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ON THE TIME-DEPENDENT MOTION OF A VISCOUS
INCOMPRESSIBLE FLUID THROUGH A TUBE WITH

COMPLIANT WALLS

C. SURULESCU

Abstract. In this note we study the flow of a viscous, incompressible

fluid through an elastic cylinder which is very long when compared to its

diameter. The fluid flows due to a given small time-dependent pressure

drop between the inflow and the outflow boundary. This creeping flow is

modeled by the Stokes equations for a viscous, incompressible flow, while

Navier’s equations for an elastic membrane describe the behavior of the

flexible tube. We show existence and uniqueness of the solution for the

system consisting of these equations and the corresponding boundary con-

ditions.

1. Introduction

Fluid-structure interaction problems arise in many practical applications, like

in aerospace, naval engineering, biomechanics and biomedical engineering (see e.g.,

[8], [4], [5]). A main issue in this context is haemodynamics.

The cardiovascular system is a very complex system, having a great variety of

blood vessels, from large arteries through medium caliber vessels to capillaries. The

blood flow is thus a very complicated phenomenon and blood itself is a fluid not easy

to describe mathematically. Unless for the very tiny capillaries, it may be regarded

as a continuum [2]) and (although Nonnewtonian) as Newtonian and incompressible,

excepting some pathological situations [10], [12], [15].
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The problem we study is the following: a viscous incompressible fluid flows

through an elastic tube which is very long when compared to its radius. The flow

is driven by the difference of the pressures at both ends of the tube. The stress on

the fluid depends on the displacement of the flexible wall; this in turn depends on

the stresses exerted by the fluid on the interface between the two media. The only

stress acting on the structure is supposed to come from the fluid. Fluid and solid

mechanics are coupled through the wall position and the traction exerted by the fluid

on the tube wall. This scenario can be seen as describing e.g., the blood flow through

a segment of a smaller artery.

Our aim is to prove the existence of a unique solution of the above coupled

problem. In [13] this has been done in the stationary case for the three-dimensional

problem of a fluid flow through an elastic cylindrical tube with thickness and periodic

conditions at the ends of the cylinder and in [14] for the full Navier-Stokes equations

for the fluid and the nonlinear Navier-Lamé equations for the elastic structure with

more general boundary conditions. For the two-dimensional case, when the equations

of the fluid were coupled with the ones of an elastic beam we refer to [6]. Another

model for a steady-state slow flow in a collapsible tube is studied numerically in [7],

where geometrically nonlinear shell theory is used to accurately model the behavior of

the tube wall, however by further simplifying the equations for the fluid. Instationary

fluid-structure interaction problems (when the fluid domain has moving boundaries

depending on time) are considered for instance in [11] and [9] for the two-dimensional

case, where the flexible wall is modeled by the equations of an elastic beam or in [3]

for the three-dimensional case of a fluid interacting with a structure having a finite

number of elastic modes.

2. The mathematical model

The fluid is considered viscous, incompressible, unsteady and axisymmetric.

We suppose that the pressure drop between the inflow and the outflow ends of the

tube is small and that the viscous effects of blood are strongly predominant when
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compared to the inertial ones. The flexible structure is a thin, long cylinder with very

small thickness (an elastic cylindrical membrane). We thus model the fluid by the

Stokes equations without time derivatives (a creeping flow) and the flexible tube by

Navier’s equations for a cylindrical elastic membrane. This seems to be a good model

for blood flow in small arteries [5].

We denote by Ω the following domain:

Ω := {x ∈ R3 : x = (r cos θ, r sin θ, z), 0 ≤ r ≤ R, 0 ≤ z ≤ L}, (1)

where R and L are the radius, respectively the length of the cylinder.

We denote by S the lateral surface (elastic wall) of the cylinder and suppose

its evolution is described by Navier’s equations [12]:

ρwh
∂2ur

∂t2
= kGh

∂2ur

∂z2
− Eh

1− ζ2

(
ζ

R

∂uz

∂z
+
ur

R2

)
+ Φr in S × (0, T ) (2)

ρwh
∂2uz

∂t2
=

Eh

1− ζ2

(
ζ

R

∂ur

∂z
+
∂2uz

∂z2

)
+ Φz in S × (0, T ). (3)

The unknown variables ur and uz represent the radial, respectively longitu-

dinal displacement in the local frame of reference (cylindrical coordinates) (r, θ, z), h

is the wall thickness, R is the arterial reference radius at rest, k is the Timoshenko

shear correction factor, G is the shear modulus, E the Young modulus of elasticity, ζ

the Poisson ratio (ζ = 1
2 for an incompressible material), ρw is the arterial wall vol-

umetric mass. Φ = (Φr,Φz)t is the forcing term due to the external forces, included

the stress coming from the fluid (Φ depends on the velocity v and the pressure p of

the fluid, that is of the blood).

