ON CERTAIN SUBCLASS OF p-VALENTLY BAZILEVIC FUNCTIONS

MOHAMED KAMAL AOUF

Abstract

A certain subclass $B_{1}(p, n, \alpha, \beta)$ with $p, n \in N=\{1,2, \ldots\}$, $\alpha>0$ and $0 \leq \beta<p$, of p -valently Bazilevic functions in the unit disc $U=\{z:|z|<1\}$ is introduced. The object of the present paper is to derive some properties of the class $B_{1}(p, n, \alpha, \beta)$.

1. Introduction

Let $A(p, n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k}(p, n \in N=\{1,2, \ldots\} \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the unit disc $U=\{z:|z|<1\}$. A function $f(z) \in A(p, n)$ is said to be in the class $S(p, n, \beta)$ of p-valently starlike functions of order $\beta(0 \leq \beta<p)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \text { and } \int_{0}^{2 \pi} \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta=2 \pi p \tag{1.2}
\end{equation*}
$$

The class $S(p, n, \beta)$ was studied recently by Owa [8] and Aouf et al. [1]. Also, we note that $S(p, n, 0)=S^{*}(p, n)$ and $S(p, 1,0)=S^{*}(p)$.

A function $f(z) \in A(p, n)$ is said to be in the class $B(p, n, \alpha, \beta)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f^{1-\alpha}(z) g^{\alpha}(z)}\right\}>\beta \tag{1.3}
\end{equation*}
$$

for some $\alpha(\alpha>0), \beta(0 \leq \beta<p), g(z) \in S^{*}(p, n)$ and for all $z \in U$. Further, let $B_{1}(p, n, \alpha, \beta)$ be the subclass of $B(p, n, \alpha, \beta)$ for $g(z)=z^{p} \in S^{*}(p)$. Also we say that $f(z)$ in the class $B(p, n, \alpha, \beta)$ is a Bazilevic function of order β and type α (see [5]).

Remark 1. (i) The classes $B(p, n, \alpha, \beta)$ and $B_{1}(p, n, \alpha, \beta)$ are the subclasses of p valently Bazilevic functions in U.
(ii) The classes $B(p, 1, \alpha, \beta)=B(p, \alpha, \beta)$ and $B_{1}(p, 1, \alpha, \beta)=B_{1}(p, \alpha, \beta)$ when $p=1$ were studied by Owa [10] and the class $B(p, \alpha, \beta)$ was studied by Nunokawa et al. [5].
(iii) The class $B_{1}(1, n, \alpha, \beta)$ was studied by Owa [9].
(iv) The classes $B(1,1, \alpha, \beta)=B(\alpha, \beta)$ and $B_{1}(1,1, \alpha, \beta)=B_{1}(\alpha, \beta)$ when $p=n=1$ were studied by Owa and Obradovic [11].
(v) The classes $B(1,1, \alpha, 0)=B(\alpha)$ and $B_{1}(1,1, \alpha, 0)=B_{1}(\alpha)$ when $p=n=$ 1 and $\beta=0$ were studied by Singh [12].
2. Properties of the class $B_{1}(p, n, \alpha, \beta)$

In order to establish our main result, we have to recall here the following lemma due to Miller and Mocanu [4].

Lemma 1. Let $\varphi(u, v)$ be a complex valued function,

$$
\varphi: D \rightarrow C, D \subset C \times C=C^{2} \quad(C \text { is the complex plane }),
$$

and let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$. Suppose that the function $\varphi(u, v)$ satisfies
(i) $\varphi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\varphi(1,0)\}>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq-\frac{n}{2}\left(1+u_{2}^{2}\right), \operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\} \leq 0$.

Let $q(z)=1+q_{n} z^{n}+q_{n+1} z^{n+1}+\ldots$ be regular in the unit disc U such that $\left(q(z), z q^{\prime}(z)\right) \in D$ for all $z \in U$. If

$$
\operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\}>0 \quad(z \in U)
$$

then

$$
\operatorname{Re}\{q(z)\}>0 \quad(z \in U)
$$

Using the above lemma, we prove the following result.

