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MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC
PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES

ILDIKÓ ILONA MEZEI

Abstract. In this paper we study a semilinear double eigenvalue problem

with nonlinear boundary conditions in an unbounded domain Ω ∈ RN .

To obtain existence and multiplicity results for this problem we use the

Mountain Pass Theorem applied to double weighted Sobolev spaces and a

recent result proved by G. Bonanno (Nonlinear Analysis, 54(2003), 651-

665) concerning critical points. This result completes some recent results

obtained in this direction.

1. Main result

Let Ω ⊂ RN , (N ≥ 3) be an unbounded domain with smooth boundary Γ.

For a positive measurable function u and a positive measurable function w defined in

Ω, we define the weighted p-norm (1 ≤ p < ∞)

||u||p,Ω,w =
(∫

Ω

|u(x)|pw(x)dx

) 1
p

and denote by Lq(Ω; w) the space of all measurable functions u such that ||u||q,Ω,w is

finite. The double weighted Sobolev space

W 1,p(Ω; v0, v1)
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is defined as the space of all functions u ∈ Lp(Ω; v0) such that all derivatives ∂u
∂xi

belong to Lp(Ω; v1). The corresponding norm is defined by

||u||p,Ω,v0,v1 =
(∫

Ω

|∇u(x)|pv1(x) + |u(x)|pv0dx

) 1
p

.

The Muckenhoupt class Ap is defined as the set of all positive functions v in

RN , which satisfy

1
|Q|

(∫
Ω

v dx

) 1
p

(∫
Ω

v−
1

p−1 dx

) p−1
p

≤ C̄, if 1 < p < ∞

1
|Q|

∫
Ω

v dx ≤ C̄ ess inf
x∈Q

v(x), if p = 1,

for all cubes Q ∈ RN and some C̄ > 0.

In this paper we always assume that the weight functions v0, v1, w are defined

in Ω, belong to Ap and are choosen such that the embeddings

W 1,2(Ω; v0, v1) ↪→ Lp(Ω;w) (1)

and the trace

W 1,2(Ω; v0, v1) ↪→ Lq(Γ;w) (2)

are compact for 2 < p < 2N/(N − 2), 2 < q < 2(N − 1)/(N − 2) and continuous for

2 ≤ p ≤ 2N/(N − 2), 2 ≤ q ≤ 2(N − 1)/(N − 2) respectively. Such weight functions

there exist, see for example [4], [5]. The best embedding constants are denoted by

Cp,Ω and Cq,Γ, i.e. we have the inequalities

||u||p,Ω,w ≤ Cp,Ω||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (3)

||u||q,Γ,w ≤ Cq,Γ||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (4)

where we used the abbreviation ||u||v0,v1 = ||u||2,Ω,v0,v1 .

For λ > 0 and µ ∈ R we consider the following semilinear elliptic double

eigenvalue problem

(Pλ,µ)


Au ≡ −∆u + b(x)u = λf(x, u) in Ω

∂nu = λµg(x, u) on Γ
,
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where b is a positive measurable function, n denotes the unit outward normal on Γ

and ∂n is the outer normal derivative on Γ.

We define a bilinear form associated with A by

〈u, v〉A =
∫

Ω

(∇u∇v + b(x)uv)dx.

A weak solution of the problem (Pλ,µ) is a function u ∈ W 1,2(Ω; v0, v1), such

that for every v ∈ W 1,2(Ω; v0, v1) we have

〈u, v〉A − λ

∫
Ω

f(x, u(x))v(x)dx− λµ

∫
Γ

g(x, u(x))v(x)dΓ = 0.

Furthermore we consider the following assumptions:

(A) we assume that A defines a continuous bilinear form 〈·, ·〉A on

W 1,2(Ω; v0, v1) and satisfies the ellipticity condition

〈u, u〉A ≥ 2K||u||2v0,v1
for every u ∈ W 1,2(Ω; v0, v1), (5)

with some positive constant K > 0;

(F1) f : Ω× R → R is a Carathéodory function with f(·, 0) = 0 and

|f(x, s)| ≤ f0(x) + f1(x)|s|p−1 for x ∈ Ω, s ∈ R,

where 2 < p <
2N

N − 2
, and f0, f1 are positive measurable functions satis-

fying f0 ∈ L
p

p−1 (Ω; w
1

1−p ), f0(x) ≤ Cfw(x) and f1(x) ≤ Cfw(x) for a.e.

x ∈ Ω, with an appropiate constant Cf ;

(F2) lim
s→0

f(x, s)
f0(x)|s|

= 0, uniformly in x ∈ Ω;

(F3) lim
s→∞

F (x, s)
f0(x)|s|2

= 0, uniformly in x ∈ Ω,

max
|s|≤M

F (·, s) ∈ L1(Ω), for all M > 0, where

F (x, u) =
∫ u

0

f(x, s)ds;

(F4) there exist x0 ∈ Ω, s0 ∈ R and R0 > 0 such that min
|x−x0|<R

F (x, s0) > 0.

