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ON A LIMIT THEOREM FOR FREELY INDEPENDENT

RANDOM VARIABLES

BOGDAN GH. MUNTEANU

Abstract. A direct proof of Voiculescu’s addition theorem for freely in-

dependent real-valued random variables, using resolvents of self-adjoint

operators, is given. The addition theorem leads to a central limit theorem

for freely independent, identically distributed random variables of finite

variance is given.

1. Introduction

The concept of independent random variables lies at the heart of classical

probability. Via independent sequences it leads to the Gauss and Poisson distribution.

Classical, commutative independence of random variables amounts to a factorisation

property of probability spaces.

At the opposite, non-comutative extreme Voiculescu discovered in 1983 the notion of

free independence of random variables, which corresponds to a free product of von

Neumann algebras [3]. He showed that this notion leads naturally to analogues of the

Gauss and Poisson distributions, very different in form from the classical ones [3] and

[5]. For instance the free analoque of the Gauss curve is a semi-ellipse.

In this paper we consider the addition problem: Which is the probability distribution

µ of the sum X1+X2 of two freely independent random varibles, given the distribution

µ1 and µ2 of the summands? This problem was solved by Voiculescu in 1986 for the

case of bounded, not necessarily self-adjoint random variables, relying on the existence

of all the moments of the probability distributions µ1 and µ2 ([4]). Later this problem
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was solve by Hans Massen in 1992 for the case of self-adjoint random variables with

finite variance. The result is an explicit calculation procedure for the free convolution

product of two probability distributions. In this procedure a central role is played by

the Cauchy transform G(z) of a distribution µ, which equals the expectation of the

resolvent of the associated operator X . If we take X self-adjoint, µ is a probability

measure on R and we may write:

G(z) :=

∞∫

−∞

µ dx

z − x
= E

(
(z − X)−1

)

This formula points at a direct way to find the free convolution product of µ1 and µ2.

This article consists of four sections. The first contains some preliminaries on free

independence. In the second we gather some facts about Cauchy transforms. In three

section it is shown that F1 ⊗ F2 = E
(
(z − (X1 + X2))

−1
)−1

, where X1 and X2 are

freely independent random variables with distributions µ1 and µ2 respectively, and

the bar denotes operator closure. The last section contains the central limit theorem.

2. Free independence of random variables

By a random variable we shall mean a self-adjoint operator X on a Hibert

space H in which a particular unit vector ξ has been singled out. Via the functional

calculus of spectral theory such an operator determines an embedding ιX of the com-

mutative C∗-algebra C(R) of continuous functions on the one-point compactification

R = R ∪ {∞} of R to be bounded operators on H:

ιX(f) = f(X)

We shall consider the spectral measure µ of X , which is determined by

< ξ, ιX(f)ξ >=

∞∫

−∞

f(x)µ dx
(
f ∈ C(R)

)

as the probability distribution of X and we shall think of < ξ, ιX(f)ξ > as the ex-

pectation value of the (complex-valued) random variable f(X), which is a bounded

normal operator on H.
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Definition 2.1. The random variables X1 and X2 on (H, ξ) are said to be freely

independent if for all n ∈ N and all alternating sequences i1, i2, ..., in such that i1 6=
i2 6= i3 6= ... 6= in and for all fk ∈ C(R), k = 1, n one has

< ξ, fk(Xik
)ξ >= 0 =⇒ < ξ, f1(Xi1)f2(Xi2)...fn(Xin

)ξ >= 0

3. The reciprocal Cauchy transform

We consider the expectation values of functions f ∈ C(R) of the form

f(x) =
1

z − x
, (ℑ(z) > 0)

In particular they play a key role in the addition of freely independent random vari-

ables.

