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THE WEIGHTED SPLINE QUASI-INTERPOLANT OPERATORS

MAGNOLIA TILCA

Abstract. A new quasi-interpolant operator starting from the operator

described by Sablonnière [1], [7] is presented here. The operator is a linear

combination of some linear functionals and normalized B-spline functions.

If Sablonièr uses the arithmetic mean of the consecutive given points,

the linear functionals presented here use the mesh points chosen as the

weighted arithmetic mean of given points from the interval [a, b]. The

article describes the way of computing the quadratic and cubic weighted

spline quasi-interpolant operators and underlines the good numerical ap-

proximation of these new operators using implemented Matlab functions.

The fact that the cubic weighted spline quasi-intepolant operators are a

completion of the cubic spline quasi-interpolant operators offering a better

approximation, but only among some intervals, is proven in the last section

of the paper.

1. Introduction

The general construction of quasi-interpolants, which were first developed

by Carl de Boor and G. J. Fix [2] and generalized later by Lyche and Schumaker

[4], starts from the following problem. Given a function f , the basic problem of

spline approximation is to determine B-spline coefficients (ci)
n
i=1 such that Pf =

∑n

i=1 ciNi,k is a reasonable approximation to f . Let assume that f is defined on

an interval I = [a, b], and select the space of splines of order k + 1, Sk+1(∆, I),

∆ : a = x1 < x2 < ... < xn = b defined on I (i.e., so that ∆ : x−k+1 = x−k+2 = ... =

x−1 = x0 = a, b = xn+1 = xn+2 = ... = xn+k). To emphasize the dependence on f ,
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the coefficient ci is written ci = µif , with µi some linear functionals. Thus, a quasi-

interpolant spline is an approximation operator obtained as a linear combination of

functions with finite support (B-splines Ni,k) Qf =
∑n+1

i=1 µi(f)Ni. There are known

some different types of these linear functionals µi such as: differential type (µi(f) is

a linear combination of values of derivatives of f) or discrete type (combination of

discrete values of f). This paper treats the case of the coefficients of discrete type

where the combination is formed by the weighted mean values of the given points

from ∆ weighted by the values of the function f .

2. The most important features

This section concerns upon the construction of the weighted quasi-interpolant

operators. Two methods of obtaining the new operators are presented here: the first

one involves the non-recurrent expressions of the normalized quadratic and cubic B-

splines and the second one presents the exact formulations of the coefficients of the

weighted spline quasi-interpolant.

2.1. The construction of the weighted spline quasi-interpolant operators

using the normalized B-spline expressions. Let n, k > 0 with n ≥ k + 3 be

known integers and let f ∈ Ck(I) be a function with the known values f(xi), xi ∈ ∆

such as f(xi) + f(xi−1) 6= 0. We choose n + 1 weighted values points

ts :=
xs−1f(xs−1) + xsf(xs)

f(xs−1) + f(xs)
, s = 1, ..., n + 1. (2.1)

It is obvious that t1 = a and tn+1 = b.

Definition 1. Let x ∈ [xl, xl+1] ⊂ [a, b], for l = 1, ..., n − 1, a, b ∈ R. We define the

spline quasi-interpolant of degree k and order k + 1

Qkf(x) =

k+1
∑

i=1

µ
{l}
i (f) · N−k−1+i+l(x), (2.2)

Ni := Ni,k+1, with the functionals µ
{l}
i ,

µ
{l}
i (f) =

k+1
∑

j=1

a
{l}
i,j · f(ti+j−1), i = 1, ..., k + 1 (2.3)
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where the mid points ts are defined in (2.1) and a
{l}
i,j are coefficients which depend on

l, ∀l = 1, ..., , n− 1.

We denote the quasi-interpolant operator with weighted values by QIw.

Problem 1. Construct an algorithm for weighted spline quasi-interpolant operator

and implemet a corespondent routine using the Matlab application.