Note that this model is based on a Lagrangian description of the motion of

the elastic wall. It is referred to a material domain Ω(0), corresponding to the rest

position where ur = uz = 0.

We also need initial and boundary conditions for the system (2), (3). For the

former we consider the rest position and assume that initially there is no deformation

of the elastic membrane. Since (2) and (3) are of second order in time, we also need
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a condition at rest for the time derivatives of the displacements:

ur(0) = uz(0) = 0,
∂ur

∂t
(0) =

∂uz

∂t
(0) = 0 on S := {r = R} × (0, L). (4)

We further consider the ends of the elastic membrane fixed and take as corresponding

boundary conditions the following:

ur = uz = 0 for z = 0 and ur = uz = 0 for z = L, ∀t ∈ R+. (5)

We come now to the equations modeling the fluid flow. Initially, the elastic

tube is filled with fluid and the whole system is in equilibrium. This is the reference

state. The pressure drop between the inflow and the outflow gives rise to a deviation

from the reference state. If we assume that the acceleration of the fluid is small

relatively to the predominant viscous effects (creeping flow), we can write for the

fluid the following Stokes equations in cylindrical coordinates (we assume rotational

symmetry and thus neglect the circumferential component of the velocity):

−ν

(
∂2vr

∂r2
+

1
r

∂vr

∂r
− 1
r2
vr +

∂2vr

∂z2

)
+
∂p

∂r
= 0 in Ω× (0, T ) (6)

−ν

(
∂2vz

∂r2
+

1
r

∂vz

∂r
+
∂2vz

∂z2

)
+
∂p

∂z
= 0 in Ω× (0, T ) (7)

vr

r
+
∂vr

∂r
+
∂vz

∂z
= 0 in Ω× (0, T ). (8)

Here vr, vz are the radial, respectively the longitudinal component of the fluid

velocity, ν is the viscosity of the fluid and p is the pressure. Equation (8) represents

the incompressibility condition div v = 0, written in cylindrical coordinates.

We also need initial and boundary conditions for this system. We assume the

initial velocity zero:

v = 0 in Ω× {0} (9)

and take the following boundary conditions at the inflow and outflow:

vr = 0, p = 0 on (∂Ω ∩ {z = 0})× (0, T ) (10)

vr = 0, p = P (t) on (∂Ω ∩ {z = L})× (0, T ), (11)

where P (t) is the pressure drop driving the fluid.
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The following condition, imposed on the rest of the fluid boundary, is a cou-

pling condition and it ensures the continuity of the velocity field:

v =
∂u
∂t

on S × (0, T ). (12)

There is one more coupling condition to be satisfied, namely the continuity

of stresses. This means that the forcing term on the elastic structure is due to the

stresses exerted by the fluid (and possibly by external terms due, for instance, to

surrounding organs or muscle tissue, which, however, we neglect here). Thus, the

forcing term Φ in (2), (3) takes the form:

Φ = −(pI− 2νe(v)) · er on S × (0, T ). (13)

Here e(v) := 1
2 (∇v + (∇v)t) is the strain tensor (the symmetrized gradient of the

velocity).

Remark 2.1.

• The boundary conditions for the structure considered in (5) have been

taken homogeneous just for the sake of simplicity. More natural boundary

conditions at the outflow should not be zero, since the ends of the elastic

structure (z = 0 and z = L) are tipically ”artificial boundaries” (just like

the inflow and outflow ends of the fluid) and one should choose them in

order not to perturb the numerics.

• We take the pressure drop P (t) in (11) as being as regular as we need in

all our further considerations.

• Here we consider the case of a fixed fluid-structure interface. It is known

in general that the movement of a solid body implies rigid body motions

and displacements caused by the stresses and strains induced in the solid

body by the loads coming from the fluid which interacts with the structure.

If these displacements are small enough, then one may assume that the

interface is stationary, i.e. it does not move in time (unlikely for large

displacements). However, even if the displacements are small, the velocity
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of deformation is not, therefore we have to take condition (12) instead of

a homogeneous Dirichlet type condition for the velocity at the interface.

