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HOMOMORPHISMS BETWEEN JC*-ALGEBRAS

CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

Abstract. It is shown that every almost linear mapping h : A — B of a
JC™-algebra A into a JC*-algebra B is a homomorphism when h(2"uoy) =
h(2"u) o h(y) for all unitaries u € A, all y € A and all n € Z, and that
every almost linear continuous mapping h : A — B of a JC™-algebra A of
real rank zero to a JC*-algebra B is a homomorphism when hA(2"uoy) =
h(2"u) o h(y) for all w € {v € A | v = v",||v|]| = 1,v is invertible}, all
y € A and all n € Z. We moreover prove the Hyers-Ulam stability of
homomorphisms in JC™*-algebras. This concept of stability of mappings
was introduced for the first time by Th.M. Rassias in his paper [On the
stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.
72 (1978), 297-300].

1. Introduction

Let X and Y be Banach spaces with norms || - || and || - ||, respectively.
Consider f: X — Y to be a mapping such that f(tx) is continuous in ¢t € R for each
fixed z € X. Th.M. Rassias [26] introduced the following inequality, that is known
as Cauchy-Rassias inequality : Assume that there exist constants e > 0 and p € [0, 1)

such that

1f(z+y) = f(2) = FWIl < e(ll][” + lly[[)
for all ,y € X. Th.M. Rassias [26] showed that there exists a unique R-linear
mapping T : X — Y such that

2¢
2—2p

[f(z) = T(x)|| <

(El
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for all x € X. This inequality has provided a lot of influence in the development
of what is called generalized Hyers-Ulam stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms, or the stability of the
equation of homomorphism, was studied by a number of mathematicians. Gavruta
[7] generalized the Rassias’ result in the following form: Let G be an abelian group
and Y a Banach space. Denote by ¢ : G x G — [0,00) a function such that
oo
Plry) =) ikw(Qkx’ 2by) < oo

2
k=0

for all x,y € G. Suppose that f: G — Y is a mapping satisfying
1f(z+y) = f(z) = FW)ll < elz,y)
for all z,y € G. Then there exists a unique additive mapping T : G — Y such that

1f(2) =T (@)l < 5¢(x, )

N | =

for all x € G. C. Park [15] applied the Gavruta’s result to linear functional equa-
tions in Banach modules over a C*-algebra. Various functional equations have been
investigated by several authors ([1], [3]-[6], [8]-[12], [16]-[25], [27]-[32]).

Throughout this paper, let A be a JC*-algebra with norm ||-|| and unit e, and
B a JC*-algebra with norm || - || and unit e’. Let U(A) ={u € A | uv* = u*u = e},
Asa ={z € Az =2"}, and [ (Asa) = {v € Asa | |[v]] = 1,v is invertible}.

Using the stability methods of linear mappings, we prove that every almost
linear mapping h : A — B is a homomorphism when h(2"u o y) = h(2™u) o h(y) for
all u € U(A), all y € A and all n € Z, and that for a JC*-algebra A of real rank
zero (see [2]), every almost linear continuous mapping h : A — B is a homomorphism
when h(2"uoy) = h(2™u) o h(y) for all u € I;(As,), all y € A and all n € Z. We

moreover prove the Hyers-Ulam stability of homomorphisms in JC*-algebras.

2. Homomorphisms between J(C*-algebras

The original motivation to introduce the class of nonassociative algebras
known as Jordan algebras came from quantum mechanics (see [33]). Let H be a
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complex Hilbert space, regarded as the “state space” of a quantum mechanical sys-
tem. Let L£(H) be the real vector space of all bounded self-adjoint linear opera-
tors on H, interpreted as the (bounded) observables of the system. In 1932, Jordan
observed that £(H) is a (nonassociative) algebra via the anticommutator product

w. A commutative algebra X with product z o y is called a Jordan

roy =
algebra if 2% o (z o y) = x o (22 o y) holds.