Step I. Find the coefficients ci,l−r, i, r = 0, ..., k of the normalized B-spline

functions Nl−r,k+1, r = 0, ..., k from the expression Nl−r,k+1(x) = ck,l−rx
k + ck−1,l−r

xk−1 +... + c0,l−r. These coefficients are obtained from the well known recurrence

formula (see, for example, [6])

Nj,1 =







1, x ∈ [xj , xj+1);

0, else

Nj,k+1 =
(x − xj)Nj,k(x)

xj+k − xj

+
(xj+k+1 − x)Nj+1,k(x)

xj+1+k − xj+1
, j = −k + 1, ..., n − 1. (2.4)

It is known from [8] that for any x ∈ [xl, xl+1), l ∈ {1, ..., n− 1}, there are only k + 1

nonzero B-splines Nj,k+1, j = l − k, ..., l. Thus, an explicit non-recurrent expression

for the spline coefficients can be deduced from the relations (2.4) in the cases of

quadratic (k = 2) [11] and cubic (k = 3) [10] B-splines.

Nl,k+1 =

∑k

i=0(−1)i
(

k
i

)

xi
l

∏k

j=2(xl+j − xl)
Ml,1 · x

k−i, k ≥ 2,

Nl−1,k+1 =

k
∑

p=1

∑k

s=0(−1)s+1(xl+pPs,p + Ps+1,p)Ml,1 · x
k−s

∏k−1
j=1,p+j≤k(xl+k−j − xl−1)

∏k−1
j=1,p+j>k(xl+k−j+1 − xl)

, k ≥ 2,

Nl−2,k+1 =

k
∑

p=1

∑k

s=0(−1)s(xl+p−kRs,p + Rs+1,p)Ml,1 · x
k−s

∏k−1
j=1,p+j≤k(xl+1 − xl−k+j+p)

∏k−1
j=1,p+j>k(xl+2 − xl+1−j)

, k = 3,

and finally

Nl−k,k+1 =

∑k

i=0(−1)i+k
(

k
i

)

xi
l+1

∏k

j=2(xl+1 − xl−j+1)
Ml,1 · x

k−i, k ≥ 2,

where Ps,p =
∑s

j=0

(

p−1
s−j−1

)(

k−p
j

)

xs−j−1
l xj

l−1 and Rs,p =
∑s

j=0

(

p−1
s−j−1

) (

k−p
j

)

·

xs−j−1
l+2 xj

l+1. We take P0,p = Pk+1,p := 0, ∀p = 1, ..., k and
(

k
i

)

:= 0 if i < 0 or i > k

and we observe that P1,p = R1,p = 1, ∀p = 1, ..., k.
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Step II. Find the coefficients a
{l}
i,j of the linear functionals (2.3) as the so-

lution of the system obtained by applying the conditions of exactness of the quasi-

interpolant operator in the space of polynomial of degree at most k. So, the condi-

tions of the exactness of Qk operator in the set of polynomials of degree at most k,

Qkp = p, p ∈ Pk, leads to the identities Qk(ei) = ei where ei(x) = xi, i = 0, ..., k.

Rearranging after the powers of x and equalizing both sides we obtain a system with

(k + 1)(k + 1) equations and (k + 1)2 unknowns, A ·C = B, where A is the matrix of

the unknown coefficients a
{l}
i,j , i = 1, ..., k + 1, j = 1, ..., k + 1, C is the matrix of the

coefficients of the normalized B-spline functions and the values ξj , and B is the line

matrix of the unity vector ui, i = 1, ..., k + 1 as presented below. The matrix C is of

the form

C =























cl−k cl−kX1 ... cl−kXk
1

cl−k+1 cl−k+1X2 ... cl−k+1X
k
2

...

cl clXk+1 ... clX
k
k+1























, (2.5)

where cl−k is the square bloc of the coefficients of the B-spline Nl−k,k+1

cl−k =

ck,l−k ck−1,l−k ... c0,l−k

...

ck,l−k ck−1,l−k ... c0,l−k

.

The Xi, i = 1, ..., k + 1 vectors are defined as Xj
i = [tji , t

j
i+1, ..., t

j
i+k]t, i = 1, ..., k + 1

for j = 0, ..., k. Maintaining the above notations, vector B is defined as B = [uk+1 uk

... u1] where ui is a vector with 1 on the position of i, i = 1, ..., k+1, and the rest of k

elements are zero. We can observe that for every value of x ∈ [xl, xl+1], l = 1, ..., n−1,

it is necessary to solve n − 1 systems with (k + 1)2 equations. In order to obtain the

compatibility of the systems and the uniqueness of the solution, we impose the knots

condition

n ≥ (k + 1) + 2.

Step III. Compute the values of the linear functionals µ
{l}
i , ∀x ∈ [xl, xl+1).
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Step IV. Compute the values of the weighted spline quasi-interpolant oper-

ator Qk(f), ∀x ∈ [xl, xl+1).

