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QUASI-INTERPOLATORY AND INTERPOLATORY SPLINE
OPERATORS: SOME APPLICATIONS

MARIA GABRIELLA CIMORONI

Abstract. In this paper we consider quasi-interpolatory spline operators

that satisfy some interpolation conditions. We give some applications of

these operators constructing approximating integral operators and numer-

ically solving Volterra integral equations of the second kind. We prove

convergence results for the constructed methods and we perform numeri-

cal examples and comparisons with other spline methods.

1. Introduction

It is known that quasi-interpolatory operators play a main role in the approxi-

mation of data and functions, in the numerical solution of integrals or, more in general,

of integral equations. Interpolatory operators also are very important in function ap-

proximation theory and there exists a wide literature on such two class of operators.

In the last years, in [11], a method for constructing a quasi-interpolatory operator

with interpolation properties, has been presented giving a general convergence theo-

rem and in [7] a new class of operators, which are refinable, quasi-interpolatory and

that satisfy some interpolation conditions has been studied. In this paper we con-

sider a quasi-interpolatory spline operator that satisfies some interpolation conditions

(qi-i operator) and we propose some its applications; for example, we construct a

collocation method for solving a second kind linear Volterra integral equation

f(x) = g(x) +
∫ x

0

k(x, s)f(s)ds, x ∈ [0, X] (1.1)
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with k(x, s) = k(x− s) and k ∈ C(0, X] ∩ L1[0, X]. The integral equation (1.1) has a

unique solution f ∈ C[0, X] if g is a continuous function in [0, X], but the derivatives

of this solution can be unbounded at x = 0; then graded grids used in the partition

of [0, X] reflect the possible singular behaviour of the derivative of the exact solution

near x = 0. For example, in [2] and in [3], a collocation method using graded meshes

and piecewise polynomials, for weakly singular Volterra integral equations, has been

considered. In [6] and in [8] collocation methods based on spline functions have been

studied for numerically solving (1.1). In [8] a method based on projector splines

has been used in a suitable, first subinterval of [0, X] combined with a Simpson’s

rule in the last part of [0, X]. In [6] nodal splines that are quasi-interpolatory and

interpolatory (with the number of interpolation points that increases when the number

knots increases) has been considered for numerically solving (1.1). The collocation

method of this paper, based on qi-i spline operators of order m ≥ 2, has several good

properties as a low computational complexity and good performance when the solution

of (1.1) is a continuous function. The results obtained are comparable with those

obtained by using nodal splines or projector splines. Moreover, with the collocation

method of this paper, we can opportunely choose the interpolation points of the qi-

i spline, that can be different from the partition knots and we can obtain directly

by a linear system, the value of f on such points without a successive evaluation of

the approximation of f (as required, instead, if we use only projector splines). The

approximate solution error obtained will converges to zero at the same rate as the

quasi-interpolatory spline error.

This paper is organized as follows. In Section 2 we give definition and prop-

erties of qi-i spline operators on graded meshes and we give convergence results. In

Section 3 we define an approximating integral operator based on qi-i spline opera-

tors and we analize its main properties and convergence. In Section 4 we describe a

collocation method for Volterra integral equation of second kind based on the approx-

imating integral operator of Section 3 and we give convergence results. In Section 5

we give some numerical results and comparisons with rules based on projector splines

and on nodal splines.
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2. Qi-i spline operators

We give the definition and the main properties of qi-i spline operators.

Let s≥0 be a given positive integer and consider the partition of [a, b]

∆s := {a = y0 < y1 < . . . < ys < ys+1 = b} (2.1)

in s + 1 subintervals [yk, yk+1), with hk = yk+1 − yk , k = 0, 1, ..., s. We shall assume

that max
0≤k≤s

hk → 0 as s →∞.

We say that the sequence of partitions {∆s, s = 1, 2, ...} is locally uniform

(l.u.) if there exists a constant R ≥ 1 such that

1
R
≤ yi+1 − yi

yj+1 − yj
≤ R, j = i± 1, ∀i.

We consider the sequence of partitions ∆s obtained by using graded meshes

(see for example [2]) of the form

yi =
(

i

s + 1

)r

· (b− a) + a, 0 ≤ i ≤ s + 1, r ≥ 1. (2.2)

In [6] has been proved that the sequence {∆s} is l.u.. Let m be a given positive

integer and n = m + s; we denote by ∆e
s the extended partition of ∆s defined as

∆e
s := {a = x1 = ... = xm < xm+1 < . . . < xm+s < xn+1 = ... = xn+m = b}

where xi = y0, xn+i = ys+1, i = 1, ...,m, xm+j = yj , j = 1, ..., s.