For the complex plane C denote C+ = {z ∈ C : ℑ(z) > 0} the upper half-plane,

C− = {z ∈ C : ℑ(z) < 0} the lower half-plane. If µ is a finite positive measure on

R, then its Cauchy transform

G(z) :=

∞∫

−∞

µ dx

z − x
, (ℑ(z) > 0) ,

is a holomorphic function (G : C+ → C+) with the property

lim sup
y→∞

y |G(iy)| < ∞ (1)

Conversely every holomorphic function C
+ → C

− with this property is the Cauchy

transform of some finite positive measure on R, and the lim sup in (1) equals µ(R).

The inverse correspondence is given by Stieltjes’ inversion formula:

µ(B) = − 1

π
lim
ǫ↓0

∫

B

ℑ(G(x + iǫ) dx

valid for all Borel sets B ∈ R for which µ(∂B) = 0 ([1]).

We shall be mainly interested in the reciprocal Cauchy transform

F (z) =
1

G(z)
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The coresponding classes of reciprocal Cauchy transforms of probability measures

with finite variance and zero mean will be denoted by F2
0 .

The next proposition characterises the class F2
0 .

Proposition 3.1. [2] Let F be a holomorphic function G : C+ → C+. Then the

following statements are equivalent:

(a): F is the reciprocal Cauchy transform of a probability measure on R with

finite variance and zero mean:

∞∫

−∞

x2µ dx < ∞ and

∞∫

−∞

xµ dx = 0 ;

(b): There exists a finite positive measure ρ on R such that for all z ∈ C+:

F (z) = z +

∞∫

−∞

ρ dx

x − z
;

(c): There exists a positive number C such that for all z ∈ C
+:

|F (z) − z| ≤ C

ℑ(z)

Moreover, the variance σ2 of µ in (a), the total weight ρ(R) of ρ in (b) and the

(smallest possible) constant C in (c) are all equal.

Proof. For the proof it is useful to introduce the function CF : (0,∞) → C

y 7−→ y2

(
1

F (iy)
− 1

iy

)
=

iy

F (iy)
(F (iy) − iy))

In case F is the reciprocal Cauchy transform of some probability measure µ on R, the

limiting behaviour of CF (y) as y → ∞ gives information on the integrals
∫

x2µ dx

and
∫

xµ dx. Indeed one has

CF (y) = y2

∞∫

−∞

(
1

iy − 1
− 1

iy

)
µ dx =

∞∫

−∞

−xy2 + ix2y

x2 + y2
µ dx

The function y 7→ ℑ(CF (y)) is nondecreasing and
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sup
y>0

y ℑ(CF (y)) = lim
y→∞

y ℑ(CF (y)) (2)

= lim
y→∞

∞∫

−∞

y2

x2 + y2
x2µ dx =

∞∫

−∞

x2µ dx < ∞

On the other side, by the dominated convergence theorem,

∞∫

−∞

xµ dx = lim
y→∞

∞∫

−∞

y2

x2 + y2
xµ dx = − lim

y→∞
ℜ(CF (y)) (3)

(a)⇒(b). If F ∈ F2
0 , then by (2) and (3) both the real and the imaginary part of CF (y)

tends to zero as y → ∞. How CF (y) = iy
F (iy) (F (iy) − iy)), then iCF (y) = iy2

F (iy) − y

and |CF (y)| = y
∣∣∣ iy
F (iy) − 1

∣∣∣. But lim
y→∞

CF (y) = 0, it follows that

lim
y→∞

F (iy)

iy
= 1

Therefore

σ2 = lim
y→∞

yℑ(CF (y)) = lim
y→∞

y |CF (y)| (4)

= lim
y→∞

y

∣∣∣∣
iy

F (iy)

∣∣∣∣ |F (iy) − iy| = lim
y→∞

y |F (iy) − iy| < ∞

This condition says that the function z 7→ F (z) − z satisfies (1) and is therefore the

Cauchy transform of some finite positive measure ρ on R with ρ(R) = σ2. This proves

(b).

