyds (3)

for all (t, x) ∈ [0, T ]×Ω = D, where Ω is a bounded domain in Rn. Using Contraction

Principle, the author proved that, under appropriate assumptions, (3) has a unique

solution in a subset S of C(D, Rn). The result was then applied to show the existence

and uniqueness of solutions to certain nonlinear parabolic differential equations and

mixed Volterra-Fredholm integral equations occurring in specific physical and biolog-

ical problems (e.g. a reliable treatment of the Diekmann’s model mentioned above is

given).

In [10], D. Mangeron and L. E. Krivos̆ein obtained existence, uniqueness and stability

conditions for the solutions of a class of boundary problems for linear and nonlinear

heat equation with delay. Under certain conditions, this problem is equivalent with

the following nonlinear VF equation:

u(t, x) = n(t, x) +
∫ t

0

∫ a

0

[
G(x, ξ, t− α)g

(
ξ, α, u(ξ, α), u

(
ξ, α− r1(α)

))
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+
∫ a

0

∫ α

0

K(ξ, α, s, y)g
(
s, y, u(s, y), u

(
s, y − r2(s)

))
dyds

]
dξdα

where

n(t, x) =
∫ a

0

[
2
a

∞∑
i=1

e−( πi
a )2t · sinπix

a
· sinπiξ

a
· ϕ0(ξ)

]
dξ

Applying Contraction Principle, an existence and uniqueness theorem is obtained.

In [14], the following problem is considered: ut(t, x) = a2uxx(t, x) + g
(
u(t, x), u(x, [t])

)
u(x, 0) = ϕ(x) t ∈ R

where [t] means the integer part of t. Using integration by parts twice for the equation

above, in appropriate conditions, the problem is equivalent with a VF equation and

the successive approximation method is applied.

The purpose of the present paper is to give results concerning the following problems

related to equation (1): the existence and the uniqueness of the solution, the data

dependence of the solution and the differentiability of the solution with respect to

parameters.

Because the tool used in the present paper is the Picard operators theory, for the

convenient of the reader, we present some basic notions and results concerning this

important class of operators.

2. Picard operators

Let (X, d) be a metric space and A : X → X an operator. In this paper we

will use the following notations:

FA := {x ∈ X : A(x) = x};

A0 := 1X , An+1 := A ◦An for all n ∈ N.

Definition 2.1. (Rus [15]) The operator A is said to be:

(i) weakly Picard operator (wPo) if An(x0) → x∗0 for any x0 ∈ X and the limit

x∗0 is a fixed point of A, which may depend on x0.
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(ii) Picard operator (Po) if FA = {x∗} and An(x0) → x∗ for any x0 ∈ X .

For a weakly Picard operator A, the operator A∞ is defined as follows:

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Notice that A∞(X) = FA.

If A is Picard operator, then A∞(x) = x∗ for all x ∈ X, where x∗ is the unique fixed

point of A.

Example 2.1. Any α-contraction on a complete metric space (X, d) is a Picard

operator.

The following abstract theorem is needed in the study of data dependence of

the solution:

Theorem 2.1. (Rus [17]) Let (X, d) a complete metric space and A,B : X → X two

operators. Assume that:

(i) there exists α ∈ [0, 1[ such that A is α-contraction; let FA = {x∗A}

(ii) FB 6= ∅; let x∗B ∈ FB;

(iii) there exists η > 0 such that d (A(x), B(x)) ≤ η for all x ∈ X.

Then

d(x∗A, x∗B) ≤ η

1− α
.

In order to study the differentiability of the solution with respect to a pa-

rameter, we need the following theorem, due to I. A. Rus:

Theorem 2.2. (Fiber Contraction Principle, Rus [16]) Let (X, d), (Y, ρ) be two met-

ric spaces and B : X → X, C : X × Y → Y two operators such that:

(i) (Y, ρ) is complete;

(ii) B is a Picard operator, FB = {x∗};

(iii) C(·, y) : X → Y is continuous for all y ∈ Y ;

(iv) there exists α ∈]0, 1[ such that the operator C(x, ·) : Y → Y is α-contraction for

all x ∈ X; let y∗ be the unique fixed point of C(x∗, ·).

Then

A : X × Y → X × Y, A(x, y) := (B(x), C(x, y))
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is a Picard operator and FA = {(x∗, y∗)}.

