LACUNARY STRONGLY ALMOST SUMMABLE SEQUENCES

MIKAIL ET AND AYSEGÜL GÖKHAN

Abstract

The purpose of this paper is to introduce the concepts of $q-$ lacunary strongly almost convergence with respect to a modulus function and $q-$ lacunary almost statistical convergence. We establish some connections between q - lacunary strongly almost convergence and q - lacunary almost statistical convergence. It is also shown that if a sequence is q-lacunary strongly almost convergent with respect to a modulus function then it is q-lacunary almost statistically convergent.

1. Introduction

Let w denote the set of all real sequences $x=\left(x_{n}\right)$. By ℓ_{∞} and c, we denote respectively the Banach space of bounded and the Banach space of convergent sequences $x=\left(x_{n}\right)$, both normed by $\|x\|=\sup _{n}\left|x_{n}\right|$. A linear functional \mathcal{L} on ℓ_{∞} is said to be a Banach limit [1] if it has the properties
i) $\mathcal{L}(x) \geq 0$ if $x \geq 0$ (i.e. $x_{n} \geq 0$ for all n),
ii) $\mathcal{L}(e)=1$, where $e=(1,1, \ldots)$,
iii) $\mathcal{L}(D x)=\mathcal{L}(x)$,
where the shift operator D is defined by $\left(D x_{n}\right)=\left(x_{n+1}\right)$.
Let \mathfrak{B} be the set of all Banach limits on ℓ_{∞}. A sequence x is said to be almost convergent to a number L if $\mathcal{L}(x)=L$ for all $\mathcal{L} \in \mathfrak{B}$. Lorentz [11] has shown that x is almost convergent to L if and only if

$$
t_{k m}=t_{k m}(x)=\frac{x_{m}+x_{m+1}+\ldots+x_{m+k}}{k+1} \rightarrow L \text { as } k \rightarrow \infty, \text { uniformly in } m .
$$

Received by the editors: 15.01.2007.
2000 Mathematics Subject Classification. 40A05, 40C05, 46A45
Key words and phrases. statistical convergence, lacunary sequence, modulus function, almost
convergence.

Let \hat{c} denote the set of all almost convergent sequences. Maddox [12] and (independently) Freedman et al. [8] have defined x to be strongly almost convergent to a number L if

$$
\frac{1}{k+1} \sum_{i=0}^{k}\left|x_{i+m}-L\right| \rightarrow 0 \text { as } k \rightarrow \infty, \text { uniformly in } m
$$

Let $[\hat{c}]$ denote the set of all strongly almost convergent sequences. It is easy to see that $[\hat{c}] \subset \hat{c} \subset \ell_{\infty}$. Das and Sahoo [5] defined the sequence space

$$
[w(p)]=\left\{x \in w: \frac{1}{n+1} \sum_{k=0}^{n}\left|t_{k m}(x-L)\right|^{p_{k}} \rightarrow 0 \text { as } n \rightarrow \infty, \text { uniformly in } m\right\}
$$

and investigated some of its properties.
The notion of statistical convergence was introduced by Fast [7] and Schoenberg [24] independently. Later on it was further investigated from sequence space point of view and linked with summability theory by Başarır [2], Fridy [9], Maddox [15], Nuray and Savaş [18], Tripathy ([20],[21]) and Salat [23]. Recently, statistical convergence has been studied by various authors (cf. [3], [16], [17]).

The statistical convergence is depended on the density of subsets of \mathbb{N}, the set of natural numbers. A subset E of \mathbb{N} is said to have density $\delta(E)$ if

$$
\delta(E)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{E}(k) \text { exists, }
$$

where χ_{E} is the characteristic function of E.
A sequence $x \in w$ is said to be statistically convergent to L if for every $\varepsilon>0$, $\delta\left(\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \varepsilon\right\}\right)=0$. In this case we write stat-lim $x_{k}=L$.

