MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES

ILDIKO ILONA MEZEI

Abstract

In this paper we study a semilinear double eigenvalue problem with nonlinear boundary conditions in an unbounded domain $\Omega \in \mathbb{R}^{N}$. To obtain existence and multiplicity results for this problem we use the Mountain Pass Theorem applied to double weighted Sobolev spaces and a recent result proved by G. Bonanno (Nonlinear Analysis, 54(2003), 651$665)$ concerning critical points. This result completes some recent results obtained in this direction.

1. Main result

Let $\Omega \subset \mathbb{R}^{N},(N \geq 3)$ be an unbounded domain with smooth boundary Γ.
For a positive measurable function u and a positive measurable function w defined in Ω, we define the weighted p-norm $(1 \leq p<\infty)$

$$
\|u\|_{p, \Omega, w}=\left(\int_{\Omega}|u(x)|^{p} w(x) d x\right)^{\frac{1}{p}}
$$

and denote by $L^{q}(\Omega ; w)$ the space of all measurable functions u such that $\|u\|_{q, \Omega, w}$ is finite. The double weighted Sobolev space

$$
W^{1, p}\left(\Omega ; v_{0}, v_{1}\right)
$$

is defined as the space of all functions $u \in L^{p}\left(\Omega ; v_{0}\right)$ such that all derivatives $\frac{\partial u}{\partial x_{i}}$ belong to $L^{p}\left(\Omega ; v_{1}\right)$. The corresponding norm is defined by

$$
\|u\|_{p, \Omega, v_{0}, v_{1}}=\left(\int_{\Omega}|\nabla u(x)|^{p} v_{1}(x)+|u(x)|^{p} v_{0} d x\right)^{\frac{1}{p}}
$$

The Muckenhoupt class A_{p} is defined as the set of all positive functions v in \mathbb{R}^{N}, which satisfy

$$
\begin{gathered}
\frac{1}{|Q|}\left(\int_{\Omega} v d x\right)^{\frac{1}{p}}\left(\int_{\Omega} v^{-\frac{1}{p-1}} d x\right)^{\frac{p-1}{p}} \leq \bar{C}, \text { if } 1<p<\infty \\
\frac{1}{|Q|} \int_{\Omega} v d x \leq \bar{C} \text { ess } \inf _{x \in Q} v(x), \text { if } p=1
\end{gathered}
$$

for all cubes $Q \in \mathbb{R}^{N}$ and some $\bar{C}>0$.
In this paper we always assume that the weight functions v_{0}, v_{1}, w are defined in Ω, belong to A_{p} and are choosen such that the embeddings

$$
\begin{equation*}
W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \hookrightarrow L^{p}(\Omega ; w) \tag{1}
\end{equation*}
$$

and the trace

$$
\begin{equation*}
W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \hookrightarrow L^{q}(\Gamma ; w) \tag{2}
\end{equation*}
$$

are compact for $2<p<2 N /(N-2), 2<q<2(N-1) /(N-2)$ and continuous for $2 \leq p \leq 2 N /(N-2), 2 \leq q \leq 2(N-1) /(N-2)$ respectively. Such weight functions there exist, see for example [4], [5]. The best embedding constants are denoted by $C_{p, \Omega}$ and $C_{q, \Gamma}$, i.e. we have the inequalities

$$
\begin{align*}
& \|u\|_{p, \Omega, w} \leq C_{p, \Omega}\|u\|_{v_{0}, v_{1}}, \quad \text { for all } u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \tag{3}\\
& \|u\|_{q, \Gamma, w} \leq C_{q, \Gamma}\|u\|_{v_{0}, v_{1}}, \quad \text { for all } u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \tag{4}
\end{align*}
$$

where we used the abbreviation $\|u\|_{v_{0}, v_{1}}=\|u\|_{2, \Omega, v_{0}, v_{1}}$.
For $\lambda>0$ and $\mu \in \mathbb{R}$ we consider the following semilinear elliptic double eigenvalue problem
$\left(P_{\lambda, \mu}\right)$

$$
\left\{\begin{aligned}
A u \equiv-\Delta u+b(x) u & =\lambda f(x, u) \text { in } \Omega \\
\partial_{n} u & =\lambda \mu g(x, u) \text { on } \Gamma
\end{aligned}\right.
$$

where b is a positive measurable function, n denotes the unit outward normal on Γ and ∂_{n} is the outer normal derivative on Γ.

We define a bilinear form associated with A by

$$
\langle u, v\rangle_{A}=\int_{\Omega}(\nabla u \nabla v+b(x) u v) d x
$$

A weak solution of the problem $\left(P_{\lambda, \mu}\right)$ is a function $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, such that for every $v \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ we have

$$
\langle u, v\rangle_{A}-\lambda \int_{\Omega} f(x, u(x)) v(x) d x-\lambda \mu \int_{\Gamma} g(x, u(x)) v(x) d \Gamma=0 .
$$

Furthermore we consider the following assumptions:
(A) we assume that A defines a continuous bilinear form $\langle\cdot, \cdot\rangle_{A}$ on $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ and satisfies the ellipticity condition

$$
\begin{equation*}
\langle u, u\rangle_{A} \geq 2 K\|u\|_{v_{0}, v_{1}}^{2} \text { for every } u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right), \tag{5}
\end{equation*}
$$

with some positive constant $K>0$;
(F1) $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function with $f(\cdot, 0)=0$ and

$$
|f(x, s)| \leq f_{0}(x)+f_{1}(x)|s|^{p-1} \text { for } x \in \Omega, s \in \mathbb{R}
$$

where $2<p<\frac{2 N}{N-2}$, and f_{0}, f_{1} are positive measurable functions satisfying $f_{0} \in L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right), f_{0}(x) \leq C_{f} w(x)$ and $f_{1}(x) \leq C_{f} w(x)$ for a.e. $x \in \Omega$, with an appropiate constant C_{f};
(F2) $\lim _{s \rightarrow 0} \frac{f(x, s)}{f_{0}(x)|s|}=0, \quad$ uniformly in $x \in \Omega$;
(F3) $\lim _{s \rightarrow \infty} \frac{F(x, s)}{f_{0}(x)|s|^{2}}=0$, uniformly in $x \in \Omega$, $\max _{|s| \leq M} F(\cdot, s) \in L^{1}(\Omega)$, for all $M>0$, where $F(x, u)=\int_{0}^{u} f(x, s) d s ;$
(F4) there exist $x_{0} \in \Omega, s_{0} \in \mathbb{R}$ and $R_{0}>0$ such that $\min _{\left|x-x_{0}\right|<R} F\left(x, s_{0}\right)>0$.
(G1) Let $g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ be a a Carathéodory function with $g(\cdot, 0)=0$ and