(G1) Let g : Γ× R → R be a a Carathéodory function with g(·, 0) = 0 and

|g(x, s)| ≤ g0(x) + g1(x)|s|q−1, for x ∈ Γ, s ∈ R
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where 2 < q <
2(N − 1)
N − 2

, and g0, g1 are positive measurable func-

tions satisfying g0 ∈ L
q

q−1 (Γ;w
1

1−q ), g0(x) ≤ Cgw(x) and g1(x) ≤

Cgw(x), a.e. x ∈ Γ, with an appropiate constant Cg;

(G2) lim
s→0

g(x, s)
g0(x)|s|

= 0, uniformly in x ∈ Γ;

(G3) lim
s→+∞

G(x, s)
g0(x)|s|2

= 0, uniformly for x ∈ Γ,

max
|s|≤M

G(·, s) ∈ L1(Γ), for every M > 0, where G(x, s) =∫ u

0

g(x, s)ds.

Next, we introduce the functionals JF , JG, Jµ : W 1,2(Ω; v0, v1) → R, defined

by

JF (u) =
∫

Ω

F (x, u(x))dx, JG(u) =
∫

Γ

G(x, u(x))dΓ,

Jµ(u) = JF (u) + µJG(u)

and the energy functional Eλ,µ(u) : W 1,2(Ω; v0, v1) → R associated to (Pλ,µ), defined

by

Eλ,µ(u) =
1
2
〈u, u〉A − λJµ(u).

The main result of this paper is the following

Theorem 1.1. We suppose that the assumption (A) is satisfied and the functions

f : Ω×R → R and g : Γ×R → R satisfy the conditions (F1)− (F4) and (G1)− (G3)

respectively.

(a) Then there exists λ0 > 0 such that to every λ ∈]λ0,+∞[ it corresponds

a nonempty open interval Iλ ⊂ R such that for every µ ∈ Iλ the problem

(Pλ,µ) has at least two distinct, nontrivial weak solutions uλ,µ and vλ,µ,

with the property

Eλ,µ(uλ,µ) < 0 < Eλ,µ(vλ,µ).

(b) Then there exists µ0 > 0 such that to every µ ∈ [−µ0, µ0] it corresponds

a nonempty open interval Γµ ∈]0,+∞[ and a number σµ > 0 for which
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(Pλ,µ) has at least two distinct, nontrivial weak solutions: u1
λ,µ and u2

λ,µ,

with the property

max{||u1
λ,µ||v0,v1 , ||u2

λ,µ||v0,v1} ≤ σµ,

whenever λ ∈ Γµ.

2. Preliminaries

In this section we denote by p′ and q′ the conjugates of p respective q, i.e.

p′ = p
p−1 and q′ = q

q−1 .

The following result deals with the Nemytskii operator of a Carathéodory

function h : Ω × R → R, which is the function defined by Nh(u) = h(x, u(x)). Then

we have the following result.

Lemma 2.1. Assume that the conditions (F1), (G1) are satisfied. Then the Ne-

mytskii operators Nf : Lp(Ω;w) → L
p

p−1 (Ω; w
1

1−p ), NF : Lp(Ω;w) → L1(Ω),

Ng : Lq(Γ;w) → L
q

q−1 (Γ;w
1

1−q ) and NF : Lq(Γ;w) → L1(Γ) are bounded and contin-

uous.