In order to solve this system, we have implemented an algorithm and by using

the Matlab application we will obtain these practical results.

Problem 2. Implement a routine which calculates

1. the joint values tj , j = 1, ..., n + 1;

2. the coefficients of the normalized B-spline functions Nj , j = −k + l, ..., l, l =

1, ..., n − 1;

3. the values of the functionals µ
{l}
i (f), i = 1, ..., k + 1 for some given functions f

4. Qk(f)(x), k ∈ {2, 3}, the value of the quasi-interpolant operator Qk for a given

number x ∈ (a, b)

5. the values of the quasi-interpolant operator Qk for all the equidistant numbers

x ∈ [a, b] with step 0.1.

The algorithm calculates the coefficients and the values of the quadratic and

cubic weighted spline quasi-interpolant Qk for any partition X of the interval I = [a, b]

and any x ∈ (a, b).

Input:

a) X , the vector of the extended partition ∆;

b) x ∈ (a, b);

c) f , a function which may be chosen from the set of functions

{ax2 + bx + c, a/(b + cx), a · (sin(bx))c, a · (cos(bx))c, (aeb·x)c, (ax2 + 1)/(bx + c)}.

Output:

i) CC, the vector of the coefficients of the quasi-interpolant Qk;

ii) Qk(f)(x), the value of the quasi-interpolant operator Qk for a given number x ∈

(a, b);

iii) q, the vector values of the quasi-interpolant operator Qk for all the equidistant

numbers x ∈ [a, b] with the step 0.1.

Step 1: The computation of the matrix denoted with n of order k+1 of the B-spline

Nj , j = l−k, ..., l coefficients ck−s,l−r , s = 0, ..., k, r = 0, ..., k, l = 1, ..., n−1, k ∈ {2, 3}
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using the non-recurrent expressions of the coefficients from the equalities mentioned

above.

Step 2: The elements of the vector T of the tj , j = 1, ..., n + 1 from (2.1) ;

Step 3: The construction of the matrix C of the form (2.5);

Step 4: The construction of the vector B of the form B = [uk+1 uk ... u1];

Step 5: The computation of the solution of the matrix equation A · C = B, A as

A = B · C−1;

Step 6: The computation of the values of the functionals µ
{l}
i , i = l, ..., k + 1. (It

is not necessary to compute all the values µ
{l}
i , i = 1, ...n − 1, n ≥ k, because only

Nl−k, ..., Nl are nonzero).

In what follows, we will exemplify our results on the non polynomial case.

Example 1. (Numerical results)

Let I = [0, 1.25], ∆ : 0 < 0.25 < 0.5 < 0.75 < 1 < 1.25 and 0.1 := x ∈ [x1, x2] :=

[0, 0.25]. For a given function, say f(x) = (x2 +1)/(x+1), find the value of the cubic

quasi-interpolant operator Q.

Solution: Applying the Matlab function

[Q]=coef w cubic(X,x,a,b,c,functia),

the vector of the extended partition of the cubic (order=4, degree=3) B-spline function

is X = [0 0 0 0 0.25 0.5 0.75 1 1.25 1.25 1.25 1.25] and the coefficients of the function

are a = 1, b = 1, c = 1. The Matlab function

coef w cubic(X,0.1,1,1,1,’(a*x.2̂+1)/(b*x+c)’)

generates the following results:

1. the joint values tj , j = 1, ..., 7 are

T = 0 0.1149 0.3738 0.6293 0.8821 1.1331 1.2500;

2. the coefficients of the normalized B-spline functions Nj , j = −2, ..., 1 are contained

in the following matrix

n =
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N1 10.6667 0 0 0

N0 -58.6667 24.0000 0 0

N−1 112.0000 -72.0000 12.0000 0

N−2 -64.0000 48.0000 -12.0000 1.0000

,

from where we can construct the expressions of the B-spline functions:

N1,4 = 10.(6)x3

N0,4 = −58.(6)x3 + 24x2

N−1,4 = 112x3 − 72x2 + 12x

N−2,4 = −64x3 + 48x2 − 12x + 1;

3. the values of the functionals µ
{1}
i (f), i = 1, ..., 4 are the elements of the vector

CC = 1.0000 0.9193 0.8302 0.8216;

4. the value of the quasi-interpolant operator Q3 is

Q = 0.9195

Remark 1. The value of the function f for x = 0.1 is 0.9182 which means that the

weighted spline quasi-interpolant operator offers a good approximation.