$$
|g(x, s)| \leq g_{0}(x)+g_{1}(x)|s|^{q-1}, \text { for } x \in \Gamma, s \in \mathbb{R}
$$

where $2<q<\frac{2(N-1)}{N-2}$, and g_{0}, g_{1} are positive measurable functions satisfying $g_{0} \in L^{\frac{q}{q-1}}\left(\Gamma ; w^{\frac{1}{1-q}}\right), g_{0}(x) \leq C_{g} w(x)$ and $g_{1}(x) \leq$ $C_{g} w(x)$, a.e. $x \in \Gamma$, with an appropiate constant C_{g};
(G2) $\lim _{s \rightarrow 0} \frac{g(x, s)}{g_{0}(x)|s|}=0$, uniformly in $x \in \Gamma$;
(G3) $\lim _{s \rightarrow+\infty} \frac{G(x, s)}{g_{0}(x)|s|^{2}}=0$, uniformly for $x \in \Gamma$,

$$
\max _{|s| \leq M} G(\cdot, s) \in L^{1}(\Gamma), \text { for every } M>0, \text { where } G(x, s)=
$$ $\int_{0}^{u} g(x, s) d s$.

Next, we introduce the functionals $J_{F}, J_{G}, J_{\mu}: W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \rightarrow \mathbb{R}$, defined by

$$
\begin{gathered}
J_{F}(u)=\int_{\Omega} F(x, u(x)) d x, \quad J_{G}(u)=\int_{\Gamma} G(x, u(x)) d \Gamma \\
J_{\mu}(u)=J_{F}(u)+\mu J_{G}(u)
\end{gathered}
$$

and the energy functional $\mathcal{E}_{\lambda, \mu}(u): W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \rightarrow \mathbb{R}$ associated to $\left(P_{\lambda, \mu}\right)$, defined by

$$
\mathcal{E}_{\lambda, \mu}(u)=\frac{1}{2}\langle u, u\rangle_{A}-\lambda J_{\mu}(u) .
$$

The main result of this paper is the following
Theorem 1.1. We suppose that the assumption (A) is satisfied and the functions $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ satisfy the conditions $(F 1)-(F 4)$ and $(G 1)-(G 3)$ respectively.
(a) Then there exists $\lambda_{0}>0$ such that to every $\left.\lambda \in\right] \lambda_{0},+\infty[$ it corresponds a nonempty open interval $I_{\lambda} \subset \mathbb{R}$ such that for every $\mu \in I_{\lambda}$ the problem $\left(P_{\lambda, \mu}\right)$ has at least two distinct, nontrivial weak solutions $u_{\lambda, \mu}$ and $v_{\lambda, \mu}$, with the property

$$
\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)<0<\mathcal{E}_{\lambda, \mu}\left(v_{\lambda, \mu}\right)
$$

(b) Then there exists $\mu_{0}>0$ such that to every $\mu \in\left[-\mu_{0}, \mu_{0}\right]$ it corresponds a nonempty open interval $\left.\Gamma_{\mu} \in\right] 0,+\infty\left[\right.$ and a number $\sigma_{\mu}>0$ for which

MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM
($P_{\lambda, \mu}$) has at least two distinct, nontrivial weak solutions: $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$, with the property

$$
\max \left\{\left\|u_{\lambda, \mu}^{1}\right\|_{v_{0}, v_{1}},\left\|u_{\lambda, \mu}^{2}\right\|_{v_{0}, v_{1}}\right\} \leq \sigma_{\mu},
$$

whenever $\lambda \in \Gamma_{\mu}$.

2. Preliminaries

In this section we denote by p^{\prime} and q^{\prime} the conjugates of p respective q, i.e. $p^{\prime}=\frac{p}{p-1}$ and $q^{\prime}=\frac{q}{q-1}$.

The following result deals with the Nemytskii operator of a Carathéodory function $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, which is the function defined by $N_{h}(u)=h(x, u(x))$. Then we have the following result.

Lemma 2.1. Assume that the conditions (F1), (G1) are satisfied. Then the Nemytskii operators $N_{f}: L^{p}(\Omega ; w) \rightarrow L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right), N_{F}: L^{p}(\Omega ; w) \rightarrow L^{1}(\Omega)$, $N_{g}: L^{q}(\Gamma ; w) \rightarrow L^{\frac{q}{q-1}}\left(\Gamma ; w^{\frac{1}{1-q}}\right)$ and $N_{F}: L^{q}(\Gamma ; w) \rightarrow L^{1}(\Gamma)$ are bounded and continuous.

Proof. We will use the following result: for all $s \in(0, \infty)$ there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
(x+y)^{s} \leq C_{s}\left(x^{s}+y^{s}\right), \quad \text { for any } x, y \in(0, \infty) \tag{6}
\end{equation*}
$$

To prove that N_{f} is bounded, we choose an arbitrary set $A \subseteq L^{p}(\Omega ; w)$ and prove that $N_{f}(A)$ is bounded. For this, let $u \in A$ be an arbitrary element and we claim that $N_{f}(u)$ is bounded in $L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right)$. Using the (F1) condition, the (6), the Hölder's inequalities, we have

$$
\begin{gathered}
\|\left. N_{f}(u)\right|_{\frac{p}{p-1}, \Omega, w^{\frac{1}{1-p}}} ^{\frac{1}{p^{\prime}}}=\int_{\Omega}|f(x, u(x))|^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x \leq \\
\leq \int_{\Omega}\left(f_{0}(x)+f_{1}(x)|u(x)|^{p-1}\right)^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x \leq \\
\leq C_{p^{\prime}}\left(\int_{\Omega} f_{0}(x)^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x+\int_{\Omega} f_{1}(x)^{p^{\prime}}|u(x)|^{(p-1) p^{\prime}} w(x)^{\frac{1}{1-p}} d x\right) \leq \\
\leq C_{p^{\prime}}\left(C+\int_{\Omega} C_{f}^{p^{\prime}} w(x)^{p^{\prime}} w(x)^{\frac{1}{1-p}}|u(x)|^{p} d x\right)=
\end{gathered}
$$

