ON α-CONVEX ANALYTIC FUNCTIONS DEFINED BY GENERALIZED RUSCHEWEYH DERIVATIVES OPERATOR

DORINA RĂDUCANU AND VERONICA OANA NECHITA

Abstract

In this paper we introduce a class of alpha-convex functions by using the generalised Ruscheweyh derivative operator. We study properties of this class and give a theorem about the image of a function from this class through the Bernardi integral operator.

1. Introduction

Let $\mathcal{H}=\mathcal{H}(U)$ denote the class of functions analytic in $U=\{z \in \mathbb{C}:|z|<1\}$.
For n a positive integer and $a \in \mathbb{C}$, let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+\ldots\right\} .
$$

We also consider the class

$$
\mathcal{A}=\left\{f \in \mathcal{H}: f(z)=z+a_{2} z^{2}+\ldots\right\} .
$$

We denote by \mathcal{Q} the set of functions f that are analytic and injective on $\bar{U} \backslash E(f)$, where

$$
E(f)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} f(z)=\infty\right\}
$$

and are such that $f^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(f)$.
Since the functions considered in this paper and conditions on them are defined uniformly in the unit disk U, we shall omit the requirement " $z \in U$ ".

We use the terms of subordination and superordination, so we review here those definitions. Let $f, F \in \mathcal{H}$. The function f is said to be subordinate to F, or

[^0]F is said to be superordinate to f, if there exists a function w analytic in U, with $w(0)=0$ and $|w(z)|<1$, and such that $f(z)=F(w(z))$. In such a case we write $f \prec F$ or $f(z) \prec F(z)$. If F is univalent, then $f \prec F$ if and only if $f(0)=F(0)$ and $f(U) \subset F(U)$.

Let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$, let h be a univalent function in U and $q \in \mathcal{Q}$. In [7], the authors considered the problem of determining conditions on admissible functions ψ such that

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \prec h(z) \tag{1}
\end{equation*}
$$

implies $p(z) \prec q(z)$, for all functions $p \in \mathcal{H}[a, n]$ that satisfy the differential subordination (1). Moreover, they found conditions such that the function q is the "smallest" function with this property, called the best dominant of the subordination (1).

Let $\varphi: \mathbb{C}^{3} \times \bar{U} \rightarrow \mathbb{C}$, let $h \in \mathcal{H}$ and $q \in \mathcal{H}[a, n]$. Recently, in [8], the authors studied the dual problem and determined conditions on φ such that

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right) \tag{2}
\end{equation*}
$$

implies $q(z) \prec p(z)$, for all functions $p \in \mathcal{Q}$ that satisfy the above differential superordination. Moreover, they found conditions such that the function q is the "largest" function with this property, called the best subordinant of the superodination (2).

In the present paper we shall also need a recent generalization of the Ruscheweyh derivatives. This was introduced in the paper [3].

Let $f \in \mathcal{A}, \lambda \geq 0$ and $m \in \mathbb{R}, m>-1$, then we consider

$$
\mathcal{D}_{\lambda}^{m} f(z)=\frac{z}{(1-z)^{m+1}} * \mathcal{D}_{\lambda} f(z), z \in U
$$

where $\mathcal{D}_{\lambda} f(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z), z \in U$.
If $f \in \mathcal{A}, f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, z \in U$, we obtain the power series expansion of the form

$$
\mathcal{D}_{\lambda}^{m} f(z)=z+\sum_{n=2}^{\infty}[1+(n-1) \lambda] \frac{(m+1)_{n-1}}{(1)_{n-1}} a_{n} z^{n}, z \in U
$$

where $(a)_{n}$ is the Pochhammer symbol, given by

$$
(a)_{n}:=\frac{\Gamma(a+n)}{\Gamma(a)}= \begin{cases}1, & \text { for } n=0 \\ a(a+1)(a+2) \ldots(a+n-1), & \text { for } n \in \mathbb{N}^{*}\end{cases}
$$

```
ON \alpha-CONVEX ANALYTIC FUNCTIONS
```

In the case $m \in \mathbb{N}$, we have

$$
\mathcal{D}_{\lambda}^{m} f(z)=\frac{z\left(z^{m-1} \mathcal{D}_{\lambda} f(z)\right)^{(m)}}{m!}, z \in U
$$

and for $\lambda=0$ we obtain the m-th Ruscheweyh derivative introduced in [12], $\mathcal{D}_{0}^{m}=$ \mathcal{D}^{m}.