Let $\theta=\left(k_{r}\right)$ be the sequence of positive integers such that $k_{0}=0,0<k_{r}<$ k_{r+1} and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Then θ is called a lacunary sequence. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and the ratio k_{r} / k_{r-1} will be denoted by η_{r}.

Lacunary sequences have been studied in [4], [8], [10], [19].
We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
i) $f(x)=0$ if and only if $x=0$,
ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
iii) f is increasing,
iv) f is continuous from the right at 0 .

It follows that f must be continuous everywhere on $[0, \infty)$. A modulus may be unbounded or bounded. Ruckle [22] and Maddox [13] used a modulus f to construct some sequence spaces.

A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ for all sequences (α_{k}) of scalars with $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$.

2. Definitions and Preliminaries

Let f be a modulus function, $p=\left(p_{k}\right)$ be a sequence of positive real numbers and X be a seminormed space over the field \mathbb{C} of complex numbers with the seminorm q. $w(X)$ denotes the space of all sequences $x=\left(x_{k}\right)$, where $x_{k} \in X$. We define the following sequence spaces:

$$
(w, \theta, f, p, q)=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}=0,\right.
$$

uniformly in m, for some $L\}$,

$$
\begin{gathered}
(w, \theta, f, p, q)_{0}=\left\{x \in w(X): \lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}=0, \text { uniformly in } m\right\}, \\
(w, \theta, f, p, q)_{\infty}=\left\{x \in w(X): \sup _{r, m} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}<\infty\right\} .
\end{gathered}
$$

Throughout the paper Z denotes 0,1 or ∞. We get the following sequence spaces from the above sequence spaces on giving particular values to θ, f and p.
i) If $p_{k}=1$ for all $k \in \mathbb{N}$, then we shall write $(w, \theta, f, q)_{Z}$ instead of $(w, \theta, f, p, q)_{Z}$.

If $x \in(w, \theta, f, q)$ we say that x is q-lacunary almost strongly convergent with respect to the modulus function f.
ii) Taking $p_{k}=1$ for all $k \in \mathbb{N}$ and $f(x)=x$, we denote the above sequence spaces by $(w, \theta, q)_{Z}$.
iii) In the case $\theta=\left(2^{r}\right)$, then we shall denote the above sequence spaces by $(w, f, p, q)_{Z}$.

Theorem 2.1 Let f be a modulus function, then $(w, \theta, f, p, q)_{0} \subset(w, \theta, f, p, q) \subset$ $(w, \theta, f, p, q)_{\infty}$.

Proof. The first inclusion is obvious. We establish the second inclusion. Let $x \in$ (w, θ, f, p, q). By definition of f we have

$$
\begin{aligned}
& \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}=\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L+L)\right)\right)\right]^{p_{k}} \\
& \leq C \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}+C \frac{1}{h_{r}} \sum_{k \in I_{r}}[f(q(L))]^{p_{k}}
\end{aligned}
$$

There exists a positive integer K_{L} such that $q(L) \leq K_{L}$. Hence we have

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \leq C \frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}+\frac{C}{h_{r}}\left[K_{L} f(1)\right]^{H} h_{r},
$$

where $\sup _{k} p_{k}=H$ and $C=\max \left(1,2^{H-1}\right)$. Since $x \in(w, \theta, f, p, q)$, we have $x \in$ $(w, \theta, f, p, q)_{\infty}$ and this completes the proof.

The following theorem can be proved using the same technique of Theorem 2.1 of Et [6], therefore we give without proof.

Theorem 2.2 Let the sequence $\left(p_{k}\right)$ be bounded, then $(w, \theta, f, p, q)_{Z}$ are linear spaces over the set of complex numbers.

The proof of the following results are easy and thus omitted.