$$
=C_{p^{\prime}} C+C_{p^{\prime}} C_{f}^{p^{\prime}} \int_{\Omega}|u(x)|^{p} w(x) d x=C_{p^{\prime}} C+C_{p^{\prime}} C_{f}^{p^{\prime}}\|u\|_{p, \Omega, w}^{p}
$$

where in the last inequality we used that $f_{0} \in L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right)$, so there exists $C>$ 0 such that $\int_{\Omega} f_{0}(x)^{\frac{p}{p-1}} w(x)^{\frac{1}{1-p}} d x \leq C$. Since $u \in A \subseteq L^{p}(\Omega ; w)$, we have that $\|u\|_{p, \Omega, w}^{p}$ is finite, therefore N_{f} is bounded. Then the continuity follows from standard properties of the Nemytskii operators.

In the same way we obtain for $u \in L^{p}(\Omega ; w)$

$$
\begin{gathered}
\int_{\Omega}|F(x, u(x))| d x \leq \int_{\Omega}\left(f_{0}(x)|u(x)|+f_{1}(x)|u(x)|^{p}\right) d x= \\
=\int_{\Omega} f_{0}(x) w(x)^{-\frac{1}{p}}|u(x)| w(x)^{\frac{1}{p}} d x+\int_{\Omega} f_{1}(x)|u(x)|^{p} d x \leq \\
\leq\left(\int_{\Omega} f_{0}(x)^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}|u(x)|^{p} w(x) d x\right)^{\frac{1}{p}}+C_{f} \int_{\Omega}|u(x)|^{p} w(x) d x \leq \\
\leq C^{\frac{1}{p^{\prime}}}\|u\|_{p, \Omega, w}+C_{f}\|u\|_{p, \Omega, w}^{p},
\end{gathered}
$$

therefore N_{F} is bounded. For the operators N_{g} and N_{G} the arguments are identical, therefore we omit the details here.

Lemma 2.2. [5] The energy functional $\mathcal{E}_{\lambda, \mu}$ is Fréchet differentiable in $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ and its derivative is given by

$$
\begin{equation*}
\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}(u), v\right\rangle=\langle u, v\rangle_{A}-\lambda \int_{\Omega} f(x, u(x)) v(x) d x-\lambda \mu \int_{\Gamma} g(x, u(x)) v(x) d \Gamma \tag{7}
\end{equation*}
$$

for every $v \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$.
Remark 2.1. Due to this result, one can see, that the critical points of $\mathcal{E}_{\lambda, \mu}$ are exactly the weak solutions of $\left(P_{\lambda, \mu}\right)$.

Lemma 2.3. Suppose that the conditions (F2), (F3), (G2) and (G3) are satisfied. Then, for every $\lambda>0$ and $\mu \in \mathbb{R}$ the functional $\mathcal{E}_{\lambda, \mu}$ is coercive and bounded from below on $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$.

Proof. Let us fix $\lambda>0$ and $\mu \in \mathbb{R}$ arbitrarily and $a, b>0$ such that

$$
\lambda a C_{f} C_{2, \Omega}^{2}+\lambda|\mu| b C_{g} C_{2, \Gamma}^{2}<K
$$

By the conditions (F2),(F3) and (G2),(G3) there exist the positive functions $k_{a} \in$ $L^{1}(\Omega ; w)$ and $k_{b} \in L^{1}(\Gamma ; w)$ such that

$$
\begin{aligned}
& |F(x, s)| \leq a f_{0}(x)|s|^{2}+k_{a}(x) w(x), \quad \forall(x, s) \in \Omega \times \mathbb{R} \\
& |G(x, s)| \leq b g_{0}(x)|s|^{2}+k_{b}(x) w(x), \quad \forall(x, s) \in \Omega \times \mathbb{R}
\end{aligned}
$$

Thus, for every $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ we obtain

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}(u)= & \frac{1}{2}\langle u, u\rangle_{A}-\lambda \int_{\Omega} F(x, u(x)) d x-\lambda \mu \int_{\Gamma} G(x, u(x) d x) \geq \\
\geq & K\|u\|_{v_{0}, v_{1}}^{2}-\lambda \int_{\Omega} a f_{0}(x)|u(x)|^{2} d x-\lambda \int_{\Omega} k_{a}(x) w(x) d x- \\
& -\lambda|\mu| \int_{\Gamma} b g_{0}(x)|u(x)|^{2} d \Gamma-\lambda|\mu| \int_{\Gamma} k_{b}(x) w(x) d \Gamma \geq \\
\geq & K\|u\|_{v_{0}, v_{1}}^{2}-\lambda a C_{f}\|u\|_{2, \Omega, w}^{2}-\lambda\left\|k_{a}\right\|_{1, \Omega, w}- \\
& -\lambda|\mu| b C_{g}\|u\|_{2, \Gamma, w}^{2}-\lambda|\mu|\left\|k_{b}\right\|_{1, \Gamma, w} \geq \\
\geq & \left(K-\lambda a C_{f} C_{2, \Omega}^{2}-\lambda|\mu| b C_{g} C_{2, \Gamma}^{2}\right)\|u\|_{v_{0}, v_{1}}^{2}- \\
& -\lambda\left\|k_{a}\right\|_{1, \Omega, w}-\lambda|\mu|\left\|k_{b}\right\|_{1, \Gamma, w .} .
\end{aligned}
$$

Since $k_{a} \in L^{1}(\Omega ; w), k_{b} \in L^{1}(\Gamma ; w)$, we have that $\left\|k_{a}\right\|_{1, \Omega, w},\left\|k_{b}\right\|_{1, \Gamma, w}$ are finite. Therefore $\mathcal{E}_{\lambda, \mu}$ is bounded from below on $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ and $\mathcal{E}_{\lambda, \mu}(u) \rightarrow \infty$, whenever $\|u\|_{v_{0}, v_{1}} \rightarrow \infty$. Hence $\mathcal{E}_{\lambda, \mu}$ is coercive.