Theorem 2. If $f(z) \in B_{1}(p, n, \alpha, \beta)$, with $p, n \in N, \alpha>0$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\alpha}>\frac{n+2 \alpha \beta}{n+2 \alpha p} \quad(z \in U) \tag{2.1}
\end{equation*}
$$

Proof. We define the function $q(z)$ by

$$
\begin{equation*}
\left\{\frac{f(z)}{z^{p}}\right\}^{\alpha}=\delta+(1-\delta) q(z) \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta=\frac{n+2 \alpha \beta}{n+2 \alpha p} \tag{2.3}
\end{equation*}
$$

Then, we see that $q(z)=1+q_{n} z^{n}+q_{n+1} z^{n+1}+\ldots$ is regular in U. It follows from (2.2) that

$$
\begin{equation*}
\frac{f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha-1}}-\beta=[p \delta+(p-p \delta) q(z)]+\frac{(1-\delta) z q^{\prime}(z)}{\alpha} \tag{2.4}
\end{equation*}
$$

or

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha-1}}-\beta\right\} \\
=\operatorname{Re}\left\{p \delta-\beta+(p-p \delta) q(z)+\frac{(1-\delta) z q^{\prime}(z)}{\alpha}\right\}>0 . \tag{2.5}
\end{gather*}
$$

Now, setting $q(z)=u=u_{1}+i u_{2}, z q^{\prime}(z)=v=v_{1}+i v_{2}$, and

$$
\begin{equation*}
\varphi(u, v)=p \delta-\beta+(p-p \delta) u+\frac{(1-\delta) v}{\alpha} \tag{2.6}
\end{equation*}
$$

it is easily seen that
(i) $\varphi(u, v)$ is continuous in $D=C \times C$
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\varphi(1,0)\}=p-\beta>0$, and
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq \frac{-1}{2} n\left(1+u_{2}^{2}\right)$,

$$
\begin{aligned}
\operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\} & =p \delta-\beta+\frac{(1-\delta) v_{1}}{\alpha} \\
& \leq p \delta-\beta-\frac{n(1-\delta)\left(1+u_{2}^{2}\right)}{2 \alpha} \leq 0
\end{aligned}
$$

for δ given by (2.3). Therefore the function $\varphi(u, v)$ satisfies the condition in Lemma 1. This implies that $\operatorname{Re}\{q(z)\}>0(z \in U)$, that is, that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\alpha}>\delta=\frac{n+2 \alpha \beta}{n+2 \alpha p} \quad(z \in U) \tag{2.7}
\end{equation*}
$$

This completes the proof of Theorem 1.
Putting $\beta=0$ in Theorem 1, we have
Corollary 3. If $f(z) \in B_{1}(p, n, \alpha, 0)$, with $p, n \in N$ and $\alpha>0$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\alpha}>\frac{n}{n+2 \alpha p} \quad(z \in U) \tag{2.8}
\end{equation*}
$$

Further, making $\alpha=\frac{1}{p}$ in Corollary 1, we have
Corollary 4. If $f(z) \in B_{1}\left(p, n, \frac{1}{p}, 0\right)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\frac{1}{p}}(z)}{z}\right\}>\frac{n}{n+2} \quad(z \in U) \tag{2.9}
\end{equation*}
$$

Putting $\alpha=\frac{1}{2}$ in Theorem 1, we have
Corollary 5. If $f(z) \in B_{1}\left(p, n, \frac{1}{2}, \beta\right)$, with $p, n \in N$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re} \sqrt{\frac{f(z)}{z^{p}}}>\frac{n+\beta}{n+p}(z \in U) \tag{2.10}
\end{equation*}
$$

