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ON SOME INTEGRAL OPERATORS
WHICH PRESERVE THE UNIVALENCE

VIRGIL PESCAR

Abstract. We study some integral operators and determine conditions for

the univalence of these integral operators.

1. Introduction

Let A be the class of the functions f(z) which are analytic in the open unit

disc U = {z ∈ C : |z| < 1} and f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions f(z) ∈ A which are

univalent in U.

In this paper, we consider the integral operators

Hβ(z) =
{

β

∫ z

0

[h(u)]β−1
du

} 1
β

(1)

and

Gβ(z) =
{

β

∫ z

0

u [g(u)]β−2
du

} 1
β

(2)

for h(z) ∈ S, g(z) ∈ S and β ∈ C.

2. Preliminary results

To discuss our integral operators, we need the following theorem.

Theorem 2.1 [1]. Let α be a complex number, Re α > 0 and f ∈ A. If

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1, (3)
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for all z ∈ U , then for any complex number β, Re β ≥ Re α the function

Fβ(z) =
[
β

∫ z

0

uβ−1 f ′(u)du

] 1
β

(4)

is in the class S.

3. Main results

Theorem 3.1. Let α, β be complex numbers and the function h ∈ S,

h(z) = z + a2z
2 + . . . .

If

Re β ≥ Re α > 0 (j1)

|β − 1| ≤ Re α

4
for Re α ∈ (0, 1) (j2)

or

|β − 1| ≤ 1
4

for Re α ∈ [1,∞) (j3)

then the function

Hβ(z) =
{

β

∫ z

0

[h(u)]β−1
du

} 1
β

(5)

belongs to the class S.

Proof. From (5) we have

Hβ(z) =

{
β

∫ z

0

uβ−1

[
h(u)

u

]β−1

du

} 1
β

(6)

The function h(z) is regular and univalent, hence h(z)
z 6= 0 for all z ∈ U. We

can choose the regular brach of the function
[

h(z)
z

]β−1

, which is equal to 1 at the

origin.

Let us consider the regular function in U , given by

f(z) =
∫ z

0

[
h(u)

u

]β−1

du. (7)

Because h ∈ S, we obtain∣∣∣∣z h′(z)
h(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

(8)
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for all z ∈ U.

We have ∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣ = |β − 1|
∣∣∣∣z h′(z)

h(z)
− 1

∣∣∣∣ ≤ |β − 1| 2
1− |z|

. (9)

Now, we consider the cases

i1) Re α ≥ 1.

We observe that the function p : [1,∞) → R,

p(x) =
1− a2x

x
(0 < a < 1) (10)

is a decreasing function, and that, if we take a = |z|, z ∈ U, then

1− |z|2Re α

Re α
≤ 1− |z|2 (11)

for all z ∈ U.

From (11) and (9) we obtain

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 4 |β − 1|. (12)

From (12) and (j3), we have

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (13)

for all z ∈ U.

i2) 0 < Re α < 1.

The function v : (0, 1) → R,

v(x) = 1− a2x (0 < a < 1) (14)

is a increasing function and for a = |z|, z ∈ U, we obtain

1− |z|2 Re α ≤ 1− |z|2, z ∈ U (15)

for all z ∈ U.

From (9) and (15), we have

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 4 |β − 1|
Re α

(16)

for all z ∈ U.
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Using the condition (j2) and (16) we get

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (17)

for all z ∈ U.

Because f ′(z) =
[

h(z)
z

]β−1

, from Theorem 2.1 it results that the function

Hβ(z) is regular and univalent in U .

Theorem 3.2. Let α, β be complex numbers and the function g ∈ S, g(z) =

z + a2z
2 + . . . .

If

Re β ≥ Re α > 0 (p1)

and

|β − 2| ≤ Re α

4
for Re α ∈ (0, 1) (p2)

or

|β − 2| ≤ 1
4

for Re α ∈ [1,∞) (p3)

then the function

Gβ(z) =
{

β

∫ z

0

u [g(u)]β−2
du

} 1
β

(18)

is in the class S.

Proof. We observe that

Gβ(z) =

{
β

∫ z

0

uβ−1

[
g(u)
u

]β−2

du

} 1
β

(19)

We consider the regular function in U[
f(z) =

∫ z

0

g(u)
u

]β−2

du

and by the same reasoning with a view to the Theorem 3.1. we conclude that the

function Gβ(z) is in the class S in the conditions (p1), ( p2) and (p3).
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