Proof. We will use the following result: for all s ∈ (0,∞) there is a constant Cs > 0

such that

(x + y)s ≤ Cs(xs + ys), for any x, y ∈ (0,∞). (6)

To prove that Nf is bounded, we choose an arbitrary set A ⊆ Lp(Ω;w) and

prove that Nf (A) is bounded. For this, let u ∈ A be an arbitrary element and we

claim that Nf (u) is bounded in L
p

p−1 (Ω;w
1

1−p ). Using the (F1) condition, the (6),

the Hölder’s inequalities, we have

||Nf (u)||
1
p′

p
p−1 ,Ω,w

1
1−p

=
∫

Ω

|f(x, u(x))|p
′
w(x)

1
1−p dx ≤

≤
∫

Ω

(
f0(x) + f1(x)|u(x)|p−1

)p′

w(x)
1

1−p dx ≤

≤ Cp′

(∫
Ω

f0(x)p′w(x)
1

1−p dx +
∫

Ω

f1(x)p′ |u(x)|(p−1)p′w(x)
1

1−p dx

)
≤

≤ Cp′

(
C +

∫
Ω

Cp′

f w(x)p′w(x)
1

1−p |u(x)|pdx

)
=
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= Cp′C + Cp′C
p′

f

∫
Ω

|u(x)|pw(x)dx = Cp′C + Cp′C
p′

f ||u||
p
p,Ω,w,

where in the last inequality we used that f0 ∈ L
p

p−1 (Ω;w
1

1−p ) , so there exists C >

0 such that
∫

Ω

f0(x)
p

p−1 w(x)
1

1−p dx ≤ C. Since u ∈ A ⊆ Lp(Ω;w), we have that

||u||pp,Ω,w is finite, therefore Nf is bounded. Then the continuity follows from standard

properties of the Nemytskii operators.

In the same way we obtain for u ∈ Lp(Ω;w)∫
Ω

|F (x, u(x))|dx ≤
∫

Ω

(f0(x)|u(x)|+ f1(x)|u(x)|p) dx =

=
∫

Ω

f0(x)w(x)−
1
p |u(x)|w(x)

1
p dx +

∫
Ω

f1(x)|u(x)|pdx ≤

≤
(∫

Ω

f0(x)p′w(x)
1

1−p dx

) 1
p′

(∫
Ω

|u(x)|pw(x)dx

) 1
p

+ Cf

∫
Ω

|u(x)|pw(x)dx ≤

≤ C
1
p′ ||u||p,Ω,w + Cf ||u||pp,Ω,w,

therefore NF is bounded. For the operators Ng and NG the arguments are identical,

therefore we omit the details here. �

Lemma 2.2. [5] The energy functional Eλ,µ is Fréchet differentiable in W 1,2(Ω; v0, v1)

and its derivative is given by

〈E ′λ,µ(u), v〉 = 〈u, v〉A − λ

∫
Ω

f(x, u(x))v(x)dx− λµ

∫
Γ

g(x, u(x))v(x)dΓ. (7)

for every v ∈ W 1,2(Ω; v0, v1).

Remark 2.1. Due to this result, one can see, that the critical points of Eλ,µ are

exactly the weak solutions of (Pλ,µ).

Lemma 2.3. Suppose that the conditions (F2), (F3), (G2) and (G3) are satisfied.

Then, for every λ > 0 and µ ∈ R the functional Eλ,µ is coercive and bounded from

below on W 1,2(Ω; v0, v1).

Proof. Let us fix λ > 0 and µ ∈ R arbitrarily and a, b > 0 such that

λaCfC2
2,Ω + λ|µ|bCgC

2
2,Γ < K.
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By the conditions (F2),(F3) and (G2),(G3) there exist the positive functions ka ∈

L1(Ω;w) and kb ∈ L1(Γ;w) such that

|F (x, s)| ≤ af0(x)|s|2 + ka(x)w(x), ∀(x, s) ∈ Ω× R

|G(x, s)| ≤ bg0(x)|s|2 + kb(x)w(x), ∀(x, s) ∈ Ω× R.

Thus, for every u ∈ W 1,2(Ω; v0, v1) we obtain

Eλ,µ(u) =
1
2
〈u, u〉A − λ

∫
Ω

F (x, u(x))dx− λµ

∫
Γ

G(x, u(x)dx) ≥

≥ K||u||2v0,v1
− λ

∫
Ω

af0(x)|u(x)|2dx− λ

∫
Ω

ka(x)w(x)dx−

−λ|µ|
∫

Γ

bg0(x)|u(x)|2dΓ− λ|µ|
∫

Γ

kb(x)w(x)dΓ ≥

≥ K||u||2v0,v1
− λaCf ||u||22,Ω,w − λ||ka||1,Ω,w −

−λ|µ|bCg||u||22,Γ,w − λ|µ|||kb||1,Γ,w ≥

≥
(
K − λaCfC2

2,Ω − λ|µ|bCgC
2
2,Γ

)
||u||2v0,v1

−

−λ||ka||1,Ω,w − λ|µ|||kb||1,Γ,w.