(b)⇒(c). If F is of the form (b), then

|F (z) − z| =

∣∣∣∣∣∣

∞∫

−∞

ρ dx

x − z

∣∣∣∣∣∣
≤

∞∫

−∞

ρ dx

|z − x| ≤
ρ(R)

ℑ(z)
(5)

where C it may be equal with ρ(R), whatever is z ∈ C+.

(c)⇒(a). Since F : C+ → C+ is holomorphic, it can written in Nevanlinna’s integral

form [1]:

F (z) = a + bz +

∞∫

−∞

1 + xz

x − z
τ dx (6)
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where a, b ∈ R with b ≥ 0 and τ is a finite positive measure. Putting z = iy, y > 0,

we find that

y ℑ(F (iy) − iy) = y ℑ


a + iby +

∞∫

−∞

1 + ixy

x − iy
τ dx − iy




= y2


(b − 1) +

∞∫

−∞

x2 + 1

x2 + y2
τ dx




As y → ∞, the integral tends to zero. By the assumptiom (c), the whole expression

must remain bounded, which can be the case if b = 1. But then by (6), F must

increase the imaginary part:

ℑ(F (z)) ≤ ℑ(z)

Moreover, (c) implies that F (z) and z can be brought arbitrarily close together, so by

[2], proposition 2.1 F is the reciprocal Cauchy transform of some probability measure

µ on R.

Again by (c) this measure µ must have the properties

∞∫

−∞

x2µ dx ≤ lim
y→∞

sup y |CF (y)| = lim
y→∞

sup y |F (iy) − iy| ≤ y
C

ℑ(iy)
= C

and
∞∫

−∞

xµ dx = − lim
y→∞

ℜ(CF (y)) = 0

The fact that

σ2 ≥ ρ(R) ≥ C ≥ σ2

is clear from the above; this these three numbers must be equal.

We now presents one lemma about invertibility of reciprocal Cauchy trans-

forms of measures and certain related functions, to be called ϕ-functions. The lemma

act in opposite directions; from reciprocal Cauchy transforms of probability measures

to ϕ-functions and vice versa.
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Lemma 3.1. [2] Let C > 0 and let ϕ : C+ → C− be analytic with

|ϕ(z)| ≤ C

ℑ(z)

Then the function K : C+ → C+, K(u) = u + ϕ(u) takes every value in C+ precisely

once. The inverse K−1 : C+ → C+ thus defined is of class F2
0 with variance σ2 ≤ C.

4. The addition theorem

We now formulate the main theorem of this section, namely the addition

theorem.

Theorem 4.1. [2] Let X1 and X2 be freely independent random variables on some

Hilbert space H with distinguished vector ξ, cyclic for X1 and X2. Suppose that X1

and X2 have distributions µ1 and µ2 with variances σ2
1 and σ2

2 . Then the closure of

the operator

X = X1 + X2

defined on Dom (X1) ∩ Dom (X2) is self-adjoint and its probability distribution µ on

(H, ξ) is given by

µ = µ1 ⊗ µ2

where ⊗ is the free convolution product.

In particular in the region
{
z ∈ C | ℑ(z) > 2

√
σ2

1 + σ2
2

}
the ϕ-functions related to µ,

µ1 and µ2 satisfy

ϕ = ϕ1 + ϕ2

The proof of this theorem is given in [2] where show that < ξ, (z −
X)−1ξ >−1= (F1 ⊗ F2)(z) for all z ∈ C+.

5. A free limit theorem

In this section, we prove that sums of large numbers of frelly independent

random variables of finite variance tend to certain distribution different to semiellipse

distribution. The semiellipse distribution was first encountered by Wigner [6] when

73



BOGDAN GH. MUNTEANU

a studying spectra of large random matrices. The distribution obtained by author is

defined by:

bσ(x) =
σ2

π(x2 + σ4)

where the graphics representation is in figure 1 for σi = 1, 4, 10, 25, 50, 100, i = 1, 6.

We remark that bσ(x) is the Cauchy distribution Cau(0, σ2).