We next introduce the two classes of α-convex functions by using the generalized Ruscheweyh derivatives.

Definition 1.1. Let q be a univalent function in U, with $q(0)=1$ and such that $D=q(U)$ is a convex domain from the right half-plane. We consider $\alpha \in[0,1]$, $\lambda \geq 0$ and $m \in \mathbb{N}^{*}$. The function $f \in \mathcal{A}$ is said to be in the class
(i) $M_{\alpha}(m, \lambda, q)$, if

$$
J(\alpha, m, \lambda, f ; z)=(1-\alpha) \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}+\alpha \frac{\left(z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}\right)^{\prime}}{\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}} \prec q(z),
$$

for $z \in U$, or, equivalently,

$$
J(\alpha, m, \lambda, f ; z)=(1-\alpha) \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}+\alpha\left(1+\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}\right) \prec q(z) .
$$

(ii) $\bar{M}_{\alpha}(m, \lambda, q)$, if

$$
q(z) \prec J(\alpha, m, \lambda, f ; z) .
$$

Subclasses of $M_{\alpha}(m, \lambda, q)$ were studied by several authors, out of which we mention

$$
\begin{aligned}
& M_{0}(0,0, q)=S^{*}(q) \\
& M_{\alpha}(0,0, q)=M_{\alpha}(q) \\
& M_{0}\left(0,0, q_{\gamma}\right)=S^{*}(\gamma), \text { where } q_{\gamma}(z)=\frac{1+(1-2 \gamma) z}{1-z}, 0 \leq \gamma<1, \\
& M_{\alpha}(0,0, \varphi)=M_{\alpha}, \text { for } \varphi(z)=\frac{1+z}{1-z} \\
& M_{0}(m, 0, \varphi)=R_{n} \\
& M_{0}\left(m, 0, q_{\gamma}\right)=R_{n}(\gamma) .
\end{aligned}
$$

The class $S^{*}(q)$ was introduced by W. Ma and D. Minda in [5], the class $M_{\alpha}(q)$ was studied by V. Ravichandran and M. Darus in [11], M_{α} is the class of α-convex functions introduced by P.T. Mocanu in [10], R_{n} is the class defined by R. Singh and S. Singh in [13], and $R_{n}(\gamma)$ makes the object of the papers of O.P. Ahuja, [1] and [2].

We shall use the following notations

$$
S_{m, \lambda}^{*}(q)=\left\{f \in \mathcal{A}: \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \prec q(z), z \in U\right\}
$$

and

$$
\bar{S}_{m, \lambda}^{*}(q)=\left\{f \in \mathcal{A}: q(z) \prec \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}, z \in U\right\} .
$$

2. Preliminaries

In our present investigation we shall need the folllowing results concerning Briot-Bouquet differential subordinations, and generalizations of Briot-Bouquet differential subordinations and superordinations.

Theorem 2.1 ([4]). Let $\beta, \gamma \in \mathbb{C}, \beta \neq 0$ and consider the convex function h, such that

$$
\operatorname{Re}[\beta h(z)+\gamma]>0, z \in U
$$

If $p \in \mathcal{H}[h(0), n]$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \Rightarrow p(z) \prec h(z) .
$$

Theorem 2.2 ([6]). Let q be a univalent function in U and consider θ and φ to be analytic functions in a domain $D \supset q(U)$, such that $\varphi(w) \neq 0$, for all $w \in q(U)$. We denote by $Q(z)=z q^{\prime}(z) \cdot \varphi[q(z)], h(z)=\theta[q(z)]+Q(z)$ and assume that
(i) h is convex, or
(ii) Q is starlike.

We further suppose that
(iii) $\operatorname{Re} \frac{z h^{\prime}(z)}{Q(z)}=\operatorname{Re}\left[\frac{\theta^{\prime}[q(z)]}{\varphi[q(z)]}+\frac{z Q^{\prime}(z)}{Q(z)}\right]>0$.

If p is an analytic function in U, with $p(0)=q(0), p(U) \subseteq D$ and such that

$$
\theta[p(z)]+z p^{\prime}(z) \varphi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \varphi[q(z)]=h(z)
$$

then

$$
p(z) \prec q(z)
$$

and q is the best dominant.
Theorem 2.3 ([9]). Let θ, φ be analytic functions in a domain D and consider q a univalent function in U, such that $q(0)=a, q(U) \subset D$. We define $Q(z)=$ $z q^{\prime}(z) \cdot \varphi[q(z)], h(z)=\theta[q(z)]+Q(z)$ and suppose that
(i) $\operatorname{Re}\left[\frac{\theta^{\prime}[q(z)]}{\varphi[q(z)]}\right]>0$ and
(ii) Q is starlike.