Furthermore, for computing the values of the quasi-interpolant operator Q3

for all the equidistant numbers x ∈ [a, b] with the step 0.1, we implemented another

Matlab function

[q] = table val Q cubic(T, X, a, b, c, functia).

Thus, for T = [0 1.25],

q = 1.0000 0.9195 0.8679 0.8400 0.8400 0.8313 0.8484 0.8753 0.9128 0.9539

1.0000 1.0525.

Remark 2. We have also implemented a function

[tabel] = final(X, T, a, b, c, functia)

to compare the values of the given function with the values of the weighted cubic spline

quasi interpolant operator and the values of the cubic spline quasi-interpolant operator

described by Sablonière. Thus, applying

final(X, [0 1.25], 1, 1, 1,′ (a ∗ x.2 + 1)/(b ∗ x + c)′)
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we get
tabel =

x 0 0.1 0.2 0.3 0.4 0.5 0.6

f 1.000 0.9182 0.8667 0.8385 0.8286 0.8333 0.8500

Q3(f) 1.0000 0.9203 0.8675 0.8378 0.8275 0.8325 0.8494

Qw3(f) 1.0000 0.9195 0.8679 0.8400 0.8298 0.8313 0.8484

Q − f 0.0000 0.0022 0.0008 -0.0006 -0.0011 -0.0008 -0.0006

Qw − f 0.0000 0.0013 0.0012 0.0016 0.0012 -0.0020 -0.0016

x 0.7 0.8 0.9 1 1.1

f 0.8765 0.9111 0.9526 1.0000 1.0524

Q3(f) 0.8760 0.9108 0.9524 1.0000 1.0526

Qw3(f) 0.8753 0.9128 0.9539 1.0000 1.0525

Q − f -0.0004 -0.0003 -0.0002 -0.0000 0.0002

Qw − f -0.0012 0.0017 0.0012 0.0000 0.0001

Analyzing the errors expressed in the last two rows of the table, we can notice

that the operators described by Sablonière are better approximations than the operators

presented in this paper, with the exception of the edged values. Making further inves-

tigations, the weighted cubic quasi-interpolant operators are more convenient for ap-

proximation of this function in values contained on the interval [0; 0.17]∪[1; 1.24]. This

better approximation can be visualized in the graphical error representation, Fig.1,

where the errors generated by quasi-interpolated operators with mean values are larger

than the errors generated by quasi-interpolated operators with weighted values.

2.2. The construction of the weighted cubic spline quasi-interpolant oper-

ators which does not require the normalized B-spline expressions. As we

could see, the construction of the weighted spline quasi-interpolant operators requires

the solution of linear systems. To avoid this volume of computation, following the

idea presented in [7], we can generate the exact expressions of the coefficients a
{l}
i,j ,

∀i, j = 1, ...k + 1 and ∀l = 1, ..., n − 1.

Let ∆ be the extended partition of the interval [a, b]. We recall the definition

of Greville’s points (mentioned in [5] and [9])

ξj =
xj+1 + xj+2 + ... + xj+k

k
, j = −k + 1, ..., n− 1,

ξ
(2)
j =

xj+1xj+2 + xj+1xj+3 + ... + xj+k−1xj+k
(

k
2

) , j = −k + 1, ..., n− 1,
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Figure 1. The graphical error representation

ξ
(3)
j =

xj+1xj+2xj+3 + xj+1xj+2xj+4 + ... + xj+k−2xj+k−1xj+k
(

k
3

) , j = −k+1, ..., n−1.

Theorem 1. For k = 3, the exact expressions of the coefficients a
{l}
i,j of the linear

functionals µ
{l}
i from (2.3) are given by the formula

a
{l}
i,j = (−1)j+1

Pi,j − ξ−4+i+l · (SP )i,j + ξ
(2)
−4+i+l · Si,j − ξ

(3)
−4+i+l

∏(s=i+j−1)∨(p=i+j−1)
i≤s<p≤i+k (tp − ts)

(2.6)

where P, SP and S are respectively the product of all the elements t where ti+j−1 is

omitted, SP denotes the sum of all combinations of the products of two elements t

from P and, finally, S is the sum of all elements from P :

Pi,j :=

∏i+k

s=i ts
ti+j−1

,

(SP )i,j :=
∑

i≤s<p≤i+k

tstp −

(s=i+j−1)∨(p=i+j−1)
∑

i≤s<p≤i+k

tstp,

Si,j :=

i+k
∑

s=i

ts − ti+j−1.