For Picard operators theory applied in the study of differential or integral

equations see [19], [18], [17], [12], [20], [6], [5].

3. Existence and uniqueness theorem

Consider the equation (1).

Theorem 3.1. If the following conditions are satisfied:

(c1) g ∈ C(D ×X, X), H ∈ C(D × [0, T ]×X, X) K ∈ C(D
2 ×X2, X),

ϕ1 ∈ C(D, [0, T ]) and ϕ2 ∈ C(D, [a, b]);

(c2) there exists Lg > 0 such that:

‖g(t, x, u)− g(t, x, v)‖X ≤ Lg‖u− v‖X (4)

for all (t, x) ∈ D and u, v ∈ X

(c3) there exists LH > 0 such that:

‖H(t, x, s, u)−H(t, x, s, v)‖X ≤ LH‖u− v‖X (5)

for all (t, x, s) ∈ D × [0, T ] and u, v ∈ X

(c4) there exists LK > 0 such that:

‖K(t, x, s, y, u, u)−K(t, x, s, y, v, v)‖X ≤ LK

(
‖u− v‖X + |u− v‖X

)
(6)

for all (t, x, s, y) ∈ D
2

and u, v, u, v ∈ X

(c5) Lg < 1

(c6) there exists τ > 0 such that:

α := Lg +
1
τ

LH +
b− a

τ
LK + max

{∫ t

0

∫ b

a

eτ [ϕ1(s,y)−t]dyds : t ∈ [0, T ]
}

LK < 1 (7)

Then (1) has an unique solution u∗ ∈ C(D,X).

Proof. Let the space C(D,X) be endowed with a Bielecki-Chebysev suitable

norm

‖u‖BC := sup{‖u(t, x)‖X e−τt : t ∈ [0, T ], x ∈ [a, b]}, τ > 0 (8)
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Consider the operator A : C(D,X) → C(D,X) defined by:

A(u)(t, x) := g(t, x) +
∫ t

0

∫ b

a

K
(
t, x, s, y, u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (9)

for all u ∈ C(D), for all (t, x) ∈ D.

For any u, v ∈ C(D,X) we have (see [1]):

‖A(u)(t, x)−A(v)(t, x)‖X

≤ Lg‖u(t, x)− v(t, x)‖X + LH

∫ t

0

‖u(s, x)− v(s, x)‖Xds + LK
b− a

τ
‖u− v‖BC · eτt

+LK max
{∫ t

0

∫ b

a

eτ [ϕ1(s,y)−t]dyds : t ∈ [0, T ]
}
· ‖u− v‖BC · eτt

so:

‖A(u)−A(v)‖BC ≤ α ‖u− v‖BC .

From (c6) there exists τ > 0 such that A : C(D,X) → C(D,X) is α-contraction

and, by Contraction Principle, A is a Picard operator, i.e. the equation has a unique

solution in C(D,X).

Remark 3.1. Condition (c6) from Theorem 3.1 can be replaced by the next simpler

condition:

(c7) ϕ1(t, x) ≤ t for all (t, x) ∈ D

In this case the operator A given by (9) is α-contraction, with

α = Lg +
LH + 2(b− a)LK

τ
< 1 (10)

for a suitable chosen τ .

4. Data dependence of the solution

In order to prove the dependence of the solution on data, let us consider two

mixed VF equations:

u(t, x) = gi

(
t, x, u(t, x)

)
+

∫ t

0

Hi (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (11)
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for all u ∈ C(D,X) and (t, x) ∈ D, with gi ∈ C(D×X, X), Hi ∈ C(D× [0, T ]×X, X)

and Ki ∈ C(D
2 ×X2, X) for i = 1, 2.

Theorem 4.1. Assume that the first equation from (11) satisfies conditions (c1)-

(c5) and (c7); let u∗ be its unique solution. Assume that the second equation from

(11) has at least one solution; let v∗ be a such solution.

If there exist η1, η2, η3 > 0 such that:

‖g1(t, x, u)− g2(t, x, u)‖X ≤ η1 for all (t, x, u) ∈ D ×X

‖H1(t, x, s, u)−H2(t, x, s, u)‖X ≤ η2 for all (t, x, s, u) ∈ D × [0, T ]×X

‖K1(t, x, s, y, u)−K2(t, x, s, y, u)‖X ≤ η3 for all (t, x, s, y, u) ∈ D
2 ×X

Then:

‖u∗ − v∗‖BC ≤ η1 + Tη2 + T (b− a)η3

1− α

where α = Lg +
LH + 2(b− a)LK

τ
< 1 for suitable chosen τ .