Lemma 2.4. $\mathcal{E}_{\lambda, \mu}: W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \rightarrow \mathbb{R}$ satisfies the Palais-Smale condition on $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, for every $\lambda>0$ and $\mu \in \mathbb{R}$.

Proof. Let $\left\{u_{n}\right\} \subset W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ be an arbitrary Palais-Smale sequence for $\mathcal{E}_{\lambda, \mu}$, i.e.
(a) $\left\{\mathcal{E}_{\lambda, \mu}\left(u_{n}\right)\right\}$ is bounded;
(b) $\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$

We have to prove that $\left\{u_{n}\right\}$ contains a strongly convergent subsequence. Since $\mathcal{E}_{\lambda, \mu}$ is coercive, we have that $\left\{u_{n}\right\}$ is bounded. $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ is a reflexive Banach space, so taking a subsequence if necessary (denoted in the same way), we get an element $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ such that $u_{n} \rightarrow u$ weakly in $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$. Because the embeddings (1) and (2) are compact for $2<p<2 N /(N-2), 2<q<2(N-1) /(N-2)$, we have that $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega ; w)$ and $L^{q}(\Gamma ; w)$.

From the condition (b) we have that $\left|\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{n}\right), \frac{u_{n}}{\left\|u_{n}\right\|_{v_{0}, v_{1}}}\right\rangle\right| \leq \varepsilon$, for every $\varepsilon>0$ and large $n \in \mathbb{N}$. Then

$$
-\left\langle u_{n}, u_{n}\right\rangle_{A}+\lambda \int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d x+\lambda \mu \int_{\Gamma} g\left(x, u_{n}(x)\right) u_{n}(x) d \Gamma \leq \varepsilon\left\|u_{n}\right\|_{v_{0}, v_{1}}
$$

Then we have

$$
\begin{array}{r}
2 K\left|\left|u_{n}-u \|_{v_{0}, v_{1}}^{2} \leq\left\langle u_{n}-u, u_{n}-u\right\rangle_{A} \leq\left|\left\langle u_{n}, u_{n}-u\right\rangle_{A}\right|+\left|\left\langle u, u_{n}-u\right\rangle_{A}\right| \leq\right.\right. \\
\leq 2 \varepsilon\left\|u_{n}-u\right\|_{v_{0}, v_{1}}+ \\
+\lambda\left|\int_{\Omega} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) d x\right|+\lambda\left|\int_{\Omega} f(x, u(x))\left(u_{n}(x)-u(x)\right) d x\right|+ \\
+\lambda|\mu|\left|\int_{\Gamma} g\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) d \Gamma\right|+\lambda|\mu|\left|\int_{\Gamma} g(x, u(x))\left(u_{n}(x)-u(x)\right) d \Gamma\right| .
\end{array}
$$

Using the Hölder's inequality we get

$$
\begin{gathered}
\left|\int_{\Omega} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) d x\right| \leq \\
\leq \int_{\Omega}\left|f\left(x, u_{n}(x)\right) w(x)^{-\frac{1}{p}}\right|\left|\left(u_{n}(x)-u(x)\right) w(x)^{\frac{1}{p}}\right| d x \leq \\
\leq\left(\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p^{\prime}} w(x)^{-\frac{p^{\prime}}{p}} d x\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}\left|u_{n}(x)-u(x)\right|^{p} w(x) d x\right)^{\frac{1}{p}}= \\
=\left(\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x\right)^{\frac{1}{p^{\prime}}}\left\|u_{n}-u\right\|_{p, \Omega, w}
\end{gathered}
$$

and arguing in the same way for g, we obtain

$$
\left|\int_{\Gamma} g\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) d x\right| \leq\left(\int_{\Gamma}\left|g\left(x, u_{n}(x)\right)\right|^{q^{\prime}} w(x)^{\frac{1}{1-q}} d \Gamma\right)^{\frac{1}{q^{\prime}}}\left\|u_{n}-u\right\|_{q, \Gamma, w}
$$

Since $\varepsilon>0$ is arbitrary, $\left\|u_{n}-u\right\|_{p, \Omega, w}$ and $\left\|u_{n}-u\right\|_{q, \Gamma, w}$ tend to zero and $\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p^{\prime}} w(x)^{\frac{1}{1-p}} d x, \int_{\Gamma}\left|g\left(x, u_{n}(x)\right)\right|^{q^{\prime}} w(x)^{\frac{1}{1-q}} d \Gamma$ are bounded (by Lemma 2.1, using that $\left\{u_{n}\right\}$ is bounded), it follows that $\left\|u_{n}-u\right\|_{v_{0}, v_{1}}$ tends to zero.

Lemma 2.5. [3, Lemma 3.2] Assume that (F4) is satisfied. Then there exist an $u_{0} \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ such that $J_{F}\left(u_{0}\right)>0$.

Let us define $m=\int_{\Gamma}\left|G\left(x, u_{0}(x)\right)\right| d \Gamma, \lambda_{0}=\frac{\frac{1}{2}\left\langle u_{0}, u_{0}\right\rangle_{A}}{J_{F}\left(u_{0}\right)}>0$ and $\mu_{\lambda}^{*}=\frac{1}{\lambda(1+m)}$. $\left(\lambda-\lambda_{0}\right) J_{F}\left(u_{0}\right)>0$.

Lemma 2.6. For $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$ we have

$$
\inf _{u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)} \mathcal{E}_{\lambda, \mu}(u)<0
$$

Proof. It is sufficient to prove, that for $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$ we have $\mathcal{E}_{\lambda, \mu}\left(u_{0}\right)<0$. Indeed,

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}\left(u_{0}\right) & =\frac{1}{2}\left\langle u_{0}, u_{0}\right\rangle_{A}-\lambda J_{F}\left(u_{0}\right)-\lambda \mu J_{G}\left(u_{0}\right) \leq \\
& \leq \lambda_{0} J_{F}\left(u_{0}\right)-\lambda J_{F}\left(u_{0}\right)+\lambda|\mu| m= \\
& =\left(\lambda_{0}-\lambda\right) J_{F}\left(u_{0}\right)+\lambda|\mu| m= \\
& =\left(\lambda_{0}-\lambda\right) \frac{\lambda(1+m) \mu_{\lambda}^{*}}{\lambda-\lambda_{0}}+\lambda|\mu| m= \\
& =-(1+m) \lambda \mu_{\lambda}^{*}+\lambda|\mu| m= \\
& =-\lambda \mu_{\lambda}^{*}-m \lambda\left(\mu_{\lambda}^{*}-|\mu|\right)<0 .
\end{aligned}
$$

for all $\lambda>\lambda_{0}$ and $\left.\left.|\mu| \in\right] 0, \mu_{\lambda}^{*}\right]$.
Lemma 2.7. For every $\lambda>\lambda_{0}$ and $\left.\left.\mu \in\right] 0, \mu_{\lambda}^{*}\right]$, the functional $\mathcal{E}_{\lambda, \mu}$ satisfies the Mountain Pass geometry.