Thus, the problem can be stated as follows:

Problem 2.2. Determine a solution (u,v) of the system (2), (3), (6)-(8) in S × Ω,

with the initial conditions (4) and (9) and the boundary conditions (5), (10), (11)

and (12), where the force Φ in the equations for the elastic structure is given by the

fluid stresses as in (13).

Our aim is to prove the existence of a unique solution to the coupled problem.

This will be done with the aid of Galerkin approximations.

3. Weak formulation and main result

In this section we give the weak formulation of the coupled problem and state

the main result.

Let us define the space of test functions by:

Ψ := {ψ ∈ H1(Ω) : ψr, ψz ∈ H1(0, L), div ψ = 0 in Ω and

ψr(r, 0) = ψr(r, L) = ψz(R,L) = ψz(R, 0) = 0 for r ∈ [0, R]} (14)

Definition 3.1. (v,u) ∈ H1(0, T ;H1(Ω))× L2(0, T ;H1(0, L)) with u′ ∈ L2(0, T ;

L2(0, L)) and u′′ ∈ L2(0, T ;H−1(0, L)) is called a weak solution of Problem 2.2 if for

all ψ ∈ Ψ the following variational formulation is satisfied in the sense of distributions

(in D′(0, T )):

Rρwh
d2

dt2

L∫
0

(urψr + uzψz)dz +R

L∫
0

[
kGh

∂ur

∂z

∂ψr

∂z

+
Eh

1− ζ2

(
ζ

R

∂uz

∂z
ψr +

ur

R2
ψr +

∂uz

∂z

∂ψz

∂z
− ζ

R

∂ur

∂z
ψz

)]
dz (15)

+2ν
∫

Ω

e(v) : e(ψ)rdrdz = −
R∫

0

P (t)ψzrdr
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and

u =
∂u
∂t

= 0 on S × {0} and v = 0 in Ω× {0}. (16)

(15) has been obtained by testing in (2) and (3) with ψr, respectively ψz and in (6),

(7) with ψ, integrating by parts on the corresponding domains, using equation (8)

and conditions (5), (10), (11), (13) and summing up the equations resulted after the

testing.

We now can state the main result.

Theorem 3.1. There exists a unique weak solution of Problem 2.2.

4. Proof of the existence

4.1. Galerkin Approximations. The proof is based on the method of Galerkin,

that is we build a weak solution of the problem by first constructing solutions of

certain finite dimensional approximations and then passing to limits. We therefore

take the functions wk = wk(r, z) (k = 1, 2, ...) such that

{wk}k=1,...,∞ is a basis of Ψ. (17)

In particular, we take {wk}k to be the complete set of eigenfunctions of the eigenvalue

problem

w ∈ Ψ, (∇w,∇ψ)(0,L) + (e(w), e(ψ))Ω = λ[(w,ψ)(0,L) + (w,ψ)Ω], ψ ∈ Ψ;

we also assume that {wk}k is orthonormalized w.r.t. the H1
0,ends(Ω ∪ S)-inner prod-

uct1 (∇·,∇·)(0,L) + (e(·), e(·))Ω. Also observe that {wk}k is orthogonal w.r.t. the

L2-inner product in the right hand side of the equation above.

Fix a positive integer m and write

vm(t) :=
m∑

k=1

ckm(t)wk, (18)

where the coefficients ckm(t), k = 1, ...,m, 0 ≤ t ≤ T are intended to satisfy

ckm(0) = 0, k = 1, ...,m. (19)

1We have denoted by H1
0,ends the functions which are in H1 and vanish at the ends of the cylinder.
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This would be the approximation of the fluid’s velocity. By

um,r(t) :=
m∑

k=1

αkm(t)wk,r and um,z(t) :=
m∑

k=1

αkm(t)wk,z (20)

we construct (with the same basis {wk}k=1,...) an approximation of the displacement

of the elastic membrane. The coefficients of these approximations should satisfy (by

the continuity of velocities on S × (0, T )) the equation

αkm(t) =

t∫
0

ckm(s)ds. (21)

Observe that in virtue of (18), (20) and (21) we may write

∂um,r

∂t
=

m∑
k=1

ckm(t)wk,r in S × (0, T ) (22)

∂um,z

∂t
=

m∑
k=1

ckm(t)wk,z in S × (0, T ). (23)