Theorem 2.3 Let f, f_{1}, f_{2} be modulus function. For any two sequences $p=\left(p_{k}\right)$ and $t=\left(t_{k}\right)$ of strictly positive real numbers and any two seminorms q_{1}, q_{2} we have
i) $\left(w, \theta, f_{1}, q\right)_{Z} \subset\left(w, \theta, f \circ f_{1}, q\right)_{Z}$,
ii) $\left(w, \theta, f_{1}, p, q\right)_{Z} \cap\left(w, \theta, f_{2}, p, q\right)_{Z} \subset\left(w, \theta, f_{1}+f_{2}, p, q\right)_{Z}$,
iii) $\left(w, \theta, f, p, q_{1}\right)_{Z} \cap\left(w, \theta, f, p, q_{2}\right) \subset\left(w, \theta, f, p, q_{1}+q_{2}\right)$,
iv) If q_{1} is stronger than q_{2} then $\left(w, \theta, f, p, q_{1}\right)_{Z} \subset\left(w, \theta, f, p, q_{2}\right)_{Z}$,
v) If q_{1} equivalent to q_{2} then $\left(w, \theta, f, p, q_{1}\right)_{Z}=\left(w, \theta, f, p, q_{2}\right)_{Z}$,
vi) $(w, \theta, f, p, q)_{Z} \cap(w, \theta, f, t, q)_{Z} \neq \emptyset$.

The following result is a consequence of Theorem 2.3 (i).

Proposition 2.4 Let f be a modulus function. Then $(w, \theta, q)_{Z} \subset(w, \theta, f, q)_{Z}$.
Theorem 2.5 Let f be a modulus function, if $\lim \frac{f(t)}{t}=\beta>0$, then $(w, \theta, q)=$ (w, θ, f, q).

Proof. By Proposition 2.4, we need only show that $(w, \theta, f, q) \subset(w, \theta, q)$. Let $\beta>0$ and
$x \in(w, \theta, f, q)$. Since $\beta>0$, we have $f(t) \geq \beta t$ for all $t \geq 0$. Hence we have

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}} f\left(q\left(t_{k m}(x-L)\right)\right) \geq \frac{\beta}{h_{r}} \sum_{k \in I_{r}} q\left(t_{k m}(x-L)\right)
$$

Therefore we have $x \in(w, \theta, q)$.
Theorem 2.6 Let $0<p_{k} \leq t_{k}$ and $\left(\frac{t_{k}}{p_{k}}\right)$ be bounded, then $(w, \theta, f, t, q)_{Z} \subset$ $(w, \theta, f, p, q)_{Z}$.

Proof. If we take $w_{k m}=\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{t_{k}}$ for all k, m and using the same technique of Theorem 5 of Maddox [14], it is easy to prove this Theorem.

Theorem 2.7 The sequence spaces $(w, \theta, f, p, q)_{0}$ and $(w, \theta, f, p, q)_{\infty}$ are not solid.
Proof. We give the proof only for $(w, \theta, f, p, q)_{0}$. For this let $p_{k}=1$ for all $k \in \mathbb{N}$, $\theta=\left(2^{r}\right), f(x)=x$ and $q(x)=|x|$. Consider the sequence $x_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$ and $\left(\alpha_{k}\right)$ be defined as $\alpha_{k}=(-1)^{k}$ for all $k \in \mathbb{N}$. Then $\left(x_{k}\right) \in(w, \theta, f, p, q)_{0}$ but $\left(\alpha_{k} x_{k}\right) \notin(w, \theta, f, p, q)_{0}$. Hence $(w, \theta, f, p, q)_{0}$ is not solid.

Theorem 2.8 Let $\theta=\left(k_{r}\right)$ be a lacunary sequence. If $1<\liminf _{r} \eta_{r} \leq \limsup { }_{r}$ $\eta_{r}<\infty$ then for any modulus function f, we have $(w, f, p, q)_{0}=(w, \theta, f, p, q)_{0}$.