Proof. From the assumptions (F1), (F2), (G1) and (G2) results the existence of $\hat{c}_{1}(\varepsilon)$, $\hat{c}_{2}(\varepsilon)>0$ such that, for every $\hat{\varepsilon}>0$ we have

$$
\begin{gather*}
|f(x, s)| \leq \hat{\varepsilon} f_{0}(x)|s|+\hat{c}_{1}(\varepsilon) f_{1}(x)|s|^{p-1}, \text { for } 2<p<\frac{2 N}{N-2} \tag{8}\\
|g(x, s)| \leq \hat{\varepsilon} g_{0}(x)|s|+\hat{c}_{2}(\varepsilon) g_{1}(x)|s|^{q-1}, \text { for } 2<q<\frac{2(N-1)}{N-2} \tag{9}
\end{gather*}
$$

Then integrating with respect to the second variable, from 0 to $u(x)$, we get the existence of $c_{1}(\varepsilon), c_{2}(\varepsilon)>0$ such that, for every $\varepsilon>0$ we have

$$
\begin{gather*}
|F(x, u(x))| \leq \varepsilon f_{0}(x)|u(x)|^{2}+c_{1}(\varepsilon) f_{1}(x)|u(x)|^{p}, \text { for } 2<p<\frac{2 N}{N-2} \tag{10}\\
|G(x, u(x))| \leq \varepsilon g_{0}(x)|u(x)|^{2}+c_{2}(\varepsilon) g_{1}(x)|u(x)|^{q}, \text { for } 2<q<\frac{2(N-1)}{N-2} . \tag{11}
\end{gather*}
$$

Fix $\lambda>\lambda_{0}$ and $\left.\mu \in\right] 0, \mu_{\lambda}^{*}[$, then using the (10)and (11) inequalities for every $u \in$ $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ we have

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}(u)= & \frac{1}{2}\langle u, u\rangle_{A}-\lambda J_{\mu}(u) \geq \\
\geq & K\|u\|_{v_{0}, v_{1}}^{2}-\lambda \int_{\Omega}|F(x, u(x))| d x-\lambda|\mu| \int_{\Gamma}|G(x, u(x))| d \Gamma \geq \\
= & K\|u\|_{v_{0}, v_{1}}^{2}-\lambda \varepsilon C_{f}\|u\|_{2, \Omega, w}^{2}-\lambda c_{1}(\varepsilon) C_{f}\|u\|_{p, \Omega, w}^{p}- \\
& -\lambda|\mu| \varepsilon C_{g}\|u\|_{2, \Gamma, w}^{2}-\lambda|\mu| c_{2}(\varepsilon) C_{g}\|u\|_{q, \Omega, w}^{q} \geq \\
\geq & \left(K-\lambda \varepsilon C_{f} C_{2, \Omega}^{2}-\lambda|\mu| \varepsilon C_{g} C_{2, \Gamma}^{2}\right)\|u\|_{v_{0}, v_{1}}^{2}- \\
- & \lambda c_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p}\|u\|_{v_{0}, v_{1}}^{p}-\lambda|\mu| c_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q}\|u\|_{v_{0}, v_{1}}^{q} .
\end{aligned}
$$

Using the notations $A=\left(K-\lambda \varepsilon C_{f} C_{2, \Omega}^{2}-\lambda|\mu| \varepsilon C_{g} C_{2, \Gamma}^{2}\right), B=\lambda c_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p}, \quad C=$ $\lambda|\mu| c_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q}$, we get

$$
\mathcal{E}_{\lambda, \mu}(u) \geq\left(A-B\|u\|_{v_{0}, v_{1}}^{p-2}-C\|u\|_{v_{0}, v_{1}}^{q-2}\right)\|u\|_{v_{0}, v_{1}}^{2}
$$

We choose $\varepsilon \in] 0, \frac{K}{2} \frac{1}{\lambda\left(C_{f} C_{2, \Omega}^{2}+|\mu| C_{g} C_{2, \Gamma}^{2}\right)}\left[\right.$, so $A>0$. Now, let $l: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be the function defined by $l(t)=A-B t^{p-2}-C t^{q-2}$. We can see, that $l(0)=A>0$, so because l is continuous, there exists an $\varepsilon^{*}>0$ such that $l(t)>0$, for every $\left.t \in\right] 0, \varepsilon^{*}[$. Then for every $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, with $\|u\|_{v_{0}, v_{1}}=\varepsilon^{* *}<\min \left\{\varepsilon^{*},\left\|u_{0}\right\|_{v_{0}, v_{1}}\right\}$, we have $\mathcal{E}_{\lambda, \mu}(u) \geq \eta\left(\lambda, \mu, \varepsilon^{*}\right)>0$. From Lemma 2.6 we have $\mathcal{E}_{\lambda, \mu}\left(u_{0}\right)<0$.

Therefore the functional $\mathcal{E}_{\lambda, \mu}$ satisfies the Mountain Pass geometry, meaning that $\mathcal{E}_{\lambda, \mu}$ satisfies the conditions of the Mountain Pass Theorem (see Theorem 3.1).