By (19), the coefficients αkm(t), k = 1, ...,m, 0 ≤ t ≤ T satisfy

αkm(0) = 0 and α′km(0) = 0, k = 1, ...,m. (24)

The Galerkin approximation corresponding to (15) writes (0 ≤ t ≤ T, k =

1, ...,m):

Rρwh(u′′m(t),wk)(0,L) + C[um,r,wk; t] +D[um,z,wk; t]

+B[vm,wk; t] = −
R∫

0

P (t)wk,zrdr, (25)

where

B[v,w; t] := 2ν
∫

Ω

e(v) : e(w)rdrdz,

C[ur,w; t] := R

L∫
0

[
kGh

∂ur

∂z

∂wr

∂z
+

Eh

1− ζ2

(
ur

R2
wr −

ζ

R

∂ur

∂z
wz

)]
dz

and

D[uz,w; t] := R

L∫
0

Eh

1− ζ2

(
ζ

R

∂uz

∂z
wr +

∂uz

∂z

∂wz

∂z

)
dz.
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Further (use (17)),

B[vm,wk; t] + C[um,r,wk; t] +D[um,z,wk; t] =
m∑

l=1

βklαlm(t),

where

βkl := B[wl,wk] + C[wl,r,wk] +D[wl,z,wk], k, l = 1, ...,m.

Consequently, (25) becomes the following linear system of ODEs:

α′′km(t) +
m∑

l=1

βklαlm(t) = P k(t) (0 ≤ t ≤ T, k = 1, ...,m), (26)

where P k(t) := −
R∫
0

P (t)wk,zrdr.

The system is subject to the initial conditions (24). By the standard theory

for ordinary differential equations (remember that P (t) is regular enough, see Remark

2.1), there exists a unique function αm(t) = (α1m(t), ..., αmm(t)) in C2, satisfying (24)

and solving (26) for 0 ≤ t ≤ T.

4.2. Energy Estimates. We intend to pass to the limit with m → ∞ and for this

we need some estimates that should be uniform in m.

Theorem 4.1. There exists a constant C > 0 such that

sup
0≤t≤T

(
||u′m(t)||2L2(0,L) + ||um||2H1(0,L)

)
+ ||u′′m(t)||2L2(0,T ;H−1(0,L))

+||vm||2L2(0,T ;H1(Ω)) ≤ C(1 + ||P ||2L2(0,T )) (27)

The constant C depends only on Ω, T , R, G, h, k, ζ, ν and ρw.

Proof. Multiply (25) by ckm(t). By summing up after k = 1, ...,m and taking into

account (18), (22), (23), we get:

Rρwh

L∫
0

∂2um(t)
∂t2

∂um(t)
∂t

dz +R

L∫
0

kGh
∂um,r(t)
∂z

∂2um,r(t)
∂t∂z

dz

+R

L∫
0

Eh

1− ζ2

(
(
ζ

R

∂um,z(t)
∂z

+
um,r(t)
R2

)
∂um,r(t)

∂t
+
∂um,z(t)

∂z

∂2um,z(t)
∂t∂z
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− ζ

R

∂um,r(t)
∂z

∂um,z(t)
∂t

)
dz + 2ν

∫
Ω

e(vm(t)) : e(vm(t))rdrdz

= −
R∫

0

P (t)vm,z(t, r, L)rdr.

Let us have a closer look at the term whose coefficient is R Eh
1−ζ2 . If we perform a

partial integration on the last term of it, use (5) to get rid of the boundary terms and

rearrange what we get, it takes the form:

R
Eh

1− ζ2
· 1
2
d

dt

L∫
0

[
(1− ζ)

((∂um,z

∂z

)2

+
(um,r

R

)2
)

+ ζ
(um,r

R
+
∂um,z

∂z

)2
]
dz.

Thus, the above identity becomes:

R

2
d

dt

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ 2ν|e(vm)|2L2(Ω) = −

R∫
0

P (t)vm,z(t, r, L)rdr.

The right hand side above may be majorized as follows:

−
R∫

0

P (t)vm,z(t, r, L)rdr ≤ |
R∫

0

P (t)vm,z(t, r)rdr| ≤
1
L
|P (t)|

∫
Ω

|vm,z(t)|

≤ δ

L2
|P (t)|2 +

1
δ
|vm(t)|2L2(Ω) ≤

δ

L2
|P (t)|2 +

1
δ
||vm(t)||2H1(Ω).