We denote by IPl the set of polynomials of degree ≤ l. The space of poly-

nomial splines of order m with simple knots y1, y2, ..., ys and Sm(∆s) ⊂ Cm−2[a, b] is

defined by:

Sm(∆s):=

 s : s(x) = sk(x) ∈ IPm−1, x ∈ [yk, yk+1), k = 0, 1, ..., s;

Djsk−1(yk) = Djsk(yk), j = 0, 1, ...,m− 2, k = 1, 2, ..., s.

 . (2.3)

The set of normalized B-splines of order m, Bim , i = 1, 2, ..., n , constitutes

a basis for Sm(∆s) [10].

We define the following quasi-interpolatory and interpolatory operator ap-

plied to a function f ∈ C[a, b] ([11], [7]):

Tnf := Qnf + Uf − UQnf (2.4)
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where Qn is the quasi-interpolating operator defined as

Qnf(x) :=
n∑

i=1

(λif)Bim(x) =
n∑

i=1

[
m∑

j=1

vijf(τij)]Bim(x) (2.5)

with x ∈ [a, b],

vij =
m∑

r=j

αir
r∏

s=1,s 6=j

(τij − τis)
, r = 2, ...,m

and

αir =
(m− r)!
(m− 1)!

∑ r−1∏
l=1

(xυl
− τil)

where the sum is extended over all choices of distinct υ1, ..., υr−1 from i+1, ..., i+m−1

and is set equal to 1 when r = 1; the τij are m distinct points opportunely chosen in

[xi,xi+m], i = 1, ..., n [4]. A possible distribution for {τij} is the following

τij = xρi
+ j

xρi+1 − xρi

k
, k =

 m, if ρi 6= n

m + 1, if ρi = n
, i = 1, ..., n, j = 1, ...,m

with [xρi,xρi+1] ⊆ [xi,xi+m], m ≤ ρi ≤ n.

The interpolating operator U is defined as:

Uf(x) :=
l∑

k=1

ck(f)Bkm(x) =
l∑

k=1

[
l∑

h=1

b
−1

kh f(th)]Bkm(x) (2.6)

where Bkm(x), k = 1, ..., l are normalized B-splines constituting a basis for the spline

space Sm(∆s), s = l − m; l is a fixed integer and tk, k = 1, ..., l are l distinct

interpolation points with tk ∈ (xk, xk+m) where xk, xk+m belong to the extended

partition ∆e
s. The coefficients ck have been obtained by imposing the interpolation

conditions Uf(th) = f(th), h = 1, ..., l and b
−1

kh , h, k = 1, ..., l denote the coefficients

of the inverse matrix B
−1

t of B(t) =


B1m(t1) ... Blm(t1)
...

...

B1m(tl) ... Blm(tl)

 .

Remark 2.1. We observe that the inverse matrix B
−1

t exists because (theorem 4.63

in [10]), choosing the distinct interpolation points tk in (xk, xk+m), k = 1, ..., l, we

obtain B(t) not singular.
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Then we can write

UQnf(x) :=
l∑

k=1

l∑
h=1

b
−1

kh Qnf(th)Bkm(x). (2.7)

By using (2.5), (2.6) and (2.7), the operator (2.4) can be written in the form:

Tnf(x) :=
n∑

i=1

m∑
j=1

vijf(τij)Bim(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [f(th)−Qnf(th)]Bkm(x).

(2.8)

The operator (2.8) is quasi-interpolatory and interpolatory on the knots tk,

k = 1, ..., l [7]. In fact: Tnf(tk) := Qnf(tk)+Uf(tk)−UQnf(tk) = Qnf(tk)+f(tk)−

Qnf(tk) = f(tk) and Tnp(x) := Qnp(x)+Up(x)−UQnp(x) = p(x)+Up(x)−Up(x) =

p(x), where p(x) is a polynomial of degree less or equal to m− 1.

We observe that we can use a vectorial notation for the operator (2.8) that

will be very useful in the following Sections. We set the following column vectors:

t= [t1, ..., tl]T ∈ Rl,

τ= [τ11, ..., τ1m, ..., τn1, ..., τnm]T ∈ Rn·m and

ξ= [τ ; t] ∈ Rn·m+l.