Proof. Consider the operators A1, A2 : C(D,X) → C(D,X) given by:

Ai(u)(t, x) := gi

(
t, x, u(t, x)

)
+

∫ t

0

Hi (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all u ∈ C(D) and (t, x) ∈ D, i = 1, 2.

For any u ∈ C(D) we have:

‖A1(u)(t, x)−A2(u)(t, x)‖X ≤ η1 + Tη2 + T (b− a)η3 for all (t, x) ∈ D

Applying sup(t,x)∈D , we obtain:

‖A1(u)−A2(u)‖C ≤ η1 + Tη2 + T (b− a)η3

where ‖ · ‖C is Chebysev norm:

‖u‖C := sup{‖u(t, x)‖X : (t, x) ∈ D}, for all u ∈ C(D,X)

But ‖ · ‖BC ≤ ‖ · ‖C , so:

‖A1(u)−A2(u)‖BC ≤ η1 + Tη2 + T (b− a)η3 (12)
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Consider the operators A1 and A2 defined above, on the space
(
C(D,X), ‖ · ‖BC

)
.

By Theorem 3.1, A1 is α-contraction for suitable chosen τ , so FA1 = {u∗}. Taking

account of (12), we are in the conditions of Theorem 2.1 and the conclusion follows.

5. Differentiability of the solution with respect to parameters

In order to study the differentiability of the solution with respect to param-

eters a and b, let us consider the same equation (1):

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all t ∈ [0, T ], for all x ∈ [α, β], where 0 < α < a < b < β.

Theorem 5.1. Assume that:

(i) g ∈ C([0, T ]× [α, β]× R),

H ∈ C([0, T ]× [α, β]× [0, T ]× R), K ∈ C([0, T ]× [α, β]× [0, T ]× [α, β]× R2),

ϕ1 ∈ C([0, T ]× [α, β], [0, T ]) and ϕ2 ∈ C([0, T ]× [α, β], [α, β]);

(ii) g(t, x, ·) ∈ C1(R) for all (t, x) ∈ [0, T ]× [α, β] and there exists Mg > 0 such that:∣∣∣∣∂g(t, x, u)
∂u

∣∣∣∣ ≤ Mg (13)

for all (t, x, u) ∈ [0, T ]× [α, β]× R;

(iii) H(t, x, s, ·) ∈ C1(R) for all (t, x, s) ∈ [0, T ] × [α, β] × [0, T ] and there exists

MH > 0 such that: ∣∣∣∣∂H(t, x, s, u)
∂u

∣∣∣∣ ≤ MH (14)

for all (t, x, s, u) ∈ [0, T ]× [α, β]× [0, T ]× R;

(iv) K(t, x, s, y, ·, ·) ∈ C1(R2) for all (t, x, s, y) ∈ [0, T ] × [α, β] × [0, T ] × [α, β] and

there exists MK > 0 such that:∣∣∣∣∂K(t, x, s, y, u, u)
∂u

∣∣∣∣ ≤ MK and
∣∣∣∣∂K(t, x, s, y, u, u)

∂u

∣∣∣∣ ≤ MK (15)

for all (t, x, s, y, u, u) ∈ [0, T ]× [α, β]× [0, T ]× [α, β]× R2;

(v) Mg < 1;

(vi) ϕ1(t, x) ≤ t for all (t, x) ∈ [0, T ]× [α, β].
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Then:

a) for all a < b ∈ [α, β], the equation (1) has a unique solution

u∗(·, ·, a, b) ∈ C([0, T ]× [α, β]);

b) for all u0 ∈ C([0, T ]× [α, β]), the sequence (un)n≥0 defined by:

un(t, x, a, b) = g(t, x, un−1(t, x, a, b)) +
∫ t

0

H (t, x, s, un−1(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds

converges uniformly to u∗ on [0, T ]× [α, β]× [α, β]× [α, β];

c) u∗ ∈ C([0, T ]× [α, β]× [α, β]× [α, β]);

d) u∗(t, x, ·, ·) ∈ C1([α, β]× [α, β]), for all (t, x) ∈ [0, T ]× [α, β].