A complex Jordan algebra C with product zoy and involution z +— x* is called
a JB*-algebra if C carries a Banach space norm || - || satisfying ||z o y|| < ||z - ||y||
and |[{zz*z}|| = ||z|3. Here {zy*z} = 20 (y* 02) —y*o(z0z)+ 20 (z oy
denotes the Jordan triple product of x,y,z € C. A unital Jordan C*-subalgebra of a
C*-algebra, endowed with the anticommutator product, is called a JC*-algebra (see
[23]-[25], [33])-

We investigate homomorphisms between JC*-algebras.

Theorem 1. Let h : A — B be a mapping satisfying h(0) = 0 and h(2™u o
y) = h(2"u) o h(y) for allu e U(A), ally € A and all n € Z, for which there exists a
function ¢ : A x A —[0,00) such that

=1
oz, y) = ZQ—J@ (2792, 27y) < oo, (2.1)
7=0
1h(pz + py) — ph(z) — ph(y)l < e(,y) (2.2)
or all i € = € = and all z,y € A. Assume that
for all T! AeC| [NM=1 d all A A h
2'(7.
lim h(2"e) =¢. (2.3)

n—o00 on

Then the mapping h : A — B is a homomorphism.
Proof. Put p =1 € T'. It follows from Gavruta Theorem [7] that there exists a

unique additive mapping H : A — B such that

1.
Ih(z) = H(2)|| < 5¢(z, ) (2.4)
for all x € A. The additive mapping H : A — B is given by

H(z)= lim 2—h(2” x)

n—oo

45



CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

for all z € A.

By the assumption, for each pu € T,
Ih(2" p) — 2uh(2" " 2)|| < (2" 2, 2" )
for all x € A. One can show that
ik (2) — b (2" 2) | < [l - [B(2") — 2(2" )| < 92", 27 )
for all u € T! and all x € A. So

|h(2" ) — ph(2"2)| <[|A(2" ) — 2h(2" )| + |12 (2" ) — h(2"2)]

<p(2" 1w, 2" ) + (2" e, 2" )

for all p € T! and all x € A. Thus 27"||h(2"ux) — ph(2"z)|| — 0 as n — oo for all
p € Tt and all z € A. Hence

H(pz) = lim h(2" pz) = lim ph(2"z) H(z) (2.5)

for all u € T! and all = € A.
Now let A € C (A # 0) and M an integer greater than 4|A|. Then |7%| < + <

1- % = % By [13], Theorem 1, there exist three elements i, 2, 3 € T' such that

3% = p1 + p2 + ps. So by (2.5)

M A 1 A M A

= S Hu + oo+ pisw) = 5 (H(uw) + Hlpor) + H(po))
= S+ oo a5 Hr) = 532 H ()
= \H(x)

for all x € A. Hence

H(Cx +ny) = H(Cx) + H(ny) = CH(x) +nH(y)

for all (,n € C(¢,n # 0) and all z,y € A. We have that H(0z) = 0 = 0H (z) for all
xz € A. So the unique additive mapping H : A — B is a C-linear mapping.
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Since h(2"uoy) = h(2"u) o h(y) for all u € U(A), all y € A and all n € Z,
H(uoy) = nlirrgo 2%]1(2"11 oy) = nhHH;O %h(?”u) oh(y) = H(u) o h(y) (2.6)
for all u € U(A) and all y € A. By the additivity of H and (2.6),
2"H(uoy) = H(2"uoy) = H(uo (2"y)) = H(u) o h(2"y)
for all u € U(A) and all y € A. Hence
Huoy) = 2iﬂH(u) o h(2"y) = H(u) o 2inh(2"y) (2.7)
for all u € U(A) and all y € A. Taking the limit in (2.7) as n — oo, we obtain
H(uoy) = H(u) o H(y) (2.8)

for all u € U(A) and all y € A. Since H is C-linear and each z € A is a finite linear
combination of unitary elements (see [14], Theorem 4.1.7), i.e., z = Z;”:l Aju; (A €

C,u; € U(A)), it follows from (2.8) that

H(zoy)=H() Nujoy)=> NH(u;oy)
j=1 j=1

= Z’\jH(uj) oH(y) = H(Z)\juj) o H(y)