We will use the notation: f(z) = [f(z1), ..., f(zr)]T , where z= [z1, ..., zr]T is a

column vector with the elements belonging to [a, b] and we will indicate Bim(x) with

Bi(x), Bim(x) with Bi(x), where x ∈ [a, b]. If we denote with:

B(x) =
[

B1(x), ..., Bn(x)
]
, B(x) =

[
B1(x), ..., Bl(x)

]
, (2.9)

B(t) =


B1(t1) ... Bn(t1)
...

...

B1(tl) ... Bn(tl)

 , B(t) =


B1(t1) ... Bl(t1)
...

...

B1(tl) ... Bl(tl)

 , (2.10)

V =


v11 . . . v1m 0 . . . 0 . . . 0 . . . 0

0 . . . 0 v21 . . . v2m . . . 0 . . . 0
...

...
...

...
. . .

...
...

0 . . . 0 0 . . . 0 . . . vn1 . . . vnm

 (2.11)
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then we can write

Qnf(x) = B(x)V f(τ), (2.12)

Uf(x) = B(x)B
−1

t f(t), (2.13)

UQnf(x) = B(x)B
−1

t B(t)V f(τ) (2.14)

and

Tnf(x) = Mn(x)f(ξ) (2.15)

where, considering (2.4), (2.12), (2.13) and (2.14) Mn(x) is the row vector:

Mn(x) =
[ [

B(x)−B(x)B
−1

t B(t)
]
V, B(x)B

−1

t

]
∈ Rn·m+l.

By (2.15), we can see that Tn is a linear operator. We recall that the norm

of a bounded operator F : C[0, X] → C[0, X] can be defined as

‖F‖ = sup
‖h‖≤1

‖Fh‖ .

The following proposition holds:

Proposition 2.1. The operator Tn in (2.15) is a bounded operator for all n in [a, b]

and ∀f ∈ C[a, b].

Proof. Tn is a linear operator and so it suffices to prove that ∀f ∈ C[a, b] and ∀n,

exists a constant α such that

‖Tnf‖∞ ≤ α ‖f‖∞

where ‖g‖∞ = max
x∈[a,b]

|g(x)| , g ∈ C[a, b].

By (2.4) we can write

|Tnf | ≤ |Qnf |+ |Uf |+ |UQnf | ;

in [10] (Theorem 6.22) has been proved that Qnf is bounded; by (2.5), (2.6), (2.7) it

easy also to get

|Qnf(x)| ≤ ‖V ‖∞‖f‖∞ , (2.16)

|Uf(x)| ≤
∥∥∥B

−1

t

∥∥∥
∞
‖f‖∞ , (2.17)

|UQnf | ≤ ‖V ‖∞
∥∥∥B

−1

t

∥∥∥
∞
‖f‖∞ (2.18)
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with ‖V ‖∞ = max
1≤i≤n

m∑
j=1

|vij | ≤ mD for all n ([4]) and D independent from n,∥∥∥B
−1

t

∥∥∥
∞

= max
1≤k≤n

∑l
h=1

∣∣∣b−1

kh

∣∣∣ bounded because B
−1

t is independent from n. The

thesis follows, by setting α = ‖V ‖∞ +
∥∥∥B

−1

t

∥∥∥
∞

+ ‖V ‖∞
∥∥∥B

−1

t

∥∥∥
∞

.

We can give, now, the following

Theorem 2.1. Let f ∈ C[a, b]. For the qi-i spline operator (2.15), the following

relation holds

‖f − Tnf‖∞ ≤ C1 ‖f −Qnf‖∞ (2.19)

where C1 = 1 +
∥∥∥B

−1

t

∥∥∥
∞

and

lim
n→∞

‖f − Tnf‖∞ = 0. (2.20)

Proof. Considering that we can write Tnf(x) = Qnf(x) + U(f −Qnf)(x) and (2.17)

holds, the proof is similar to the proof of Theorem 4.1 in [7].

By Lemma 3.3 in [4], (2.20) follows.