Proof. We begin by imposing the conditions of exactness for the quasi-interpolant

operators Qk in the set of polynomials of degree at most k, Qkp = p, p ∈ Pk which
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lead to the identities Qk(ei) = ei where ei(x) = xi, i = 0, ..., k. The ei functions can

be rewrites using Marsden’s equalities [5]

xj =

k+1
∑

i=1

ξ
(j)
−4+i+lN−4+i+l(x), j = 0, ..., k,

with ξ
(0)
i := 1 and ξ

(1)
i := ξi. Equalizing the coefficients a

{l}
i,j from the equations

(Qkei)(x) = ei(x), i = 0, ..., k we obtain a system with (k +1)2 equations and (k+1)2

unknows for every l ∈ {1, ..., n−1}. The system being a separable variables one, we can

rearrange the equations obtaining (k + 1) systems with (k + 1) equations by the form
∑k+1

j=1 a
{l}
i,j tsj = ξ

(s)
−4+i+l, for fixed i ∈ {1, ..., k + 1} and s = 0, ..., k with ξ

(0)
i := 1 and

ξ
(1)
i := ξi. The determinant of these systems is Vandermonde determinant, thus the

computation is quite simple and each solution ai,j of the systems can be generalized

by the (2.6).

3. The evaluation of the error

In this section a comparison of the norm of the cubic quasi-interpolant opera-

tor with weighted values (QIw) and the norm of the cubic quasi-interpolant operator

with mean values (QI) is presented. In general, it is difficult to minimize the true

norm of the operators. In order to avoid this direct minimization we use the idea of

Sablonniére [1] of the minimization problem:

Let Qf =
∑

i µi(f)Ni be the general form of the spline quasi-interpolant of f, with

µi(f) =
∑

i aif(xi). Find ai ∈ Rn solution of the problem

‖a∗
i ‖1 = min {‖ai‖1 , ai ∈ Rn, Viai = bi}

where ‖Q‖∞ ≤
∑

i |µi(f) |Ni ≤ maxi|µi(f)| ≤ maxi ‖ai‖1. The notation Vi denotes

the Vandermonde matrix.

Thus, the minimization of the norm ‖Q‖∞ reduces to the operate with the coefficients

ai.

It is known from [1] that the norm of QI is not uniformly bounded indepen-

dent of the partition.
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Theorem 2. [1] For the cubic spline quasi-interpolant operators Q3 let the linear

functionals be µi(f) = aif(xi−1) + bif(xi) + cif(xi+1). If there exists r > 0 such

that the partition satisfies 1
r
≤ hi+1

hi

≤ r, i ∈ Z, where hi = xi − xi−1, than we

obtain the following upper bounds |ai| , |ci| ≤ 1
3

r2

1+r
, |bi| ≤ 1

3 (1 + r)2, from which

‖Q3‖∞ ≤ 1
3

(

(1 + r)2 + 2r2

1+r

)

.

Thus, in the case of uniform partition, r = 1, the upper bound of the norm

is ≈ 1.66.

The next result states that the cubic weighted spline quasi-interpolant oper-

ators QIw for the uniform partition case also have the upper bound less than 1.66.

Theorem 3. Let I = [a, b] be an interval with the uniform partition ∆ and Q3 the

cubic weighted spline quasi-interpolant operator given by

Q3f(x) =

n+3
∑

i=1

µi(f)Ni(x)

with linear functionals

µi(f) := aif(ti−1) + bif(ti) + cif(ti+1),

µ1(f) = f(a), µn+3(f) = f(b)

and the points ti defined as in (2.1). For f ∈ C[a, b] smooth enough we have

‖Q3‖∞ ≤ 1.66.

Proof. We define the auxiliary points

ti := (1 − m)xi + mxi−1, (3.1)

i = 1, ..., n + 3, m ∈ [0, 1] which are a generalization of the points ti taken as mean

values of xi ∈ ∆ and taken as weighted values of xi ∈ ∆ and f(xi).

The idea of the proof is to express the coefficients ai, bi, ci depending only on

the parameter m.