Proof. Suppose $\liminf _{r} \eta_{r}>1$ then there exist $\delta>0$ such that $\eta_{r}=\left(\frac{k_{r}}{k_{r-1}}\right) \geq 1+\delta$ for all $r \geq 1$. Then for $x \in(w, f, p, q)_{0}$, we write

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}=\frac{1}{h_{r}} \sum_{k=1}^{k_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}-\frac{1}{h_{r}} \sum_{k=1}^{k_{r-1}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}
$$

$$
=\frac{k_{r}}{h_{r}}\left(k_{r}^{-1} \sum_{k=1}^{k_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}\right)-\frac{k_{r-1}}{h_{r}}\left(k_{r-1}^{-1} \sum_{k=1}^{k_{r-1}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}\right) .
$$

Since $h_{r}=k_{r}-k_{r-1}$, we have

$$
\frac{k_{r}}{h_{r}} \leq \frac{1+\delta}{\delta}
$$

and

$$
\frac{k_{r-1}}{h_{r}} \leq \frac{1}{\delta}
$$

The terms $k_{r}^{-1} \sum_{k=1}^{k_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}$ and $k_{r-1}^{-1} \sum_{k=1}^{k_{r-1}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}$ both converge to zero, uniformly in m and it follows that

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \rightarrow 0
$$

as $r \rightarrow \infty$ uniformly in m, that is, $x \in(w, \theta, f, p, q)_{0}$.
If $\limsup \sup _{r} \eta_{r}<\infty$, there exists $B>0$ such that $\eta_{r}<B$ for all $r \geq 1$. Let $x \in(w, \theta, f, p, q)_{0}$ and $\varepsilon>0$ be given. Then there exits $R>0$ such that for every $j \geq R$ and all m

$$
A_{j}=\frac{1}{h_{j}} \sum_{k \in I_{j}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}<\varepsilon
$$

We can also find $K>0$ such that $A_{j}<K$ for all $j=1,2, \ldots$. Now let t be any integer with $k_{r-1}<t \leq k_{r}$, where $r>R$. Then

$$
\begin{gathered}
t^{-1} \sum_{k=1}^{t}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \leq k_{r-1}^{-1} \sum_{k=1}^{k_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \\
=k_{r-1}^{-1} \sum_{k \in I_{1}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}+k_{r-1}^{-1} \sum_{k \in I_{2}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}+ \\
\ldots+k_{r-1}^{-1} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \\
=\frac{k_{1}}{k_{r-1}} k_{1}^{-1} \sum_{k \in I_{1}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}+\frac{k_{2}-k_{1}}{k_{r-1}}\left(k_{2}-k_{1}\right)^{-1} \sum_{k \in I_{2}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \\
+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}}\left(k_{R}-k_{R-1}\right)^{-1} \sum_{k \in I_{R}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}+ \\
\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}}\left(k_{r}-k_{r-1}\right)^{-1} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}}
\end{gathered}
$$

$$
\begin{gathered}
=\frac{k_{1}}{k_{r-1}} A_{1}+\frac{k_{2}-k_{1}}{k_{r-1}} A_{2}+\ldots+\frac{k_{R}-k_{R-1}}{k_{r-1}} A_{R}+\frac{k_{R+1}-k_{R}}{k_{r-1}} A_{R+1}+\ldots+\frac{k_{r}-k_{r-1}}{k_{r-1}} A_{r} \\
\leq\left(\sup _{j \geq 1} A_{j}\right) \frac{k_{R}}{k_{r-1}}+\left(\sup _{j \geq R} A_{j}\right) \frac{k_{r}-k_{R}}{k_{r-1}} \leq K \frac{k_{R}}{k_{r-1}}+\varepsilon B .
\end{gathered}
$$

Since $k_{r-1} \rightarrow \infty$ as $t \rightarrow \infty$, it follows that $t^{-1} \sum_{k=1}^{t}\left[f\left(q\left(t_{k m}(x)\right)\right)\right]^{p_{k}} \rightarrow 0$ uniformly in m and consequently $x \in(w, f, p, q)_{0}$.

3. q - lacunary almost statistical convergence

In this section we give some relations between q-lacunary almost statistical convergence and q-lacunary strongly almost convergence with respect to the modulus functions f.