Lemma 2.8. For every $\mu \in \mathbb{R}_{+}$, we have

$$
\lim _{\rho \rightarrow 0} \frac{\sup \left\{J_{\mu}(u): \frac{1}{2}\langle u, u\rangle_{A}<\rho\right\}}{\rho}=0 .
$$

Proof. Fix arbitrarily $\varepsilon>0$ and $p \in] 2, \frac{2 N}{N-p}[, q \in] 2, \frac{2(N-1)}{N-2}[$, then from (10) and (11) and the ellipticity condition (A), it follows that

$$
\begin{aligned}
J_{\mu}(u) & =J_{F}(u)+\mu J_{G}(u) \leq \\
& \leq \varepsilon\left(C_{f} C_{2, \Omega}^{2}+|\mu| C_{g} C_{2, \Gamma}^{2}\right)\|u\|_{v_{0}, v_{1}}^{2}+c_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p}\|u\|_{v_{0}, v_{1}}^{p}+ \\
& +|\mu| c_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q}\|u\|_{v_{0}, v_{1}}^{q} \leq \\
& \leq \varepsilon\left(C_{f} C_{2, \Omega}^{2}+|\mu| C_{g} C_{2, \Gamma}^{2}\right) \frac{\langle u, u\rangle_{A}}{2 K}+c_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p}\left(\frac{\langle u, u\rangle_{A}}{2 K}\right)^{\frac{p}{2}}+ \\
& +|\mu| c_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q}\left(\frac{\langle u, u\rangle_{A}}{2 K}\right)^{\frac{q}{2}} .
\end{aligned}
$$

Therefore, we have

$$
\begin{gathered}
\sup \left\{J_{\mu}(u): \frac{1}{2}\langle u, u\rangle_{A}<\rho\right\} \leq \\
\leq \varepsilon \frac{\left(C_{f} C_{2, \Omega}^{2}+|\mu| C_{g} C_{2, \Gamma}^{2}\right)}{K} \rho+\frac{c_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p}}{K^{\frac{p}{2}}} \rho^{\frac{p}{2}}+|\mu| \frac{c_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q}}{K^{\frac{q}{2}}} \rho^{\frac{q}{2}} .
\end{gathered}
$$

Since $p>2, q>2$, dividing this last inequality with ρ and taking the limit whenever $\rho \rightarrow 0$, we have the required equality.

Lemma 2.9. We assume that the conditions (F1)-(F3) and (G1)-(G3) are satisfied. Then the functional $J_{\mu}=J_{F}+\mu J_{G}$ is sequentially weakly continuous.

Proof. We argue by contradiction. Let u_{n} be a sequence from $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ weakly convergent to some $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ and $d>0$ such that

$$
\left|J_{\mu}\left(u_{n}\right)-J_{\mu}(u)\right| \geq d, \quad \text { for all } n \in \mathbb{N} \text {. }
$$

At the same time we have

$$
\begin{aligned}
\left|J_{\mu}\left(u_{n}\right)-J_{\mu}(u)\right| & \leq \int_{\Omega}\left|F\left(x, u_{n}(x)\right)-F(x, u(x))\right| d x+ \\
& +|\mu| \int_{\Gamma}\left|G\left(x, u_{n}(x)\right)-G(x, u(x))\right| d \Gamma
\end{aligned}
$$

In the sequel, we will estimate the previous two integrals. For this end, first we use the Mean Value Theorem for the function F on the interval $\left(u_{n}(x), u(x)\right)$, then we
make use of the (3), (8) and the Hölder inequalities. So, there exists a $\theta \in] 0,1[$ such that

$$
\begin{aligned}
& \int_{\Omega}\left|F\left(x, u_{n}(x)\right)-F(x, u(x))\right| d x= \\
& =\int_{\Omega}\left|f\left(x,(1-\theta) u_{n}(x)+\theta u(x)\right)\right|\left|u_{n}(x)-u(x)\right| d x \leq \\
& \leq \hat{\varepsilon} \int_{\Omega} f_{0}(x)\left|(1-\theta) u_{n}(x)+\theta u(x)\right|\left|u_{n}(x)-u(x)\right| d x+ \\
& +\hat{c}_{1}(\varepsilon) \int_{\Omega} f_{1}(x)\left|(1-\theta) u_{n}(x)+\theta u(x)\right|^{p-1}\left|u_{n}(x)-u(x)\right| d x \leq \\
& \leq \hat{\varepsilon} \int_{\Omega} f_{0}(x)\left(\left|u_{n}(x)\right|+|u(x)|\right)\left|u_{n}(x)-u(x)\right| d x+ \\
& +\hat{c}_{1}(\varepsilon) \int_{\Omega} f_{1}(x)\left(\left|u_{n}(x)\right|^{p-1}+|u(x)|^{p-1}\right)\left|u_{n}(x)-u(x)\right| d x \leq \\
& \leq \hat{\varepsilon} C_{f} \int_{\Omega}\left|u_{n}(x)-u(x)\right| w(x)^{\frac{1}{2}} w(x)^{\frac{1}{2}}\left(\left|u_{n}(x)\right|+|u(x)|\right) d x+ \\
& +\hat{c}_{1}(\varepsilon) C_{f} \int_{\Omega}\left|u_{n}(x)-u(x)\right| w(x)^{\frac{1}{p}} w(x)^{\frac{1}{p^{\prime}}}\left(\left|u_{n}(x)\right|^{p-1}+|u(x)|^{p-1}\right) d x \leq \\
& \leq \hat{\varepsilon} C_{f}\left(\int_{\Omega}\left|u_{n}(x)-u(x)\right|^{2} w(x) d x\right)^{\frac{1}{2}} . \\
& \cdot\left[\left(\int_{\Omega}\left|u_{n}(x)\right|^{2} w(x) d x\right)^{\frac{1}{2}}+\left(\int_{\Omega}|u(x)|^{2} w(x) d x\right)^{\frac{1}{2}}\right]+ \\
& +\hat{c}_{1}(\varepsilon) C_{f}\left(\int_{\Omega}\left|u_{n}(x)-u(x)\right|^{p} w(x) d x\right)^{\frac{1}{p}} . \\
& \cdot\left[\left(\int_{\Omega}\left|u_{n}(x)\right|^{(p-1) p^{\prime}} w(x) d x\right)^{\frac{1}{p^{\prime}}}+\left(\int_{\Omega}|u(x)|^{(p-1) p^{\prime}} w(x) d x\right)^{\frac{1}{p^{\prime}}}\right] \leq \\
& \leq \hat{\varepsilon} C_{f}\left\|u_{n}-u\right\|_{2, \Omega, w}\left(\left\|u_{n}\right\|_{2, \Omega, w}+\left\|u_{n}\right\|_{2, \Omega, w}\right)+ \\
& +\hat{c}_{1}(\varepsilon) C_{f}\left\|u_{n}-u\right\|_{p, \Omega, w}\left(\left\|u_{n}\right\|_{p, \Omega, w}^{\frac{p}{p^{\prime}}}+\|u\|_{p, \Omega, w}^{\frac{p}{p^{\prime}}}\right) \leq \\
& \leq \hat{\varepsilon} C_{f} C_{2, \Omega}^{2}\left\|u_{n}-u\right\|_{v_{0}, v_{1}}\left(\left\|u_{n}\right\|_{v_{0}, v_{1}}+\|u\|_{v_{0}, v_{1}}\right)+ \\
& +\hat{c}_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p-1}\left\|u_{n}-u\right\|_{p, \Omega, w}\left(\left\|u_{n}\right\|_{v_{0}, v_{1}}^{p-1}+\|u\|_{v_{0}, v_{1}}^{p-1}\right) .
\end{aligned}
$$