To compute these coefficients, we follow the same idea presented in Subsection

2.2. Thus, after imposing the conditions of the exactness Q3(es) = es, s = 0, ..., 3 and
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after using Marsden’s equalities, rearranging after the powers of ti, i = 1, ..., n + 3 we

get a 3 × 3 system for every i, from which the coefficients are

ai =
titi+1 − ξ

(1)
i (ti + ti+1) + ξ

(2)
i

(ti − ti−1)(ti+1 − ti−1)
, (3.2)

bi = −
ti+1ti−1 − ξ

(1)
i (ti+1 + ti−1) + ξ

(2)
i

(ti − ti−1)(ti+1 − ti)
,

ci =
ti−1ti − ξ

(1)
i (ti + ti−1) + ξ

(2)
i

(ti+1 − ti)(ti+1 − ti−1)
,

i = 1, ..., n + 2. It is obvious that ai + bi + ci = 1, ∀i = 1, ..., n + 3.

These expressions are easily computable when the relation (3.1) is used, ti =

(1 − m)xi + mxi−1. Thus, we get

ai =
3m2 + 9m + 5

6
, bi = −m2 − 4m −

8

3
, ci =

3m2 + 15m + 17

6

and again ai + bi + ci = 1, ∀i = 1, ..., n + 3. Now from the fact that ‖Q3‖∞ ≤

|ai|+ |bi|+ |ci| [1], ∀i = 1, ..., n + 3 and using the Matlab application to evaluate this

expression for every m ∈ [0, 1], we have that ‖Q3‖∞ ≤ 1.66.

It is well known ([12], chapter 5) that for any subinterval Ii = [xi−1, xi], i =

1, ..., n and for any function f , ‖f − Qkf‖∞,Ii
≤ (1 + ‖Qk‖∞)d∞,Ii

(f, Πk) where the

distance of f to polynomials is defined by d∞,Ii
(f, Πd) = inf{‖f − p‖∞,,Ii

, p ∈ Πk},

‖f − p‖∞,,Ii
= maxx∈Ii

|f(x) − p(x)|. Therefore, for f ∈ C4(I) the error estimated is

‖f − Q3f‖∞,Ii
≤ 2.66 · d∞,Ii

(f, Π3)

for i = 1, ..., n.

From these theoretical arguments and numerical computations, an approach

between these two quasi-interpolant operators QIw and QI can be observed. The QIw

operators complete the QI operators because they can provide better approximations

on some subintervals of I.
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[1] Berrera, D., Ibáñez, M.J., Sablonnière, P., Sbibih, D., On two families of near-best

spline quasi-interpolants on non-uniform partitions of the real line, IRMAR, January

2006.

[2] de Boor, C., Fix, J.J., Spline approximation by quasi-interploants, J. Approx. Theory,

8(1973), 19-45.

[3] Curry, H.B., Schoenberg, I.J., On Polya frequency functions IV: The fundamental spline

functions and their limits, J. d’Analyse Math. 17(1966), 71-107.

[4] Lyche, T., Schumaker, L.L., Local spline approximation methods, J. Approx. Theory,

25(1979), 266-279.

[5] Marsden, J.M., Schoenberg, I.J., An identity for spline functions with applications to

variation diminishing spline approximation, J. Approx. Theory, 3(1970), 7-49.

[6] Micula, Gh., Micula, S., Handbook of spline, Kluwer Academic Publishers, Dordrecht-

Boston-London, 1999.

[7] Sablonnière, P., Univariate spline quasi-interpolants and applications to numerical anal-

ysis, INSA and IRMAR, Rennes, 2005.

[8] Schumaker, L., Spline functions, basic theory, A Wiley-Interscience Publication John

Wiley and Sons, New York, 1980.

[9] Tilca, M., Upon an extensive set of knots for the normalized B-spline functions, Proceed-

ings of the International Conference on Numerical Analysis and Approximation Theory,

Cluj-Napoca, 2006, 393-400.

[10] Tilca, M., A cubic spline quasi-intepolant operator, International Journal of Pure and

Applied Mathematics, Vol. 42, No.1, (2008), 39-48.

[11] Tilca, M., The spline quasi-interpolant operators, International Conference ”Educaţie şi
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[12] DeVore, R.A., Lorentz, G.G., Constructive approximation, Springer-Verlag, Berlin,

1993.

Titu Maiorescu University,

Faculty of Information Sciences and Technology,
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