3. An approximating integral operator

Let [a, b] ≡ [0, X] and K the following integral operator:

Kf(x) :=
∫ x

0

k(x, s)f(s)ds, k ∈ C(0, X] ∩ L1[0, X]; (3.1)

we consider the approximating operator KTn

KTnf(x) :=
∫ x

0

k(x, s)Tnf(s)ds (3.2)

that, by (2.4) and (2.8) we can write

KTnf(x) = KQnf(x) + KUf(x)−KUQnf(x)

=
n∑

i=1

m∑
j=1

vijf(τij)KBi(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [f(th)−Qnf(th)]KBk(x)

(3.3)

where

KBi(x) =
∫ x

0

k(x, s)Bi(s)ds, i = 1, ..., n
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and

KBk(x) =
∫ x

0

k(x, s)Bk(s)ds, k = 1, ..., l.

By using the same vectorial notation used for the Tn operator, we can set:

KB(x) =
[

KB1(x), ..., KBn(x)
]

= (3.4)

=
[ ∫ x

0
k(x, s)B1(s)ds, ...,

∫ x

0
k(x, s)Bn(s)ds

]
,

KB(x) =
[

KB1(x), ..., KBl(x)
]

= (3.5)

=
[ ∫ x

0
k(x, s)B1(s)ds, ...,

∫ x

0
k(x, s)Bl(s)ds

]
;

then 

KQnf(x) = KB(x)V f(τ)

KUf(x) = KB(x)B
−1

t f(t)

KUQnf(x) = KB(x)B
−1

t B(t)V f(τ)

(3.6)

and

KTnf(x) = An(x)f(ξ) (3.7)

where An(x) is the row vector

An(x) =
[

[KB(x)−KB(x)B
−1

t B(t)]V, KB(x)B
−1

t

]
∈ Rn·m+l.

We observe that, by (3.7), the operator KTn is a linear operator. Now we

can define

k̃(x, s) =


k(x, s) if 0 ≤ s ≤ x,

0 if s > x;

(3.8)
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if k̃(x, s) satisfies:

1) k̃(x, s) is Riemann integrable in the variable s ∈ [0, X],

2) lim
x′→x

∫ X

0

∣∣∣k̃(x′, s)− k̃(x, s)
∣∣∣ ds = 0, x′, x ∈ [0, X],

3) max
x∈[0,X]

∫ X

0

∣∣∣k̃(x, s)
∣∣∣ ds < ∞

(3.9)

then we can say that
∫ X

0

∣∣∣k̃(x, s)
∣∣∣ ds =

∫ x

0
|k(x, s)| ds, is a compact operator on

C[0, X].

Proposition 3.1. Let KTn be the operator (3.7) and the hypoteses (3.9) hold. Then

KTn is a bounded operator for all n, on [0, X].

Proof. KTn is a linear operator and so it suffices to prove that ∀f ∈ C[0, X] and ∀n,

a constant β exists such that

‖KTnf‖∞ ≤ β ‖f‖∞ .

By (3.3), we can write

|KTnf | ≤ |KQnf |+ |KUf |+ |KUQnf | .

max
x∈[0,X]

∫ x

0
|k(x, s)| ds ≤ L because (3.9) holds; recalling that ∀ x ∈ [0, X] and ∀n we

have
n∑

i=1

Bi(x) =
l∑

i=1

Bi(x) = 1, we obtain

|KQnf(x)| =

∣∣∣∣∣∣
n∑

i=1

m∑
j=1

vijf(τij)KBi(x)

∣∣∣∣∣∣ ≤ ‖f‖∞
n∑

i=1

|KBi(x)|
m∑

j=1

|vij |

≤ ‖f‖∞ ‖V ‖∞
∫ x

0

|k(x, s)|
n∑

i=1

|Bi(s)| ds ≤ L ‖V ‖∞‖f‖∞ ,

|KUf(x)| ≤

∣∣∣∣∣
l∑

k=1

l∑
h=1

b
−1

kh f(th)KBk(x)

∣∣∣∣∣ ≤ ‖f‖∞
l∑

k=1

∣∣KBk(x)
∣∣ l∑

h=1

∣∣∣b−1

kh

∣∣∣
≤ ‖f‖∞

∥∥∥B
−1

t

∥∥∥
∞

∫ x

0

|k(x, s)|
l∑

k=1

∣∣Bk(s)
∣∣ ds ≤ L

∥∥∥B
−1

t

∥∥∥
∞
‖f‖∞

and

|KUQnf | ≤ L ‖V ‖∞
∥∥∥B

−1

t

∥∥∥
∞
‖f‖∞
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with ‖V ‖∞ and
∥∥∥B

−1

t

∥∥∥
∞

bounded (see proof of Proposition 2.1). The thesis follows,

by setting β = Lα = L(‖V ‖∞ +
∥∥∥B

−1
(t)

∥∥∥
∞

+
∥∥∥B

−1
(t)

∥∥∥
∞
‖V ‖∞).