If $p \in \mathcal{H}[a, 1] \cap \mathcal{Q}, p(U) \subset D$ and $\theta[p(z)]+z p^{\prime}(z) \cdot \varphi[p(z)]$ is univalent in U, then

$$
\theta[q(z)]+z q^{\prime}(z) \cdot \varphi[q(z)] \prec \theta[p(z)]+z p^{\prime}(z) \cdot \varphi[p(z)] \Rightarrow q(z) \prec p(z)
$$

and q is the best subordinant.

3. Main results

Theorem 3.1. Let $\alpha \in[0,1]$. Then $f \in M_{\alpha}(m, \lambda, q)$ if and only if the function g defined by

$$
g(z)=\mathcal{D}_{\lambda}^{m} f(z)\left[\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}\right]^{\alpha}, z \in U
$$

belongs to $S_{m, \lambda}^{*}(q)$. The branch of the power function is chosen such that

$$
\left.\left[\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}\right]^{\alpha}\right|_{z=0}=1
$$

Proof. We calculate the logarithmic derivative of g and obtain

$$
\frac{z g^{\prime}(z)}{g(z)}=\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}+\alpha\left[1+\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}-\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}\right]
$$

or

$$
\frac{z g^{\prime}(z)}{g(z)}=J(\alpha, m, \lambda, f ; z)
$$

The equivalence from the hypothesis is immediately verified.

Theorem 3.2. If the function f belongs to the class $M_{\alpha}(m, \lambda, q)$, for a given $\alpha \in$ $(0,1]$, then $f \in S_{m, \lambda}^{*}(q)$.
Proof. We define the function p to be given by

$$
p(z)=\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}
$$

The logarithmic derivative of p is

$$
\frac{z p^{\prime}(z)}{p(z)}=1+\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}-\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}
$$

thus

$$
p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)}=J(\alpha, m, \lambda, f ; z)
$$

Because $f \in M_{\alpha}(m, \lambda, q)$, we get

$$
p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec q(z) .
$$

The function q was supposed to be convex and we also assumed that the image $q(U)$ is in the right half-plane. We have $\alpha \in(0,1]$, and therefore

$$
\operatorname{Re}\left[\frac{1}{\alpha} q(z)\right]>0, z \in U
$$

By applying Theorem 2.1 for $\beta=\frac{1}{\alpha}$ and $\gamma=0$ we conclude that $p(z) \prec q(z)$, and thus $f \in S_{m, \lambda}^{*}(q)$.

Let a be a complex number such that $\operatorname{Re} a>0$ and $f \in \mathcal{A}$. We also consider the Bernardi integral operator given by

$$
\begin{equation*}
F(f)(z)=\frac{1+a}{z^{a}} \int_{0}^{z} f(t) t^{a-1} d t \tag{3}
\end{equation*}
$$

Theorem 3.3. If $f \in M_{\alpha}(m, \lambda, q)$, then $F \in S_{m, \lambda}^{*}(q)$.
Proof. We calculate the derivative of F from the relation (3) and obtain

$$
\begin{equation*}
(1+a) f(z)=a F(z)+z F^{\prime}(z) . \tag{4}
\end{equation*}
$$

Then we apply the generalized Ruscheweyh derivatives operator to both terms in (4), and we get

$$
\begin{equation*}
(1+a) \mathcal{D}_{\lambda}^{m} f(z)=a \mathcal{D}_{\lambda}^{m} F(z)+\mathcal{D}_{\lambda}^{m}\left(z F^{\prime}(z)\right) \tag{5}
\end{equation*}
$$

$$
\text { ON } \alpha \text {-CONVEX ANALYTIC FUNCTIONS }
$$

If the analytic function f has a Taylor series expansion of the form

$$
f(z)=z+\sum_{n=2}^{n} a_{n} z^{n}
$$

then

$$
F(z)=z+\sum_{n=2}^{n} b_{n} z^{n}
$$

where $b_{n}=\frac{1+a}{a+n} a_{n}$, for all $n \geq 2$. We have

$$
\mathcal{D}_{\lambda}^{m}\left(z F^{\prime}(z)\right)=z+\sum_{n=2}^{\infty}[1+\lambda(n-1)] C(m, n) n b_{n} z^{n}
$$