Figure 1. The graphics representation of distribution bσ

Lemma 5.1. The distribution bσ has the following ϕ-function:

ϕ(u) = −iσ2 (7)

Proof. We know that the inverse of the function Kσ : C+ → C+, Kσ(u) = u − iσ2 is

the function Fσ ∈ F2
0 . This is

Fσ : C
+ → C

+, Fσ(z) = z + iσ2
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But this is the reciprocal Cauchy transform of bσ by Stieltjes’ inversion formula

lim
ǫց0

− 1

π
ℑ

(
1

F (x + iǫ)

)
= bσ(x)

Indeed:

lim
ǫց0

− 1

π
ℑ

(
1

F (x + iǫ)

)
= lim

ǫց0
− 1

π
ℑ

(
1

x + i(ǫ + σ2)

)

= lim
ǫց0

− 1

π
ℑ

(
x − i(ǫ + σ2)

x2 + (ǫ + σ2)2

)

=
1

π
· σ2

x2 + σ4

We now formulate the free central limit theorem. We denote by Dλµ its

dilation by a factor λ for a probability measure µ on R:

Dλµ(A) = µ(λ−1A) , (A ⊂ R measurable)

Theorem 5.1. Let µ be a probability measure on R with mean 0 and variance σ2,

and for n ∈ N∗ let

µn = D1/nµ ⊗ ... ⊗ D1/nµ
︸ ︷︷ ︸

n− times

Then

lim
n→∞

µn = bσ

Proof. Let F , F̃n and Fn denote the reciprocal Cauchy transforms of µ, Dnµ and µn

respectively. Denote the associated ϕ-functions by ϕ, ϕ̃n and ϕn. Let as in the proof

of lemma 5.1, Fσ denote the reciprocal Cauchy transform of bσ. By the continuity

theorem 2.5 in [2] it suffices to show that for some M > 0 and all z ∈ C
+
M :

lim
n→∞

Fn(z) = Fσ(z)

or is equivalent with

lim
n→∞

Kσ ◦ Fn(z) = z (8)
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Now, fix z ∈ C
+
M and put un = Fn(z) and zn = F̃−1

n (un). Then z − un = ϕn(un) and

zn − un = ϕ̃n(un). Hence by an n-fold application of the addition theorem 4.1,

z − un = n(zn − un)

Note that also

|z − un| ≤
σ2

M
, ℑ(un) > M

with respect to lemma 3.1.

By the property FDλµ(z) = λF (λ−1z) and the integral reprezentation of F in accord

to proposition 3.1,(b), we have:

z − un = n(zn − un) = n(zn − F̃n(zn))

= n(zn − n−1F (nzn)) = nzn − F (nzn)

=

+∞∫

−∞

ρ dx

nzn − x

Hence

|z − Kσ ◦ Fn(z)| = |z − Kσ(un)| =
∣∣z − un + iσ2

∣∣

=

+∞∫

−∞

∣∣∣∣
1

nzn − x
+ iσ2

∣∣∣∣ ρ dx

The integrand on the right hand side is uniformly bounded and tends to zero pointwise

as n tends to infinity.

Remark 5.1. First note that every ϕ-function goes like −iσ2 high above the real

line. Indeed we have z = F−1(u) ≈ u and

ϕ(u) = K(u) − u = F−1(u) − u = z − F (z)︸ ︷︷ ︸
ϕ(z)

≈ −iσ2

Now, due to the scaling law ϕDλµ(u) = λϕ(λ−1u) and by proposition 3.1 we

obtain

ϕn(u) = nϕ̃n(u) = nϕD 1

n

µ(u) = n · 1

n
ϕ(nu) → −iσ2 , (n → ∞)
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In [3], the author to use in place of bσ Cauchy distribution, the distribution

defined by

bσ(x) =





1
2
√

2πx

√√
1 + 16x2σ4 − 1 if x > 0

0 if x ≤ 0

where the dilation of probability measure has a factor λ = n.
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