Since u_{n} is weakly convergent to $u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, we can assume without loss of generality that there exist a constant $M>0$ such that

$$
\left\|u_{n}\right\|_{v_{0}, v_{1}} \leq M \text { and }\left\|u_{n}-u\right\|_{v_{0}, v_{1}} \leq M, \text { for all } n \in \mathbb{N}
$$

Then we have

$$
\left|F\left(x, u_{n}(x)\right)-F(x, u(x))\right| \leq 2 \hat{\varepsilon} C_{f} C_{2, \Omega}^{2} M^{2}+2 \hat{c}_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p-1} M^{p-1}\left\|u_{n}-u\right\|_{p, \Omega, w}
$$

Arguing as above for the function G, we obtain

$$
\left|G\left(x, u_{n}(x)\right)-G(x, u(x))\right| \leq 2 \hat{\varepsilon} C_{g} C_{2, \Gamma}^{2} M^{2}+2 \hat{c}_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q-1} M^{q-1}\left\|u_{n}-u\right\|_{q, \Gamma, w}
$$

Therefore

$$
\begin{gathered}
d \leq\left|J_{\mu}\left(u_{n}\right)-J_{\mu}(u)\right| \leq 2 \hat{\varepsilon} M^{2}\left(C_{f} C_{2, \Omega}^{2}+C_{g} C_{2, \Gamma}^{2}\right)+ \\
+2 \hat{c}_{1}(\varepsilon) C_{f} C_{p, \Omega}^{p-1} M^{p-1}\left\|u_{n}-u\right\|_{p, \Omega, w}+2 \hat{c}_{2}(\varepsilon) C_{g} C_{q, \Gamma}^{q-1} M^{q-1}\left\|u_{n}-u\right\|_{q, \Gamma, w} .
\end{gathered}
$$

Because the embeddings (1) and (2) are compact for $2<p<2 N /(N-2), 2<q<$ $2(N-1) /(N-2)$, it follows that $\left\|u_{n}-u\right\|_{p, \Omega, w} \rightarrow 0$ and $\left\|u_{n}-u\right\|_{q, \Gamma, w} \rightarrow 0$. Therefore, if $\hat{\varepsilon}>0$ is sufficiently small and $n \in \mathbb{N}$ is large enough, we have

$$
d \leq\left|J_{\mu}\left(u_{n}\right)-J_{\mu}(u)\right|<d
$$

which is a contradiction.

3. Proof of Theorem 1.1

For the reader's convenience we recall here the Mountain Pass Theorem used in the proof of Theorem 1.1 (a).

Theorem 3.1. [6, Theorem 2.2] Let E be a Banach space and $I \in C^{1}(E, \mathbb{R})$ a functional, satisfying the Palais-Smale condition. Suppose $I(0)=0$ and
(a) there are constants $\alpha>0$ and $\rho>0$ such that $I(u) \geq \alpha$, for every $\|u\|=\rho ;$
(b) there is an $e \in E$ with $\|e\|>\rho$ and $I(e) \leq 0$.

Then the number

$$
c=\inf _{g \in \Gamma} \max _{v \in g([0,1])} I(v),
$$

where

$$
\Gamma=\{g \in C([0,1], E): g(0)=0, g(1)=e\}
$$

is a critical value of I, with $c \geq \alpha$.
The main tool in the proof of Theorem 1.1 (b) is the following refinement of a B. Ricceri-type critical point theorem ([7], [8]) established by G. Bonanno in [1].

Theorem 3.2. Let X be a separable and reflexive real Banach space and let Φ, J : $X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_{0} \in X$ such that $\Phi\left(x_{0}\right)=J\left(x_{0}\right)=0$ and $\Phi(x) \geq 0$ for every $x \in X$, and there exists $x_{1} \in X, \rho>0$ such that
(i) $\rho<\Phi\left(x_{1}\right)$ and $\sup _{\Phi(x)<\rho} J(x)<\rho \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)}$. Further put

$$
\bar{a}=\frac{\zeta \rho}{\rho \frac{J\left(x_{1}\right)}{\Phi\left(x_{1}\right)}-\sup _{\Phi(x)<\rho} J(x)},
$$

with $\zeta>1$, assume that the functional $\Phi-\lambda J$ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale condition and
(ii) $\lim _{\|x\| \rightarrow+\infty}[\Phi(x)-\lambda J(x)]=+\infty$, for every $\lambda \in[0, \bar{a}]$.

Then there is an open interval $\Lambda \subset[0, \bar{a}]$ and a number $\sigma>0$ such that for each $\lambda \in \Lambda$, the equation $\Phi^{\prime}(x)-\lambda J^{\prime}(x)=0$ admits at least three distinct solutions in X, having norm less than σ.

Proof of Theorem 1.1 (a). Fix $\lambda>\lambda_{0}$ and $\left.\mu \in\right] 0, \mu_{\lambda}^{*}\left[=I_{\lambda}\right.$. From the Lemma 2.3 and Lemma 2.4 we have that the functional $\mathcal{E}_{\lambda, \mu}$ is bounded from below and satisfies the (PS)-condition. Then $\mathcal{E}_{\lambda, \mu}$ achieves its infimum, i.e. there exists an element $u_{\lambda, \mu} \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ such that $\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)=\inf _{v \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)} \mathcal{E}_{\lambda, \mu}(v)(\operatorname{see}[6$, Theorem 2.7]). So $\mathcal{E}_{\lambda, \mu}^{\prime}\left(u_{\lambda, \mu}\right)=0$ and by Lemma 2.6, we have $\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}\right)<0$.