Remark 2. (1) Putting $p=1$ in Theorem 1, Corollary 1 and Corollary 2, respectively, we obtain the results obtained by Owa [9, Theorem1, Corollary1 and Corollary2, respectively].
(2) Putting $p=\alpha=1$ and $\beta=0$ in Theorem1, we obtain the result obtained by Cho [2, Theorem2].
(3)Putting $n=1$ in Theorem1, we obtain the result obtained by Owa [10, Lemma 4]. Owa [10] obtained this result by different method.
(4) Putting $n=1$ in Corollary1 and Corollary2, respectively, we obtain the results obtained by Owa [10, Corollary3 and Corollary 4 , respectively].
(5) Putting $n=p=1$ in Theorem1, we obtain the result obtained by Owa and Obradovic [11, Theorem4].
(6) Putting $n=p=1$ in Corollary1, we obtain the result obtained by Owa and Obradovic [11 Corollary3] and Obradovic [7, Theorem3].
(7) Putting $n=p=1$ and $\alpha=1$ in Theorem1, we obtain the result obtained by Owa and Obradovic [11, Corollary4].
(8) Putting $n=p=\alpha=1$ in Theorem1 and $\beta=0$, we obtain the result obtained by Obradovic [6, Theorem2].

Theorem 6. If $f(z) \in B_{1}(p, n, \alpha, \beta)$, with $p, n \in N, \alpha>0$ and $0 \leq \beta<p$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\frac{\alpha}{2}}=\frac{n+\sqrt{n^{2}+4 \alpha \beta(n+p \alpha)}}{2(n+p \alpha)}(z \in U) \tag{2.11}
\end{equation*}
$$

Proof. Defining the function $q(z)$ by

$$
\begin{equation*}
\left\{\frac{f(z)}{z^{p}}\right\}^{\frac{\alpha}{2}}=\delta+(1-\delta) q(z) \tag{2.12}
\end{equation*}
$$

with

$$
\begin{equation*}
\delta=\frac{n+\sqrt{n^{2}+4 \alpha \beta(n+p \alpha)}}{2(n+p \alpha)}, \tag{2.13}
\end{equation*}
$$

we easily see that $q(z)=1+q_{n} z^{n}+q_{n+1} z^{n+1}+\ldots$ is regular in U. Taking the differentiations of both sides in (2.12), we obtain that

$$
\begin{gather*}
\frac{f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha-1}}=p[\delta+(1-\delta) q(z)]^{2}+ \\
\frac{2}{\alpha}(1-\delta)[\delta+(1-\delta) q(z)] z q^{\prime}(z), \tag{2.14}
\end{gather*}
$$

that is, that

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha-1}}-\beta\right\}=\operatorname{Re}\left\{p[\delta+(1-\delta) q(z)]^{2}+\right. \\
& \left.\frac{2}{\alpha}(1-\delta)[1+(1-\delta) q(z)] z q^{\prime}(z)-\beta\right\}>0 \quad(z \in U) . \tag{2.15}
\end{align*}
$$

Taking $q(z)=u=u_{1}+i u_{2}$ and $z q^{\prime}(z)=v=v_{1}+i v_{2}$, we define the function $\varphi(u, v)$ by

$$
\begin{equation*}
\varphi(u, v)=p[\delta+(1-\delta) u]^{2}+\frac{2}{\alpha}(1-\delta)[\delta+(1-\delta) u] v-\beta \tag{2.16}
\end{equation*}
$$

Then $\varphi(u, v)$ satisfies
(i) $\varphi(u, v)$ is continuous in $D=C \times C$;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\varphi(1,0)\}=p-\beta>0$;
(iii) for all $\left(i u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq \frac{-n}{2}\left(1+u_{2}^{2}\right)$,

$$
\begin{aligned}
\operatorname{Re}\left\{\varphi\left(i u_{2}, v_{1}\right)\right\} & =p\left[\delta^{2}-(1-\delta)^{2} u_{2}^{2}\right]+\frac{2}{\alpha}(1-\delta) \delta v_{1}-\beta \\
& \leq p\left[\delta^{2}-(1-\delta)^{2} u_{2}^{2}\right]-\beta-\frac{n}{\alpha} \delta(1-\delta)\left(1+u_{2}^{2}\right) \leq 0 .
\end{aligned}
$$