Proof. Let X := C([0, T ] × [α, β] × [0, T ] × [α, β]) and B : X → X defined

by:

B(u)(t, x, a, b) := g(t, x, u(t, x, a, b)) +
∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds.

The boundedness conditions (13) and (15) implies that f and K are Lipschitz, with

Lipschitz constants Mg and MK . B satisfies (c1)-(c5) and (c7), so a), b) and c)

result. Let u∗ ∈ C(X) be the unique fixed point of B.

Obviously we have:

u∗(t, x, a, b) = g(t, x, u∗(t, x, a, b)) +
∫ t

0

H (t, x, s, u∗(s, x, a, b)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds. (16)

Let us prove that
∂u∗(t, x, a, b)

∂a
and

∂u∗(t, x, a, b)
∂b

exist and are continuous.

1. Assume that
∂u∗(t, x, a, b)

∂a
exists. Differentiate (16) with respect to a we have:

∂u∗(t, x, a, b)
∂a

=
∂g

(
t, x, u∗(t, x, a, b)

)
∂u

· ∂u∗(t, x, a, b)
∂a

+
∫ t

0

∂H
(
t, x, s, u∗(s, x, a, b)

)
∂u

· ∂u∗(s, x, a, b)
∂a

ds
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−
∫ t

0

K(t, x, s, a, u∗(s, a, a, b), u∗
(
ϕ1(s, a), ϕ2(s, a), a, b

)
)ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· ∂u∗(s, y, a, b)
∂a

dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

·
∂u∗((ϕ1(s, y), ϕ2(s, y), a, b)

)
∂a

dyds.

This last relationship suggests us to consider the operator C : X × X → X defined

by:

C(u, v)(t, x, a, b) :=
∂g

(
t, x, u(t, x, a, b)

)
∂u

· v(t, x, a, b)

+
∫ t

0

∂H
(
t, x, s, u(s, x, a, b)

)
∂u

· v(s, x, a, b)ds

−
∫ t

0

K
(
t, x, s, a, u(s, a, a, b), u

(
ϕ1(s, a), ϕ2(s, a), a, b

))
ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· v(s, y, a, b)dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· v
(
ϕ1(s, y), ϕ2(s, y), a, b

)
dyds.

From the hypotheses, the operator C(u, ·) is a contraction, for any u ∈ X. Let v∗ be

the unique fixed point of C(u∗, ·).

Now consider the operator A : X ×X → X ×X defined by

A(u, v)(t, x, a, b) := (B(u)(t, x, a, b), C(u, v)(t, x, a, b)) ,

which is in the hypotheses of Theorem 2.2. So A is a Picard operator and FA =

{(u∗, v∗)}.

Consider the sequences (un)n≥0 and (vn)n≥0 defined by:

un(t, x, a, b) := B(un−1(t, x, a, b))
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= g(t, x, un−1(t, x, a, b)) +
∫ t

0

H (t, x, s, un−1(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds

for all n ≥ 1 and

vn(t, x, a, b) := C(un−1(t, x, a, b), vn−1(t, x, a, b))

=
∂g

(
t, x, un−1(t, x, a, b)

)
∂u

· vn−1(t, x, a, b)

+
∫ t

0

∂H
(
t, x, s, un−1(s, x, a, b)

)
∂u

· vn−1(s, x, a, b)ds

−
∫ t

0

K
(
t, x, s, a, un−1(s, a, a, b), un−1

(
ϕ1(s, a), ϕ2(s, a), a, b

))
ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

vn−1(s, y, a, b)dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· vn−1

(
ϕ1(s, y), ϕ2(s, y), a, b

)
dyds,

for all n ≥ 1.

Obviously, we have:

un → u∗ for n →∞ and vn → v∗ for n →∞

uniformly with respect to (t, x, a, b) ∈ [0, T ]× [α, β]× [α, β]× [α, β], for any u0, v0 ∈

C([0, T ]× [α, β]× [α, β]× [α, β]).

Choosing u0 = v0 := 0 we have v1 =
∂u1

∂a
.

By induction we can prove that vn =
∂un

∂a
for any positive integer n, so

∂un

∂ a
→ v∗ for n →∞

From Weierstrass theorem, it follows that
∂u∗

∂ a
exists and

∂u∗(t, x, a, b)
∂a

= v∗(t, x, a, b).
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2. The differentiability with respect to b can be proved in the same way.
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