Theorem 3.1. Let f ∈ C[0, X] and k(x, s) such that (3.9) holds. Then

‖K(f − Tnf)‖∞ ≤ C2 ‖f − Tnf‖∞ , ∀ n (3.10)

where C2 = max
x∈[0,X]

∫ x

0
|k(x, s)| ds and

lim
n→∞

‖K(f − Tnf)‖∞ = 0. (3.11)

Proof. ‖K(f − Tnf)‖∞ = max
x∈[0,X]

∣∣∫ x

0
k(x, s)(f(s)− Tnf(s))ds

∣∣
≤ ‖f − Tnf‖∞ max

x∈[0,X]

∫ x

0
|k(x, s)| ds

and by (3.9) we have max
x∈[0,X]

∫ x

0
|k(x, s)| ds < ∞.

By Theorem 2.1 we have that ‖f − Tnf‖∞ → 0 as n → ∞ and by (3.10),

(3.11) follows.

4. A collocation method and convergence results

Consider the equation (1.1); substituting there Tnf for f in the integral, we

obtain

f(x) = g(x) +
∫ x

0

k(x, s)Tnf(s)ds + rn(x) (4.1)

with

rn(x) =
∫ x

0

k(x, s) (f(s)− Tnf(s)) ds = K(f(x)− Tnf(x)) (4.2)

the residual term obtained approximating f by Tnf in the integral. If we do not

consider the error term, the (4.1) becomes

fn(x) = g(x) + KTnfn(x), (4.3)

or equivalently

fn(x) = g(x) +
n∑

i=1

m∑
j=1

vijfn(τij)KBi(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [fn(th)−Qnfn(th)]KBk(x)
(4.4)
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if we collocate the equation (4.3) in the vector ξ defined in Section 2, considering

(3.7), we obtain the linear system

(Id−An(ξ))fn(ξ) = g(ξ)

where Id is the identity matrix of order nm + l and An(ξ) = [An(ξ1), ..., An(ξnm+l)]

∈ R(n·m+l)×(n·m+l).

When we have solved the linear system just written, the value fn(x), x ∈

[0, X], can be recovered by (4.4). Substracting (4.3) from (4.1) we obtain

f(x)− fn(x) = KTn(f(x)− fn(x)) + rn(x),

from which, considering also (4.2)

(I −KTn) (f(x)− fn(x)) = K(f(x)− Tnf(x)). (4.5)

We can prove now, the following proposition:

Proposition 4.1. Let I−KTn the operator in (4.5) and k(x, s) such that (3.9) holds.

For all n sufficiently large, n ≥ n0 with n0 an integer > 0, the operator (I −KTn)−1

exists and

sup
n≥n0

∥∥∥(I −KTn)−1
∥∥∥ ≤ L < ∞.

Proof. By Proposition 3.1, KTn is a bounded operator. We observe that the operators

K in (3.1) and KTn in (3.2) can be written as

K̃f(x) :=
∫ X

0

k̃(x, s)f(s)ds,

K̃Tnf(x) :=
∫ X

0

k̃(x, s)Tnf(s)ds

with k̃(x, s) defined in (3.8). Then I −KTn = I − K̃Tn. Following the proof of the

Theorem 1. in [6] we can write

I − K̃Tn = (I − K̃)
[
I − (I − K̃)−1(K̃Tn − K̃)

]
.

Considering that Tn and K̃Tn are bounded operators and taking in account

(3.11), the proof is similar to that one in [6] ( theorem 1).
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Theorem 4.1. We consider the equation (1.1) . Let f ∈ C[0, X] and k(x, s) such

that (3.9) holds. Then fn in (4.3) exists and is unique ∀ n ≥ n0 where n0 is an

integer > 0; moreover fn converges uniformly to the solution f that is

lim
n→∞

‖fn − f‖∞ = 0

and there results

‖fn − f‖∞ ≤ C3 ‖f − Tnf‖∞

where C3 = C2 sup
n≥n0

∥∥∥(I −KTn)−1
∥∥∥ and C2 = max

x∈[0,X]

∫ x

0
|k(x, s)| ds.