Thus the function $\varphi(u, v)$ satisfies the conditions in Lemma 1. Applying Lemma 1, we conclude that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\frac{\alpha}{2}}>\delta=\frac{n+\sqrt{n^{2}+4 \alpha \beta(n+p \alpha)}}{2(n+p \alpha)} \quad(z \in U) . \tag{2.17}
\end{equation*}
$$

This completes the proof of Theorem 2.
Putting $\beta=0$ in Theorem 2, we have
Corollary 7. If $f(z) \in B_{1}(p, n, \alpha, 0)$, with $p, n \in N$ and $\alpha>0$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\}^{\frac{\alpha}{2}}>\frac{n}{n+p \alpha} \quad(z \in U) \tag{2.18}
\end{equation*}
$$

Putting $\alpha=1$ in Theorem 2, we have
Corollary 8. [3, Theorem 2]. If $f(z) \in B_{1}(p, n, 1, \beta)$, with $p, n \in N$ and $0 \leq \beta<$ p, then

$$
\begin{equation*}
\operatorname{Re}\left\{\sqrt{\frac{f(z)}{z^{p}}}\right\}>\frac{n+\sqrt{n^{2}+4 \beta(n+p)}}{2(n+p)} \quad(z \in U) \tag{2.19}
\end{equation*}
$$

Putting $\alpha=1$ and $\beta=0$ in Theorem 2, we have
Corollary 9. [3, Corollary 3]. If $f(z) \in B_{1}(p, n, 1,0)$, with $p, n \in N$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\sqrt{\frac{f(z)}{z^{p}}}\right\}>\frac{n}{n+p} \quad(z \in U) \tag{2.20}
\end{equation*}
$$

Remark 3. (i) Putting $p=1$ in Theorem 2, we obtain the result obtained by Owa [9, Theorem 2].
(ii) Putting $\alpha=p=1$ in Theorem 2, we obtain the result obtained by Owa [9, Corollary 3].
(iii) Putting $\alpha=2, p=1$ and $\beta=0$ in Theorem 2, we obtain the result obtained by Cho [2, Theorem 3].

Theorem 10. If $f(z) \in B_{1}(p, n, \alpha, \beta)$, with $p, n \in N, \alpha>0$ and $0 \leq \beta<p$, then the function $G_{1}(z)$ defined by

$$
\begin{equation*}
G_{1}^{\alpha+\gamma}(z)=z^{p \gamma} f^{\alpha}(z) \quad(\gamma \geq 0) \tag{2.21}
\end{equation*}
$$

is in the class $B_{1}(p, n, \alpha+\gamma, \delta)$, where

$$
\begin{equation*}
\delta=\frac{1}{\alpha+\gamma}\left(\frac{p \gamma(n+2 \alpha \beta)}{n+2 p \alpha}+\alpha \beta\right) . \tag{2.22}
\end{equation*}
$$

Proof. Noting that

$$
\frac{(\alpha+\gamma) G_{1}^{\prime}(z)}{1-(\alpha+\gamma)}=p \gamma z^{p \gamma-1} f^{\alpha}(z)+\alpha z^{p \gamma} f^{\prime}(z) f^{\alpha-1}(z)
$$

that is, that

$$
\begin{gather*}
(\alpha+\gamma) \frac{z G_{1}^{\prime}(z) G_{1}^{(\alpha+\gamma)-1}(z)}{z^{p(\alpha+\gamma)}}=p \gamma\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+ \\
\frac{\alpha z f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha}} \tag{2.23}
\end{gather*}
$$