Definition 3.1 ([3]) Let θ be a lacunary sequence, then the sequence $x=\left(x_{k}\right)$ is said to be q-lacunary almost statistically convergent to the number L provided that for every $\varepsilon>0$,

$$
\lim _{r} \frac{1}{h_{r}}\left|\left\{k \in I_{r}: q\left(t_{k m}(x-L)\right) \geq \varepsilon\right\}\right|=0, \text { uniformly in } m
$$

In this case we write $\left[S_{\theta}\right]_{q}-\lim x=L$ or $x_{k} \rightarrow L\left(\left[S_{\theta}\right]_{q}\right)$ and we define

$$
\left[S_{\theta}\right]_{q}=\left\{x \in w(X):\left[S_{\theta}\right]_{q}-\lim x=L, \text { for some } L\right\}
$$

In the case $\theta=\left(2^{r}\right)$, we shall write $[S]_{q}$ instead of $\left[S_{\theta}\right]_{q}$.
Theorem 3.2 Let f be a modulus function and $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=$ $H<\infty$. Then $(w, \theta, f, p, q) \subset\left[S_{\theta}\right]_{q}$.

Proof. Let $x \in(w, \theta, f, p, q)$ and $\varepsilon>0$ be given. Then

$$
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}} \geq \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\ q\left(t_{k m}(x-L)\right) \geq \varepsilon}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}
$$

$$
\begin{aligned}
& \geq \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right) \geq \varepsilon}}[f(\varepsilon)]^{p_{k}} \\
& \geq \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right) \geq \varepsilon}} \min \left([f(\varepsilon)]^{h},[f(\varepsilon)]^{H}\right) \\
& \geq \frac{1}{h_{r}}\left|\left\{k \in I_{r}: q\left(t_{k m}(x-L)\right) \geq \varepsilon\right\}\right| \min \left([f(\varepsilon)]^{h},[f(\varepsilon)]^{H}\right) .
\end{aligned}
$$

Hence $x \in\left[S_{\theta}\right]_{q}$.
Theorem 3.3 Let f be bounded and $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$. Then $\left[S_{\theta}\right]_{q} \subset(w, \theta, f, p, q)$.

Proof. Suppose that f is bounded. Then there exists an integer K such that $f(t)<K$, for all $t \geq 0$. Then

$$
\begin{gathered}
\frac{1}{h_{r}} \sum_{k \in I_{r}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}}=\frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right) \geq \varepsilon}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}} \\
+\frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right)<\varepsilon}}\left[f\left(q\left(t_{k m}(x-L)\right)\right)\right]^{p_{k}} \\
\leq \frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right) \geq \varepsilon}} \max \left(K^{h}, K^{H}\right)+\frac{1}{h_{r}} \sum_{\substack{k \in I_{r} \\
q\left(t_{k m}(x-L)\right)<\varepsilon}}[f(\varepsilon)]^{p_{k}} \\
\leq \max \left(K^{h}, K^{H}\right) \frac{1}{h_{r}}\left|\left\{k \in I_{r}: q\left(t_{k m}(x-L)\right) \geq \varepsilon\right\}\right|+\max \left([f(\varepsilon)]^{h},[f(\varepsilon)]^{H}\right) .
\end{gathered}
$$

Hence $x \in(w, \theta, f, p, q)$.
Theorem $3.4\left[S_{\theta}\right]_{q}=(w, \theta, f, p, q)$ if and only if f is bounded.
Proof. Let f be bounded. By the Theorem 3.2 and Theorem 3.3, we have $\left[S_{\theta}\right]_{q}=$ (w, θ, f, p, q).