Since ka ∈ L1(Ω;w), kb ∈ L1(Γ;w), we have that ||ka||1,Ω,w, ||kb||1,Γ,w are finite.

Therefore Eλ,µ is bounded from below on W 1,2(Ω; v0, v1) and Eλ,µ(u) →∞, whenever

||u||v0,v1 →∞. Hence Eλ,µ is coercive. �

Lemma 2.4. Eλ,µ : W 1,2(Ω; v0, v1) → R satisfies the Palais-Smale condition on

W 1,2(Ω; v0, v1), for every λ > 0 and µ ∈ R.

Proof. Let {un} ⊂ W 1,2(Ω; v0, v1) be an arbitrary Palais-Smale sequence for Eλ,µ, i.e.

(a) {Eλ,µ(un)} is bounded;

(b) E ′λ,µ(un) → 0.

We have to prove that {un} contains a strongly convergent subsequence. Since

Eλ,µ is coercive, we have that {un} is bounded. W 1,2(Ω; v0, v1) is a reflexive Banach

space, so taking a subsequence if necessary (denoted in the same way), we get an

element u ∈ W 1,2(Ω; v0, v1) such that un → u weakly in W 1,2(Ω; v0, v1). Because the

embeddings (1) and (2) are compact for 2 < p < 2N/(N−2), 2 < q < 2(N−1)/(N−2),

we have that un → u strongly in Lp(Ω; w) and Lq(Γ;w).
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From the condition (b) we have that
∣∣∣〈E ′λ,µ(un), un

||un||v0,v1
〉
∣∣∣ ≤ ε, for every

ε > 0 and large n ∈ N. Then

−〈un, un〉A + λ

∫
Ω

f(x, un(x))un(x)dx + λµ

∫
Γ

g(x, un(x))un(x)dΓ ≤ ε||un||v0,v1 .

Then we have

2K||un − u||2v0,v1
≤ 〈un − u, un − u〉A ≤ |〈un, un − u〉A|+ |〈u, un − u〉A| ≤

≤ 2ε||un − u||v0,v1+

+λ

∣∣∣∣∫
Ω

f(x, un(x))(un(x)− u(x))dx

∣∣∣∣ + λ

∣∣∣∣∫
Ω

f(x, u(x))(un(x)− u(x))dx

∣∣∣∣ +

+λ|µ|
∣∣∣∣∫

Γ

g(x, un(x))(un(x)− u(x))dΓ
∣∣∣∣ + λ|µ|

∣∣∣∣∫
Γ

g(x, u(x))(un(x)− u(x))dΓ
∣∣∣∣ .

Using the Hölder’s inequality we get∣∣∣∣∫
Ω

f(x, un(x))(un(x)− u(x))dx

∣∣∣∣ ≤
≤

∫
Ω

∣∣∣f(x, un(x))w(x)−
1
p

∣∣∣ ∣∣∣(un(x)− u(x))w(x)
1
p

∣∣∣ dx ≤

≤
(∫

Ω

|f(x, un(x))|p
′
w(x)−

p′
p dx

) 1
p′

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
p

=

=
(∫

Ω

|f(x, un(x))|p
′
w(x)

1
1−p dx

) 1
p′

||un − u||p,Ω,w

and arguing in the same way for g, we obtain∣∣∣∣∫
Γ

g(x, un(x))(un(x)− u(x))dx

∣∣∣∣ ≤ (∫
Γ

|g(x, un(x))|q
′
w(x)

1
1−q dΓ

) 1
q′

||un − u||q,Γ,w.

Since ε > 0 is arbitrary, ||un − u||p,Ω,w and ||un − u||q,Γ,w tend to zero and∫
Ω

|f(x, un(x))|p
′
w(x)

1
1−p dx,

∫
Γ

|g(x, un(x))|q
′
w(x)

1
1−q dΓ are bounded (by Lemma

2.1, using that {un} is bounded), it follows that ||un − u||v0,v1 tends to zero. �

Lemma 2.5. [3, Lemma 3.2] Assume that (F4) is satisfied. Then there exist an

u0 ∈ W 1,2(Ω; v0, v1) such that JF (u0) > 0.