Therefore, it follows from Theorem 1 that

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{z G_{1}^{\prime}(z) G_{1}^{(\alpha+\gamma)-1}(z)}{\left.z^{p(\alpha+\gamma)}\right\}}\right. & =\frac{1}{\alpha+\gamma} \operatorname{Re}\left\{p \gamma\left(\frac{f(z)}{z^{p}}\right)^{\alpha}+\frac{\alpha z f^{\prime}(z) f^{\alpha-1}(z)}{z^{p \alpha}}\right\} \\
& >\frac{1}{\alpha+\gamma}\left\{p \gamma\left(\frac{n+2 \alpha \beta}{n+2 \alpha p}\right)+\alpha \beta\right\}
\end{aligned}
$$

This completes the proof of Theorem 3.
Taking $\beta=0$ in Theorem 3, we have
Corollary 11. If $f(z) \in B_{1}(p, n, \alpha, 0)$, with $p, n \in N$ and $\alpha>0$, then the function $G_{1}(z)$ defined by (2.21) is in the class $B_{1}(p, n, \alpha+\gamma, \delta)$, where

$$
\begin{equation*}
\delta=\frac{p \gamma}{(\alpha+\gamma)(n+2 p \alpha)} . \tag{2.24}
\end{equation*}
$$

Taking $p=1$ in Theorem 3, we have
Corollary 12. If $f(z) \in B_{1}(1, n, \alpha, \beta)$ with $n \in N, \alpha>0$ and $0 \leq \beta<1$, then the function $G_{2}(z)$ defined by

$$
\begin{equation*}
G_{2}^{\alpha+\gamma}(z)=z^{\gamma} f^{\alpha}(z) \quad(\gamma \geq 0) \tag{2.25}
\end{equation*}
$$

is in the class $B_{1}(1, n, \alpha+\gamma, \delta)$, where

$$
\begin{equation*}
\delta=\frac{1}{\alpha+\gamma}\left(\frac{\gamma(n+2 \alpha \beta)}{n+2 \alpha}+\alpha \beta\right) . \tag{2.26}
\end{equation*}
$$

Remark 4. Putting $n=1$ in Theorem 3, Corollary 7 and Corollary 8, respectively, we obtain the results obtained by Owa [10, Theorem 2, Corollary 5 and Corollary 6 , respectively].

References

[1] Aouf, M.K., Hossen, H.M., and Srivastava, H.M., Some families of multivalent functions, Comput. Math. Appl., 39(2000), 39-48.
[2] Cho, N.E., On certain subclass of univalent functions, Bull. Korean Math. Soc., 25(1988), 215-219.
[3] Lee, S.K., and Owa, S., A subclass of p-valently close-to-convex functions of order α, Appl. Math. Lett., 5(1992), no. 5, 3-6.
[4] Miller, S.S., and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[5] Nunokawa, M., Owa, S., Saitoh, H., Yaguchi, T., and Lee, S.K., On certain subclass of analytic functions II, Sci. Reports of the Faculty of Education, Gunma Univ., 36(1988), 1-6.
[6] Obradovic, M., Estimates of the real part of $\frac{f(z)}{z}$ for some classes of univalent functions, Mat. Vesnik, 36(1984), 266-270.
[7] Obradovic, M., Some results on Bazilevic functions, Mat. Vesnik, 37(1985), 92-96.
[8] Owa, S., Some properties of certain multivalent functions, Appl. Math. Lett., 4(1991), no. 5, 79-83.
[9] Owa, S., On certain Bazilevic functions of order β, Internat. J. Math. Math. Sci., 15(1992), no. 3, 613-616.
[10] Owa, S., Notes on cetain Bazilevic function, Pan American Math. J., 3(1993), no. 3, 97-93.
[11] Owa, S., and Obradovic, M., Certain subclasses of Bazilevic functions of type α, Internat. J. Math. Math. Sci., 9(1986), no. 2, 347-359.
[12] Singh, R., On Bazilevic functions, Proc. Amer. Math. Soc., 38(1973), 261-271.

Department of Mathematics

Faculty of Science
Mansoura University
Mansoura, Egypt
E-mail address: mkaouf127@yahoo.com