By applying the generalized Ruscheweyh derivatives operator to F, we obtain

$$
\mathcal{D}_{\lambda}^{m} F(z)=z+\sum_{n=2}^{\infty}[1+\lambda(n-1)] C(m, n) b_{n} z^{n}
$$

and from here we conclude that

$$
z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}=z+\sum_{n=2}^{\infty}[1+\lambda(n-1)] C(m, n) n b_{n} z^{n} .
$$

Therefore the following equality

$$
\mathcal{D}_{\lambda}^{m}\left(z F^{\prime}(z)\right)=z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}
$$

is satisfied. The equation (5) becomes

$$
\begin{equation*}
(1+a) \mathcal{D}_{\lambda}^{m} f(z)=a \mathcal{D}_{\lambda}^{m} F(z)+z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime} \tag{6}
\end{equation*}
$$

We calculate the derivative of both terms in (6), we multiply with z and obtain

$$
\begin{equation*}
(1+a) z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}=(a+1) z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}+z^{2}\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime \prime} . \tag{7}
\end{equation*}
$$

We divide the identity (7) to the relation (6) and have

$$
\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}=\frac{z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} F(z)} \frac{a+1+\frac{z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime \prime}}{\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}}}{a+\frac{z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} F(z)}}
$$

or, by using the notation

$$
P(z):=\frac{z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} F(z)} \text { and } p(z):=\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}
$$

$$
p(z)=P(z) \frac{a+\frac{z P^{\prime}(z)}{P(z)}+P(z)}{a+P(z)}=P(z)+\frac{z P^{\prime}(z)}{a+P(z)},
$$

Because $f \in M_{\alpha}(m, \lambda, q)$, by applying Theorem cat o fi, we get $f \in S_{m, \lambda}^{*}(q)$, or

$$
p(z)=\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \prec q(z)
$$

The subordination

$$
P(z)+\frac{z P^{\prime}(z)}{a+P(z)} \prec q(z)
$$

holds. Because q is a convex function and $\operatorname{Re}[a+q(z)]>0$, from Theorem 2.1 with $\beta=1$ and $\gamma=a$ we can conclude that

$$
P(z) \prec q(z),
$$

or

$$
\frac{z\left(\mathcal{D}_{\lambda}^{m} F(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} F(z)} \prec q(z)
$$

and thus $F \in S_{m, \lambda}^{*}(q)$.
Theorem 3.4. Let q be a convex function inU, with $q(0)=1$ and $\operatorname{Re} q(z)>0$. We consider $Q(z)=\alpha \frac{z q^{\prime}(z)}{q(z)}$ and $h(z)=q(z)+Q(z), z \in U$. If Q is a convex function in U and $f \in M_{\alpha}(m, \lambda, h)$ for an $\alpha \in(0,1]$, then $f \in S_{m, \lambda}^{*}(q)$.
Proof. We choose the functions θ and φ to be $\theta(w)=w, \varphi(w)=\frac{\alpha}{w}$ and notice that the hypothesis of Theorem 2.2 are satisfied. It follows that $\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \prec q(z)$ and q is the best dominant. Therefore $f \in S_{m, \lambda}^{*}(q)$.
Theorem 3.5. Let q be a convex function in U, with $q(0)=1$ and $\operatorname{Re} q(z)>0$. We consider $Q(z)=\alpha \frac{z q^{\prime}(z)}{q(z)}$ and $h(z)=q(z)+Q(z), z \in U$. If Q is convex in U, f belongs to the class $\bar{M}_{\alpha}(m, \lambda, h)$ for an $\alpha \in(0,1]$, $\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $J(\alpha, m, \lambda, f ; z)$ is univalent in U, then $f \in \bar{S}_{m, \lambda}^{*}(q)$.
Proof. We choose $\theta(w)=w, \varphi(w)=\frac{\alpha}{w}$ and notice that the conditions of theorem 2.3 are satisfied. It follows that $q(z) \prec \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)}$ and q is the best subordinant. Therefore $f \in \bar{S}_{m, \lambda}^{*}(q)$.