Let us define m =
∫

Γ

|G(x, u0(x))|dΓ, λ0 =
1
2 〈u0, u0〉A
JF (u0)

> 0 and µ∗λ = 1
λ(1+m) ·

(λ− λ0)JF (u0) > 0.
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Lemma 2.6. For λ > λ0 and |µ| ∈]0, µ∗λ] we have

inf
u∈W 1,2(Ω;v0,v1)

Eλ,µ(u) < 0.

Proof. It is sufficient to prove, that for λ > λ0 and |µ| ∈]0, µ∗λ] we have Eλ,µ(u0) < 0.

Indeed,

Eλ,µ(u0) =
1
2
〈u0, u0〉A − λJF (u0)− λµJG(u0) ≤

≤ λ0JF (u0)− λJF (u0) + λ|µ|m =

= (λ0 − λ)JF (u0) + λ|µ|m =

= (λ0 − λ)
λ(1 + m)µ∗λ

λ− λ0
+ λ|µ|m =

= −(1 + m)λµ∗λ + λ|µ|m =

= −λµ∗λ −mλ(µ∗λ − |µ|) < 0.

for all λ > λ0 and |µ| ∈]0, µ∗λ]. �

Lemma 2.7. For every λ > λ0 and µ ∈]0, µ∗λ], the functional Eλ,µ satisfies the

Mountain Pass geometry.

Proof. From the assumptions (F1), (F2), (G1) and (G2) results the existence of ĉ1(ε),

ĉ2(ε) > 0 such that, for every ε̂ > 0 we have

|f(x, s)| ≤ ε̂f0(x)|s|+ ĉ1(ε)f1(x)|s|p−1, for 2 < p <
2N

N − 2
, (8)

|g(x, s)| ≤ ε̂g0(x)|s|+ ĉ2(ε)g1(x)|s|q−1, for 2 < q <
2(N − 1)
N − 2

. (9)

Then integrating with respect to the second variable, from 0 to u(x), we get the

existence of c1(ε), c2(ε) > 0 such that, for every ε > 0 we have

|F (x, u(x))| ≤ εf0(x)|u(x)|2 + c1(ε)f1(x)|u(x)|p, for 2 < p <
2N

N − 2
, (10)

|G(x, u(x))| ≤ εg0(x)|u(x)|2 + c2(ε)g1(x)|u(x)|q, for 2 < q <
2(N − 1)
N − 2

. (11)
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Fix λ > λ0 and µ ∈]0, µ∗λ[, then using the (10)and (11) inequalities for every u ∈

W 1,2(Ω; v0, v1) we have

Eλ,µ(u) =
1
2
〈u, u〉A − λJµ(u) ≥

≥ K||u||2v0,v1
− λ

∫
Ω

|F (x, u(x))|dx− λ|µ|
∫

Γ

|G(x, u(x))|dΓ ≥

= K||u||2v0,v1
− λεCf ||u||22,Ω,w − λc1(ε)Cf ||u||pp,Ω,w −

−λ|µ|εCg||u||22,Γ,w − λ|µ|c2(ε)Cg||u||qq,Ω,w ≥

≥
(
K − λεCfC2

2,Ω − λ|µ|εCgC
2
2,Γ

)
||u||2v0,v1

−

− λc1(ε)CfCp
p,Ω||u||

p
v0,v1

− λ|µ|c2(ε)CgC
q
q,Γ||u||

q
v0,v1

.

Using the notations A =
(
K − λεCfC2

2,Ω − λ|µ|εCgC
2
2,Γ

)
, B = λc1(ε)CfCp

p,Ω, C =

λ|µ|c2(ε)CgC
q
q,Γ, we get

Eλ,µ(u) ≥ (A−B||u||p−2
v0,v1

− C||u||q−2
v0,v1

)||u||2v0,v1
.

We choose ε ∈
]
0, K

2
1

λ(Cf C2
2,Ω+|µ|CgC2

2,Γ)

[
, so A > 0. Now, let l : R+ → R be

the function defined by l(t) = A−Btp−2 −Ctq−2. We can see, that l(0) = A > 0, so

because l is continuous, there exists an ε∗ > 0 such that l(t) > 0, for every t ∈]0, ε∗[.