We use this estimation and Korn’s inequality (see, for instance, [1]) in the

identity above to obtain:

R

2
d

dt

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ C1||vm||2H1(Ω) ≤

δ

L2
|P (t)|2. (28)

Here C1 > 0 is a constant depending on ν, δ and the constant in Korn’s inequality.
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We now integrate (28) from 0 to t (t > 0) and use the initial conditions (4),

in order to get the following:

R

2

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ C1

t∫
0

||vm(s)||2H1(Ω)ds ≤
δ

L2
||P ||2L2(0,T ). (29)

From (29) it follows that:

sup 0≤t≤T

(
||u′m(t)||2L2(0,L) + ||um||2H1(0,L)

)
≤ C2||P ||2L2(0,T ), (30)

where 0 < C2 := δ
L2

2
R · (min{ρwh, kGh,

Eh
1+ζ })

−1.

Now integrate (28) from 0 to T , use again (4) and obtain:

T∫
0

||vm(t)||2H1(Ω)dt ≤ C3||P ||2L2(0,T ), (31)

where 0 < C3 := δ
L2C1

.

In order to obtain (27), we still need some estimate for the second derivative

in time of um. In order to do that, let us fix any ξ ∈ Ψ with ||ξ||H1 ≤ 1 and write

ξ = ξ1 + ξ2, where ξ1 ∈ span {wk}k=1,...,m and (ξ2,wk) = 0 (k = 1, ...,m).

Notice that

||ξ1||H1 = ||ξ − ξ2||H1 ≤ ||ξ||H1 + ||ξ2||H1 ≤ 1.

We also consider that the only nonzero component of ξ is the radial one:

ξ = ξ1 + ξ2 = (ξ1,r + ξ2,r)er + (ξ1,z + ξ2,z)ez = (ξ1,r + ξ2,r)er.

Now we test in (25) with ξ subject to the above conditions and obtain (re-

member (20):

Rρwh(u′′m,r(t), ξ1,r)(0,L) + C[um,r, ξ1; t] +D[um,z, ξ1; t] +B[vm, ξ1; t] = 0. (32)
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Here

B[vm, ξ1; t] = 2ν
∫

Ω

e(vm) : e(ξ1)rdrdz,

thus

|B[vm, ξ1; t]| ≤ const ||vm||H1(Ω)||ξ1||H1(Ω) ≤ const ||vm||H1(Ω).

Further,

|C[um,r, ξ1; t]| ≤ const (1 + ||um,r||L2(0,L))

and

|D[um,z, ξ1; t]| ≤ const ||um||H1(0,L).

By using these estimates, (32), (30) and (31), it follows:

|(u′′m,r, ξ1,r)| ≤ const (||vm||H1(Ω) + 1 + ||um,r||L2(0,L)).

Thus,
T∫

0

||u′′m,r(t)||2H−1(0,L)dt ≤ C4, (33)

where the constant C4 > 0 depends on C2 and C3.

Now we consider that the only nonzero component of ξ is the longitudinal

one. Testing under the above conditions in (25) with ξ leads to:

Rρwh(u′′m,z(t), ξ1,z)(0,L) + C[um,r, ξ1; t] +D[um,z, ξ1; t] +B[vm, ξ1; t] = 0. (34)

Analogously as above, it follows that

T∫
0

||u′′m,z(t)||2H−1(0,L)dt ≤ C5(1 + ||P ||2L∞(0,T )), (35)

where, again, the constant C5 > 0 depends on C2 and C3.

(27) follows now from (30), (31), (33) and (35), where the constant C may

be taken as
5∑

i=2

Ci. �
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4.3. Existence of a Weak Solution. We now pass to limits (for m → ∞) in our

Galerkin approximations.

The estimate (27) implies that:

(um)m is bounded in L2(0, T ;H1(0, L)) (36)

(u′m)m is bounded in L2(0, T ;L2(0, L)) (37)

(u′′m)m is bounded in L2(0, T ;H−1(0, L)) (38)

and

(vm)m is bounded in L2(0, T ;H1(Ω)). (39)

Consequently, there exist some sequences (umk
)k ⊂ (um)m and (vmk

)k ⊂

(vm)m and the functions u ∈ L2(0, T ;H1(0, L)) with u′ ∈ L2(0, T ;L2(0, L)), u′′ ∈

L2(0, T ;