Proof. By using (4.5), Proposition 4.1 and Theorem 3.1 the thesis follows.

5. Numerical applications and comparisons

We consider now some numerical results obtained by applying our collocation

method to (1.1). The results have been compared with those obtained by a collocation

method based on projector splines and with those proposed in [6].

We have considered the following equations of type (1.1):
f(x) =

√
x + 1

2πx−
∫ x

0
(x− s)−

1
2 f(s)ds, x ∈ [0, 1],

f(x) =
√

x is the solution.

(5.1)

and
f(x) = 1√

1+x
+ π

8 −
1
4 arcsin 1−x

1+x −
1
4

∫ x

0
(x− s)−

1
2 f(s)ds, x ∈ [0, 1],

f(x) = 1√
1+x

is the solution.

(5.2)

From Table 1 to Table 4 we have indicated with eN , eP and eQI−I , the

absolute error evaluated in x, respectively obtained by the method in [6], by the

collocation method that use the projector splines and by our method that in these

examples takes the value l = 10 for the interpolatory spline. The methods use graded

partitions of the form (2.2) with r = 1 and r = 2.

In Tables 1, 2 and 3 the values of x, of n and of m are chosen as in the

examples in [6] in order to compare the results.
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The results in Table 4 obtained with r = 2 for (5.2) and not shown in [6],

confirm the theorical convergence results of our method.

Table 1

f(x)=
√

x, g(x)=
√

x+ 1
2πx, k=λ(x-s)−1/2, λ=-1

r = 1, m = 3

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.01 5.8e-2 6.0e-3 5.2e-4 4.3e-2 2.2e-3 3.1e-4 2.4e-2 5.9e-4 2.6e-5

0.51 9.9e-4 1.6e-4 7.1e-5 3.3e-4 5.0e-5 6.3e-6 1.1e-4 1.7e-5 8.7e-6

1 4.2e-4 7.5e-5 3.5e-5 1.4e-4 2.3e-5 3.6e-6 4.9e-5 7.7e-6 3.7e-6

Table 2

f(x)=
√

x, g(x)=
√

x+ 1
2πx, k=λ(x-s)−1/2, λ=-1

r = 2, m = 3

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.01 1.7e-3 7.1e-5 1.1e-4 2.8e-4 9.9e-5 1.4e-5 3.0e-5 2.3e-5 6.4e-6

0.51 2.3e-5 1.7e-4 7.7e-6 9.4e-6 2.1e-5 4.6e-7 2.2e-6 2.8e-6 1.8e-8

1 1.2e-4 6.0e-5 9.2e-6 1.2e-5 8.4e-6 6.1e-7 2.4e-6 1.2e-6 2.1e-7

Table 3

f(x)= 1√
1+x

, g(x)= 1√
1+x

+π
8 - 1

4 arcsin( 1−x
1+x ),k=λ(x-s)−1/2, λ=- 1

4

r = 1, m = 4

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.1 1.0e-6 3.9e-7 6.4e-8 3.7e-8 1.5e-8 1.3e-9 1.5e-9 8.3e-10 9.7e-10

0.4 3.0e-7 4.3e-8 2.1e-9 1.4e-8 1.6e-8 5.1e-9 4.7e-10 1.2e-9 4.8e-10

1 2.1e-7 1.0e-7 1.1e-8 8.0e-9 9.2e-9 8.0e-10 9.5e-10 6.5e-10 1.4e-10
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Table 4

f(x)= 1√
1+x

, g(x)= 1√
1+x

+π
8 - 1

4 arcsin( 1−x
1+x ),k=λ(x-s)−1/2, λ=- 1

4

r = 2, m = 4

n = 11 n = 21 n = 41

x eP eQI−I eP eQI−I eP eQI−I

0 0 0 0 0 0 0

0.01 1.9e-9 2.7e-10 2.7e-12 4.7e-12 9.8e-13 3.2e-13

0.1 1.0e-7 2.5e-8 4.0e-9 1.3e-9 1.7e-10 1.4e-11

0.4 9.5e-7 7.4e-8 3.8e-8 5.1e-9 1.8e-9 2.2e-10

0.51 1.4e-6 2.3e-7 5.0e-8 1.0e-8 2.3e-9 3.9e-10

1 1.3e-6 7.7e-8 5.8e-8 8.0e-10 3.2e-9 1.6e-10
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