Then for every u ∈ W 1,2(Ω; v0, v1), with ||u||v0,v1 = ε∗∗ < min{ε∗, ||u0||v0,v1}, we

have Eλ,µ(u) ≥ η(λ, µ, ε∗) > 0. From Lemma 2.6 we have Eλ,µ(u0) < 0.

Therefore the functional Eλ,µ satisfies the Mountain Pass geometry, meaning

that Eλ,µ satisfies the conditions of the Mountain Pass Theorem (see Theorem 3.1).

�

Lemma 2.8. For every µ ∈ R+, we have

lim
ρ→0

sup{Jµ(u) : 1
2 〈u, u〉A < ρ}
ρ

= 0.
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Proof. Fix arbitrarily ε > 0 and p ∈
]
2,

2N

N − p

[
, q ∈

]
2,

2(N − 1)
N − 2

[
, then from (10)

and (11) and the ellipticity condition (A), it follows that

Jµ(u) = JF (u) + µJG(u) ≤

≤ ε
(
CfC2

2,Ω + |µ|CgC
2
2,Γ

)
||u||2v0,v1

+ c1(ε)CfCp
p,Ω||u||

p
v0,v1

+

+ |µ|c2(ε)CgC
q
q,Γ||u||

q
v0,v1

≤

≤ ε
(
CfC2

2,Ω + |µ|CgC
2
2,Γ

) 〈u, u〉A
2K

+ c1(ε)CfCp
p,Ω

(
〈u, u〉A

2K

) p
2

+

+ |µ|c2(ε)CgC
q
q,Γ

(
〈u, u〉A

2K

) q
2

.

Therefore, we have

sup{Jµ(u) :
1
2
〈u, u〉A < ρ} ≤

≤ ε

(
CfC2

2,Ω + |µ|CgC
2
2,Γ

)
K

ρ +
c1(ε)CfCp

p,Ω

K
p
2

ρ
p
2 + |µ|

c2(ε)CgC
q
q,Γ

K
q
2

ρ
q
2 .

Since p > 2, q > 2, dividing this last inequality with ρ and taking the limit whenever

ρ → 0, we have the required equality.

Lemma 2.9. We assume that the conditions (F1)-(F3) and (G1)-(G3) are satisfied.

Then the functional Jµ = JF + µJG is sequentially weakly continuous.

Proof. We argue by contradiction. Let un be a sequence from W 1,2(Ω; v0, v1) weakly

convergent to some u ∈ W 1,2(Ω; v0, v1) and d > 0 such that

|Jµ(un)− Jµ(u)| ≥ d, for all n ∈ N.

At the same time we have

|Jµ(un)− Jµ(u)| ≤
∫

Ω

|F (x, un(x))− F (x, u(x))|dx +

+ |µ|
∫

Γ

|G(x, un(x))−G(x, u(x))|dΓ.

In the sequel, we will estimate the previous two integrals. For this end, first we use

the Mean Value Theorem for the function F on the interval (un(x), u(x)), then we
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make use of the (3), (8) and the Hölder inequalities. So, there exists a θ ∈]0, 1[ such

that ∫
Ω

|F (x, un(x))− F (x, u(x))|dx =

=
∫

Ω

|f(x, (1− θ)un(x) + θu(x))||un(x)− u(x)|dx ≤

≤ ε̂

∫
Ω

f0(x)|(1− θ)un(x) + θu(x)||un(x)− u(x)|dx +

+ ĉ1(ε)
∫

Ω

f1(x)|(1− θ)un(x) + θu(x)|p−1|un(x)− u(x)|dx ≤

≤ ε̂

∫
Ω

f0(x)(|un(x)|+ |u(x)|)|un(x)− u(x)|dx +

+ĉ1(ε)
∫

Ω

f1(x)(|un(x)|p−1 + |u(x)|p−1)|un(x)− u(x)|dx ≤

≤ ε̂Cf

∫
Ω

|un(x)− u(x)|w(x)
1
2 w(x)

1
2 (|un(x)|+ |u(x)|)dx +

+ĉ1(ε)Cf

∫
Ω

|un(x)− u(x)|w(x)
1
p w(x)

1
p′

(
|un(x)|p−1 + |u(x)|p−1

)
dx ≤

≤ ε̂Cf

(∫
Ω

|un(x)− u(x)|2w(x)dx

) 1
2

·

·

[(∫
Ω

|un(x)|2w(x)dx

) 1
2

+
(∫

Ω

|u(x)|2w(x)dx

) 1
2
]