H−1(0, L)), v ∈ L2(0, T ;H1(Ω)) such that

umk

k→∞
⇀ u in L2(0, T ;H1(0, L)) (40)

u′mk

k→∞
⇀ u′ in L2(0, T ;L2(0, L)) (41)

u′′mk

k→∞
⇀ u′′ in L2(0, T ;H−1(0, L)) (42)

and

vmk

k→∞
⇀ v in L2(0, T ;H1(Ω)). (43)

We now fix an integer N and choose a function ϕ ∈ C1(0, T ;Ψ) of the form

ϕ(t) :=
N∑

k=1

αk(t)wk, (44)

where {αk}k=1,N are smooth functions. We choose N such that N ≤ m, multiply

(25) by αk(t), sum after k = 1, ..., N and integrate by parts to obtain:

Rρwh

T∫
0

(u′′m(t), ϕ(t))(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t]

+B[vm, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (45)
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We may now pass to the limit in the above identity, in virtue of (40), (41), (42) and

(43) (set m = mk) and obtain:

Rρwh

T∫
0

(u′′(t), ϕ(t))(0,L)dt+

T∫
0

{C[ur, ϕ; t] +D[uz, ϕ; t]

+B[v, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (46)

Note that (46) holds for all functions ϕ ∈ L2(0, T ;Ψ), since functions of the

form (44) are dense in this space. It also follows from (46) that

Rρwh(u′′, ϕ)(0,L) + C[ur, ϕ; t] +D[uz, ϕ; t] +B[v, ϕ; t] = −
R∫

0

P (t)ϕzrdr

for all ϕ ∈ Ψ and a.e. 0 ≤ t ≤ T.

Also notice that u ∈ C([0, T ];L2(0, L)) and u′ ∈ C([0, T ];H−1(0, L)).

We still have to verify that

u(0) = 0, u′(0) = 0 in S (47)

and

v(0) = 0 in Ω. (48)

We therefore choose any function ϕ ∈ C2([0, T ];Ψ), with ϕ(T ) = ϕ′(T ) = 0.

We then integrate by parts twice in time in (46) to obtain

Rρwh

T∫
0

(u(t), ϕ′′(t))(0,L)dt+

T∫
0

{C[ur, ϕ; t] +D[uz, ϕ; t] +B[v, ϕ; t]}dt

= −
T∫

0

R∫
0

P (t)ϕzrdrdt− (u(0), ϕ′(0))(0,L) + (u′(0), ϕ(0))(0,L). (49)

Analogously, we deduce from (45) that

Rρwh

T∫
0

(um, ϕ
′′)(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t] +B[vm, ϕ; t]}dt
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= −
T∫

0

R∫
0

P (t)ϕzrdrdt− (um(0), ϕ′(0))(0,L) + (u′m(0), ϕ(0))(0,L).

We set again m = mk and deduce from (24), (40), (41), (42) and (43) that

Rρwh

T∫
0

(um(t), ϕ′′(t))(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t]

+B[vm, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (50)

Compare now the identities (49) and (50) to deduce (47), since ϕ(0), ϕ′(0) are arbi-

trary.

We now intend to verify (48). For this we need some estimate on v′m. We

therefore differentiate in (25) with respect to time and get:

Rρwh(v′′m(t),wk)(0,L) + C[vm,r(t),wk; t] +D[vm,z(t),wk; t]

+B[v′m(t),wk; t] = −
R∫

0

P ′(t)wk,zrdr. (51)

Multiply (51) with c′km(t) and sum after k = 1, ...,m. It follows:

Rρwh
1
2
d

dt
|vm(t)|2L2(0,L) + C[vm,r,v′m; t] +D[vm,z,v′m; t]

+2ν|e(v′m(t))|2L2(Ω) = −
R∫

0

P ′(t)v′m,zrdr. (52)

The right hand side in (52) can be majorized in the following way:

−
R∫

0

P ′(t)v′m,zrdr ≤ γ|P ′(t)|2 +
1
γ
|v′m|2L2(Ω),

where γ is a positive constant.

Applying again Korn’s inequality and using Gronwall’s inequality it follows

from (52) that

v′m is bounded in L2(0, T ;L2(Ω)).
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Integrate in (52) from 0 to T and using the boundedness of v′m in L2(0, T ;L2(Ω)), we

obtain that

v′m is bounded in L2(0, T ;H1(Ω)).