Conversely, suppose that f is unbounded. Then there exists a positive sequence $\left(t_{n}\right)$ with $f\left(t_{n}\right)=n^{2}, n=1,2, \cdots$. If we choose

$$
x_{k}= \begin{cases}t_{n}, & k=n^{2}, n=1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

then we have

$$
\frac{1}{n}\left|\left\{k \leq n:\left|x_{k}\right| \geq \varepsilon\right\}\right| \leq \frac{\sqrt{n}}{n} \rightarrow 0, n \rightarrow \infty
$$

Hence $x_{k} \rightarrow 0\left(\left[S_{\theta}\right]_{q}\right)$ for $t_{0 m}(x)=x_{m}, \theta=\left(2^{r}\right)$ and $q(x)=|x|$, but $x \notin(w, \theta, f, q)$. This contradicts to $\left[S_{\theta}\right]_{q}=(w, \theta, f, p, q)$.

References

[1] Banach, S., Theorie Operations Lineaires, Chelsea Publishing Co, New York, 1955.
[2] Başarır, M., On the Δ-statistical convergence of sequences, Firat Univ. J. Sci. and Enginer, $\mathbf{7}$ (2)(1995), 1-6.
[3] Çolak, R., Tripathy, B.C. and Et, M., Lacunary strongly summable sequences and q lacunary almost statistical convergence, Vietnam J. Math., 34(2)(2006), 129-138.
[4] Das G. and Mishra, S.K., Banach limits and lacunary strong almost convegence, J. Orissa Math. Soc., 2(1983), 61-70.
[5] Das, G. and Sahoo, S.K., On some sequence spaces, J. Math. Anal. Appl., 164(1992), 381-398.
[6] Et, M., Strong almost summable difference sequences of order m defined by a modulus, Studia Sci. Math. Hungar., 40(4)(2003), 463-476.
[7] Fast, H., Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
[8] Freedman, A.R., Sember, J.J. and Raphael, M., Some Cesaro-type summability spaces, Proc. Lond. Math. Soc., 37(1978), 508-520.
[9] Fridy, J.A., On the statistical convergence, Analysis, 5(1985), 301-313.
[10] Fridy, J.A. and Orhan, C., Lacunary statistical convergence, Pacific J. Math., 160(1993), 43-51.
[11] Lorentz, G.G., A contribution to the theory of divergent series, Acta Math., 80(1948), 167-190.
[12] Maddox, I.J., A new type of convergence, Math. Proc. Camb. Phil. Soc., 83(1978), 61-64.
[13] Maddox, I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc., 100(1986), 345-350.
[14] Maddox, I.J., Spaces of strongly summable sequences, Quart. J. Math., 18(1967), 345355.
[15] Maddox, I.J., Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc., 104(1988), 141-145.
[16] Malkowsky, E. and Savas, E., Some λ-sequence spaces defined by a modulus, Archivum Mathematicum, 36(2000), 219-228.
[17] Mursaleen, λ-statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.
[18] Nuray, F. and Savaş, E., Invariant statistical convergence and A-invariant statistical convergence, Indian J. Pure Appl. Math., 25(3)(1994), 267-274.
[19] Savas, E. and Rhoades B. E., On some new sequence spaces of invariant means defined by Orlicz functions, Mathematical Inequalities and Applications, 5(2)(2002), 271-281.
[20] Tripathy, B.C., Matrix transformation between some classes of sequences, J. Math. Anal. Appl., 206(2)(1997), 448-450.
[21] Tripathy, B.C., On statistically convergent and statistically bounded sequences, Bull. Malays. Math. Soc., 20(1)(1997), 31-33.
[22] Ruckle, W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[23] Salàt, T., On statistically convergent sequences of real numbers, Math. Slovaca, $\mathbf{3 0}(2)(1980), 139-150$.
[24] Schoenberg, I.J., The integrability of certain functions and related to summability methods, Amer. Math. Monthly, 66(1959), 361-375.

Department of Mathematics, Firat University,
23119, ElaziĞ, Turkey
E-mail address: mikailet@yahoo.com

Department of Mathematics, Firat University,
23119, ElaziĞ, Turkey
E-mail address: agokhan1@firat.edu.tr