+

+ĉ1(ε)Cf

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
p

·

·

[(∫
Ω

|un(x)|(p−1)p′w(x)dx

) 1
p′

+
(∫

Ω

|u(x)|(p−1)p′w(x)dx

) 1
p′

]
≤

≤ ε̂Cf ||un − u||2,Ω,w(||un||2,Ω,w + ||un||2,Ω,w) +

+ĉ1(ε)Cf ||un − u||p,Ω,w

(
||un||

p
p′

p,Ω,w + ||u||
p
p′

p,Ω,w

)
≤

≤ ε̂CfC2
2,Ω||un − u||v0,v1(||un||v0,v1 + ||u||v0,v1) +

+ĉ1(ε)CfCp−1
p,Ω ||un − u||p,Ω,w

(
||un||p−1

v0,v1
+ ||u||p−1

v0,v1

)
.

Since un is weakly convergent to u ∈ W 1,2(Ω; v0, v1), we can assume without loss of

generality that there exist a constant M > 0 such that
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||un||v0,v1 ≤ M and ||un − u||v0,v1 ≤ M, for all n ∈ N.

Then we have

|F (x, un(x))− F (x, u(x))| ≤ 2ε̂CfC2
2,ΩM2 + 2ĉ1(ε)CfCp−1

p,Ω Mp−1||un − u||p,Ω,w.

Arguing as above for the function G, we obtain

|G(x, un(x))−G(x, u(x))| ≤ 2ε̂CgC
2
2,ΓM2 + 2ĉ2(ε)CgC

q−1
q,Γ Mq−1||un − u||q,Γ,w.

Therefore

d ≤ |Jµ(un)− Jµ(u)| ≤ 2ε̂M2(CfC2
2,Ω + CgC

2
2,Γ)+

+2ĉ1(ε)CfCp−1
p,Ω Mp−1||un − u||p,Ω,w + 2ĉ2(ε)CgC

q−1
q,Γ Mq−1||un − u||q,Γ,w.

Because the embeddings (1) and (2) are compact for 2 < p < 2N/(N − 2), 2 < q <

2(N−1)/(N−2), it follows that ||un−u||p,Ω,w → 0 and ||un−u||q,Γ,w → 0. Therefore,

if ε̂ > 0 is sufficiently small and n ∈ N is large enough, we have

d ≤ |Jµ(un)− Jµ(u)| < d,

which is a contradiction.

3. Proof of Theorem 1.1

For the reader’s convenience we recall here the Mountain Pass Theorem used

in the proof of Theorem 1.1 (a).

Theorem 3.1. [6, Theorem 2.2] Let E be a Banach space and I ∈ C1(E, R) a

functional, satisfying the Palais-Smale condition. Suppose I(0) = 0 and

(a) there are constants α > 0 and ρ > 0 such that I(u) ≥ α, for every

||u|| = ρ;

(b) there is an e ∈ E with ||e|| > ρ and I(e) ≤ 0.

Then the number

c = inf
g∈Γ

max
v∈g([0,1])

I(v),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e},
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is a critical value of I, with c ≥ α.

The main tool in the proof of Theorem 1.1 (b) is the following refinement of

a B. Ricceri-type critical point theorem ([7], [8]) established by G. Bonanno in [1].

Theorem 3.2. Let X be a separable and reflexive real Banach space and let Φ, J :

X → R be two continuously Gâteaux differentiable functionals. Assume that there

exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and Φ(x) ≥ 0 for every x ∈ X, and there

exists x1 ∈ X, ρ > 0 such that

(i) ρ < Φ(x1) and sup
Φ(x)<ρ

J(x) < ρ
J(x1)
Φ(x1)

. Further put

ā =
ζρ

ρ
J(x1)
Φ(x1)

− sup
Φ(x)<ρ

J(x)
,

with ζ > 1, assume that the functional Φ − λJ is sequentially weakly lower semicon-

tinuous, satisfies the Palais-Smale condition and

(ii) lim
||x||→+∞

[Φ(x)− λJ(x)] = +∞, for every λ ∈ [0, ā].

Then there is an open interval Λ ⊂ [0, ā] and a number σ > 0 such that for

each λ ∈ Λ, the equation Φ′(x) − λJ ′(x) = 0 admits at least three distinct solutions

in X, having norm less than σ.