ON α-CONVEX ANALYTIC FUNCTIONS
Corollary 3.6. For $k=1,2$, let q_{k} be two convex functions in U, with $q_{k}(0)=1$ and $\operatorname{Re} q_{k}(z)>0$. We consider $Q_{k}(z)=\alpha \frac{z q_{k}^{\prime}(z)}{q_{k}(z)}$ and $h_{k}(z)=q_{k}(z)+Q_{k}(z)$, $z \in U$. If Q_{k} are convex in $U, f \in \bar{M}_{\alpha}\left(m, \lambda, h_{1}\right) \cap M_{\alpha}\left(m, \lambda, h_{2}\right)$ for an $\alpha \in(0,1]$, $\frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \in \mathcal{H}[1,1] \cap \mathcal{Q}$ and $J(\alpha, m, \lambda, f ; z)$ is univalent in U, then $f \in \bar{S}_{m, \lambda}^{*}\left(q_{1}\right) \cap$ $S_{m, \lambda}^{*}\left(q_{2}\right)$.

We will give an example by taking $q_{1}(z)=1+\beta z, \beta \in \mathbb{C}^{*},|\beta| \leq 1$ and $q_{2}(z)=1+z, z \in U$. The functions $Q_{1}(z)=\frac{\beta z}{1+\beta z}, Q_{2}(z)=\frac{z}{1+z}, z \in U$ are convex in this case, and $h_{1}(z)=1+\beta z+\frac{\beta z}{1+\beta z}, h_{2}(z)=1+z+\frac{z}{1+z}, z \in U$ are also convex and have positive real part.

Example 3.7. Let $\beta \in \mathbb{C}^{*},|\beta| \leq 1$, and $f \in \mathcal{A}$ such that

$$
1+\beta z+\frac{\beta z}{1+\beta z} \prec J(\alpha, m, \lambda, f ; z) \prec 1+z+\frac{z}{1+z}, z \in U .
$$

Then

$$
1+\beta z \prec \frac{z\left(\mathcal{D}_{\lambda}^{m} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{m} f(z)} \prec 1+z, z \in U .
$$

References

[1] Ahuja, O.P., On the radius problem of certain analytic functions, Bull. Korean Math. Soc., 22, No. 1 (1985), 31-36.
[2] Ahuja, O.P., Integral operators of certain univalent functions, Inter. J. Math., 8, No. 4 (1985), 653-662.
[3] Al-Shaqsi, K., Darus, M., On certain subclass of analytic univalent functions with negative coefficients, Appl. Math. Sci., Vol. 1(2007), no.3, 1121-1128.
[4] Eenigenburg, P.J., Miller, S.S., Mocanu, P.T., Reade, M.O., On a Briot-Bouquet differential subordination, General Inequalities, 3, International Series of Numerical Mathematics, Vol. 64 Birkhäuser Verlag, Basel (1983), 339-348.
[5] Ma, W., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the conference on complex analysis, Tianjin, China, Int. Press. Conf. Proc. Lect. Notes Anal. 1(1994), 157-169.
[6] Miller, S.S., Mocanu, P.T., On some classes of first-order differential subordinations, Michig. Math. J., 32(1985), 185-195.
[7] Miller, S.S., Mocanu, P.T., Differential subordinations. Theory and applications, Marcel Dekker, Inc., New York, Basel, 1999.
[8] Miller, S.S., Mocanu, P.T., Subordinants of differential superordinations, Complex Variables 48, No.10(2003), 815-826.
[9] Miller, S.S., Mocanu, P.T., Briot-Bouquet differential superordinations and sandwich theorems, J. Math. Anal. Appl., 329, No.1(2007), 327-335.
[10] Mocanu, P.T., Une propriéte de convexité généealisée dans la théorie de la représentation conforme, Mathematica (Cluj), 11(34)(1969), 127-133.
[11] Ravichandran, V., Darus, M., On a class of α-convex functions, J. Anal. Appl., 2, No.1(2004), 17-25.
[12] Ruscheweyh, St., New criterion for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
[13] Singh, R., Singh, S., Integrals of certain univalent functions, Proc. Amer. Math. Soc., 77(1979), 336-343.

Faculty of Mathematics and Computer Science
Department of Mathematics
Transilvania University
500091 Braşov, Romania
E-mail address: dorinaraducanu@yahoo.com
Faculty of Mathematics and Computer Science
Department of Mathematics
Babeş-Bolyai University
400084 Cluj-Napoca, Romania
E-mail address: vnechita@math.ubbcluj.ro

[^0]: Received by the editors: 10.09.2007
 2000 Mathematics Subject Classification. 30C80.
 Key words and phrases. Differential subordination, differential superordinations, α-convex analytic
 functions, generalized Ruscheweyh derivatives operator.