Consequently, there exists a subsequence (vmk
)k of (vm)m and v′ ∈ L2(0, T ;H1(Ω))

with

v′mk

k→∞
⇀ v′ in L2(0, T ;H1(Ω)). (53)

Multiply (25) by α′k(t), sum after k = 1, ...,m, use the assumptions on ϕ and

integrate by parts with respect to time the term with B[., .; t] to get:

Rρwh

T∫
0

(u′′m(t), ϕ′(t))(0,L)dt+

T∫
0

[C[um,r, ϕ
′; t] +D[um,z, ϕ

′; t]]dt

−
T∫

0

B[v′m, ϕ; t]dt = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (54)

We may now pass to the limit (take mk = m) in (54), in virtue of the weak

convergences obtained so far. It follows that:

Rρwh

T∫
0

(u′′(t), ϕ′(t))(0,L)dt+

T∫
0

[C[ur, ϕ
′; t] +D[uz, ϕ

′; t]]dt

−
T∫

0

B[v′, ϕ; t]dt = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (55)

If we pass to the limit in (54) before integrating by parts the term with

B[., .; t], we obtain (doing the integration by parts afterwards):

Rρwh

T∫
0

(u′′(t), ϕ′(t))(0,L)dt+

T∫
0

[C[ur, ϕ
′; t] +D[uz, ϕ

′; t]]dt

−
T∫

0

B[v′, ϕ; t]dt−B[v(0), ϕ(0); 0] = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (56)

Now, by comparing (55) and (56), since ϕ(0) is arbitrary, we obtain (48).

Consequently, (u,v) is a weak solution of Problem 2.2, corresponding to the weak

formulation (15), (16). �
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4.4. Proof of the uniqueness. In this section we prove the uniqueness of the weak

solution found in the previous section. For this it suffices to show that the only weak

solution of Problem 2.2 with P (t) ≡ 0 is

(u,v) ≡ 0. (57)

Fix 0 ≤ s ≤ T and take

ζ(t) :=


s∫
t

v(τ)dτ if 0 ≤ t ≤ s

0 if s ≤ t ≤ T

. (58)

Observe that

ζ′(t) = −v(t),

thus on S × (0, T ) also ζ(t) = −u(t).

Then from the regularity properties of v and u it follows that ζ(t) ∈ H1(Ω),

∀ 0 ≤ t ≤ T with ζr(t), ζz(t) ∈ H1(0, L), ζr(R,L) = ζr(R, 0) = 0, ζz(R,L) =

ζz(R, 0) = 0 and thus we can write (see (25)):

Rρwh

s∫
0

(u′′(t), ζ(t))(0,L)dt+

s∫
0

{C[ur, ζ; t] +D[uz, ζ; t] +B[v, ζ; t]}dt = 0.

Integrate by parts with respect to time and use (4) and (58) to write:

−Rρwh

s∫
0

(u′(t), ζ′(t))(0,L)dt+

s∫
0

B[v, ζ; t]dt

= −
s∫

0

{C[ur, ζ; t] +D[uz, ζ; t]}dt.

We have

Rρwh

s∫
0

|u′(t)|2(0,L)dt− ν
d

dt

s∫
0

|e(ζ(t))|2L2(Ω) ≤ C

s∫
0

||ζ(t)||2H1(Ω)dt,

thus (use again Korn’s inequality)

ν|ζ(0)|2H1(Ω) ≤ C

s∫
0

||ζ(t)||2H1(Ω)dt. (59)
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We now define g(t) :=
t∫
0

v(τ)dτ , 0 ≤ t ≤ T. Then note that ζ(0) = g(s) and

ζ(t) = g(s)− g(t). Consequently, we deduce from (59) that

(1− C(ν)s)||g(s)||2H1(Ω) ≤ C(ν)

s∫
0

||g(t)||2H1(Ω)dt

and we choose 0 < T1 small enough (0 ≤ T1 ≤ 1
2C(ν) ).

Then for 0 ≤ s ≤ T1 we have

||g(s)||2H1(Ω) ≤ C(ν, T1)

s∫
0

||g(t)||2H1(Ω)dt.

Applying the integral form of Gronwall’s inequality, it follows that g ≡ 0, thus ζ ≡ 0

and so v ≡ 0 on Ω× [0, T1] and u ≡ 0 on S × [0, T1].

We apply the same argument on the intervals [T1, 2T1], [2T1, 3T1], etc. to

eventually obtain that (u,v) ≡ 0. �
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