Proof of Theorem 1.1 (a). Fix λ > λ0 and µ ∈]0, µ∗λ[= Iλ. From the Lemma

2.3 and Lemma 2.4 we have that the functional Eλ,µ is bounded from below and

satisfies the (PS)-condition. Then Eλ,µ achieves its infimum, i.e. there exists an

element uλ,µ ∈ W 1,2(Ω; v0, v1) such that Eλ,µ(uλ,µ) = inf
v∈W 1,2(Ω;v0,v1)

Eλ,µ(v) (see[6,

Theorem 2.7]). So E ′λ,µ(uλ,µ) = 0 and by Lemma 2.6, we have Eλ,µ(uλ,µ) < 0.

On the other hand, there exists an element vλ,µ ∈ W 1,2(Ω; v0, v1) such that

E ′λ,µ(vλ,µ) = 0 and Eλ,µ(vλ,µ) ≥ η(λ, µ, ε∗) > 0 (by Lemma 2.7 and Theorem 3.1),

which completes the proof. �

Proof of Theorem 1.1 (b). Let u0 ∈ W 1,2(Ω; v0, v1) be the function from Lemma 2.5

and fix

µ0 =
JF (u0)

1 + |JG(u0)|
.
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Then for every µ ∈ [−µ0, µ0] we have

Jµ(u0) = JF (u0) + µJG(u0) ≥
JF (u0)

1 + |JG(u0)|
> 0.

Now, we apply the Theorem 3.2 of Bonanno, by choosing X = W 1,2(Ω; v0, v1),

Φ(u) =
1
2
〈u, u〉A and J = Jµ, for µ ∈ [−µ0, µ0].

Taking account the lema 2.8 and the inequalities Jµ(u0) > 0, Φ(u0) > 0, we

can choose for every µ ∈ [−µ0, µ0] a ρµ > 0 so small that

ρµ <
1
2
〈u0, u0〉A = Φ(u0) (12)

sup{Jµ(u) : 1
2 〈u, u〉A < ρµ}
ρµ

<
Jµ(u0)
Φ(u0)

(13)

Now, choosing x1 = u0, x0 = 0, ζ = 1 + ρµ and

a = āµ =
1 + ρµ

Jµ(u0)
Φ(u0)

− sup{Jµ(u): 12 〈u,u〉A<ρµ}
ρµ

,

all the assumptions of the Theorem 3.2 are verified. Then, there is an open interval

Λµ ⊂ [0, āµ] and a number σµ > 0 such that for any λ ∈ Λµ, the functional Eλ,µ =

Φ − λJµ admits at least three distinct critical points: ui
λ,µ ∈ W 1,2(Ω; v0, v1), (i ∈

{1, 2, 3}), having norms less than σµ.

We can see, that u = 0 is a solution of the problem (Pλ,µ). So if we are looking

for nontrivial solutions, we can affirm that (Pλ,µ) has at least two distinct, nontrivial

solutions in W 1,2(Ω; v0, v1), having norms less than σµ, concluding the proof of the

Theorem 1.1.

Remark. As an example, we consider the weight functions (see [5])

v0(x) = w(x) =

 ||x||−2, if x ∈ RN \B1

1, if x ∈ B1

,

v1(x) = 1,∀x ∈ RN ,

where B1 = {x ∈ RN : ||x|| ≤ 1}. For these functions the embeddings

W 1,2(Ω; v0, 1) ↪→ Lp(Ω;w) and W 1,2(Ω; v0, 1) ↪→ Lq(Γ;w) are compact, if 2 < p <

2N/(N −2), 2 < q < 2(N −1)/(N −2). Assuming that f and g satisfy the conditions
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(F1)-(F4), (G1)-(G3) respectively and A defines a bilinear form with (A), we can

apply the Theorem 1.1.
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[5] Pflüger, K., Compact traces in weighted Sobolev space. Analysis 18 (1998), 65-83.

[6] Rabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Dif-

ferential Equations, CBMS Reg. Conference Series in Math., vol. 65, Amer. Math. Soc.,

Providence, RI, 1986.

[7] Ricceri, B., On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226.

[8] Ricceri, B., Existence of three solutions for a class of elliptic eigenvalue problems, Math.

Comput. Modelling, 32 (2000), 1485-1494.

Faculty of Matematics and Computer Science

University of Babeş Bolyai
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