On the other hand, there exists an element $v_{\lambda, \mu} \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ such that $\mathcal{E}_{\lambda, \mu}^{\prime}\left(v_{\lambda, \mu}\right)=0$ and $\mathcal{E}_{\lambda, \mu}\left(v_{\lambda, \mu}\right) \geq \eta\left(\lambda, \mu, \varepsilon^{*}\right)>0$ (by Lemma 2.7 and Theorem 3.1), which completes the proof.

Proof of Theorem 1.1 (b). Let $u_{0} \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ be the function from Lemma 2.5 and fix

$$
\mu_{0}=\frac{J_{F}\left(u_{0}\right)}{1+\left|J_{G}\left(u_{0}\right)\right|} .
$$

Then for every $\mu \in\left[-\mu_{0}, \mu_{0}\right]$ we have

$$
J_{\mu}\left(u_{0}\right)=J_{F}\left(u_{0}\right)+\mu J_{G}\left(u_{0}\right) \geq \frac{J_{F}\left(u_{0}\right)}{1+\left|J_{G}\left(u_{0}\right)\right|}>0 .
$$

Now, we apply the Theorem 3.2 of Bonanno, by choosing $X=W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, $\Phi(u)=\frac{1}{2}\langle u, u\rangle_{A}$ and $J=J_{\mu}$, for $\mu \in\left[-\mu_{0}, \mu_{0}\right]$.

Taking account the lema 2.8 and the inequalities $J_{\mu}\left(u_{0}\right)>0, \Phi\left(u_{0}\right)>0$, we can choose for every $\mu \in\left[-\mu_{0}, \mu_{0}\right]$ a $\rho_{\mu}>0$ so small that

$$
\begin{gather*}
\rho_{\mu}<\frac{1}{2}\left\langle u_{0}, u_{0}\right\rangle_{A}=\Phi\left(u_{0}\right) \tag{12}\\
\frac{\sup \left\{J_{\mu}(u): \frac{1}{2}\langle u, u\rangle_{A}<\rho_{\mu}\right\}}{\rho_{\mu}}<\frac{J_{\mu}\left(u_{0}\right)}{\Phi\left(u_{0}\right)} \tag{13}
\end{gather*}
$$

Now, choosing $x_{1}=u_{0}, x_{0}=0, \zeta=1+\rho_{\mu}$ and

$$
a=\bar{a}_{\mu}=\frac{1+\rho_{\mu}}{\frac{J_{\mu}\left(u_{0}\right)}{\Phi\left(u_{0}\right)}-\frac{\sup \left\{J_{\mu}(u): \frac{1}{2}\langle u, u\rangle_{A}<\rho_{\mu}\right\}}{\rho_{\mu}}},
$$

all the assumptions of the Theorem 3.2 are verified. Then, there is an open interval $\Lambda_{\mu} \subset\left[0, \bar{a}_{\mu}\right]$ and a number $\sigma_{\mu}>0$ such that for any $\lambda \in \Lambda_{\mu}$, the functional $\mathcal{E}_{\lambda, \mu}=$ $\Phi-\lambda J_{\mu}$ admits at least three distinct critical points: $u_{\lambda, \mu}^{i} \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right), \quad(i \in$ $\{1,2,3\}$), having norms less than σ_{μ}.

We can see, that $u=0$ is a solution of the problem $\left(P_{\lambda, \mu}\right)$. So if we are looking for nontrivial solutions, we can affirm that $\left(P_{\lambda, \mu}\right)$ has at least two distinct, nontrivial solutions in $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$, having norms less than σ_{μ}, concluding the proof of the Theorem 1.1.

Remark. As an example, we consider the weight functions (see [5])

$$
\begin{gathered}
v_{0}(x)=w(x)=\left\{\begin{array}{c}
\|x\|^{-2}, \\
, \text { if } x \in \mathbb{R}^{N} \backslash B_{1} \\
1,
\end{array}, \text { if } x \in B_{1}\right.
\end{gathered},
$$

where $B_{1}=\left\{x \in \mathbb{R}^{N}:\|x\| \leq 1\right\}$. For these functions the embeddings $W^{1,2}\left(\Omega ; v_{0}, 1\right) \hookrightarrow L^{p}(\Omega ; w)$ and $W^{1,2}\left(\Omega ; v_{0}, 1\right) \hookrightarrow L^{q}(\Gamma ; w)$ are compact, if $2<p<$ $2 N /(N-2), 2<q<2(N-1) /(N-2)$. Assuming that f and g satisfy the conditions

ILDIKÓ ILONA MEZEI

(F1)-(F4), (G1)-(G3) respectively and A defines a bilinear form with (A), we can apply the Theorem 1.1.

References

[1] Bonanno, G., Some remarks on a three critical points theorem, Nonlinear Analysis TMA, 54 (2003), 651-665.
[2] Lisei, H., Varga, Cs., Horváth, A., Multiplicity results for a class of quasilinear eigenvalue problems on unbounded domains, Arch. der Math., (2007), in press.
[3] Mezei, I.I., Varga, Cs., Multiplicity result for a double eigenvalue quasilinear problem on unbounded domain, Nonlinear Analysis TMA, (2007), doi:10.1016/j.na.2007.10.040
[4] Pflüger, K., Semilinear Elliptic Problems in Unbounded Domains: Solutions in weighted Sobolev Spaces, Institüt for Mathematik I, Freie Universität Berlin, Prepint nr. 21, (1995)
[5] Pflüger, K., Compact traces in weighted Sobolev space. Analysis 18 (1998), 65-83.
[6] Rabinowitz, P.H., Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conference Series in Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[7] Ricceri, B., On a three critical points theorem, Arch. Math. (Basel) 75 (2000), 220-226.
[8] Ricceri, B., Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, 32 (2000), 1485-1494.

Faculty of Matematics and Computer Science
University of Babeş Bolyai
Str. M. Kogalniceanu 1, 400084 Cluj Napoca, Romania
E-mail address: mezeiildi@yahoo.com