H(z) o H(y)

for all x,y € A.
By (2.3) and (2.6),

H(y) = H(eoy) = H(e)oh(y) = ¢ oh(y) = h(y)

for all y € A.
Therefore, the mapping h : A — B is a homomorphism, as desired. [
Corollary 2. Let h: A — B be a mapping satisfying h(0) = 0 and h(2™u o
y) = h(2™u) o h(y) for all u € U(A), all y € A and all n € Z, for which there exist
constants 0 > 0 and p € [0,1) such that

[A(px + py) — ph(z) — phy)l < 0(|z||” + [ly[|”)
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h(2" .
(2ne) =¢/. Then the mapping

for all p € T' and all x,y € A. Assume that lim,, .o
h: A— B is a homomorphism.
Proof. Define p(x,y) = 0(||z||” + ||y||P) and apply Theorem 1. OJ

Theorem 3. Let h : A — B be a mapping satisfying h(0) = 0 and h(2"u o
y) = h(2"u) o h(y) for allu €e U(A), ally € A and all n € Z, for which there exists a
function ¢ : A x A — [0,00) satisfying (2.1) and (2.3) such that

[h(pz + py) — ph(z) — ph(y)| < o(z,y) (2.9)

for w=1,i and all x,y € A. If h(tx) is continuous in t € R for each fized x € A,
then the mapping h : A — B is a homomorphism.
Proof. Put =1 in (2.9). By the same reasoning as in the proof of Theorem 1, there
exists a unique additive mapping H : A — B satisfying (2.4).

By the same reasoning as in the proof of [26], Theorem, the additive mapping
H: A — Bis R-linear.

Put g = ¢ in (2.9). By the same method as in the proof of Theorem 1, one
can obtain that

H(iz) = lim h2"iz) = lim ih(2"z)

=iH(x)

for all z € A.

For each element A € C, A = s + it, where s,t € R. So

H(\x) = H(sx + itx) = sH(z) + tH(iz) = sH(z) + itH (z) = (s + it)H(x)

= \H(z)

forall A € C and all z € A. Thus

H(Cx +ny) = H(Cz) + H(ny) = (H(z) +nH (y)

for all {,n € C, and all z,y € A. Hence the additive mapping H : A — B is C-linear.
The rest of the proof is the same as in the proof of Theorem 1. [J
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From now on, assume that A is a JC*-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set of
self-adjoint elements (see [2]).

Now we investigate continuous homomorphisms between JC*-algebras.

Theorem 4. Let h : A — B be a continuous mapping satisfying h(0) = 0
and h(2"uoy) = h(2™u) o h(y) for allu € I1(As,), ally € A and alln € Z, for which
there exists a function ¢ : A x A — [0,00) satisfying (2.1), (2.2) and (2.3). Then the
mapping h : A — B is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique
C-linear mapping H : A — B satisfying (2.4).
Since h(2"uoy) = h(2™u) o h(y) for all u € I;(Asq), all y € Aand all n € Z,

1 1

H(uoy)= lim z—nh(Q"u oy) = lim 2—nh(2"u) o h(y) = H(u) o h(y) (2.10)

for all u € I (As,) and all y € A. By the additivity of H and (2.10),
2"H(uoy) = H((2"uoy) = H(uo (2"y)) = H(u) o h(2"y)
for all u € I (As,) and all y € A. Hence
1 1
H(uoy) = Q—nH(u) o h(2™y) = H(u) o 2—”h(2ny) (2.11)

for all u € I (As,) and all y € A. Taking the limit in (2.11) as n — oo, we obtain

H(uoy)=H(u)o H(y) (2.12)

for all u € I (As,) and all y € A.
By (2.3) and (2.10),

H(y) = H(eoy) = H(e) o h(y) = €' o h(y) = h(y)

for all y € A. So H : A — B is continuous. But by the assumption that .4 has real
rank zero, it is easy to show that I1(As.) is dense in {z € Ay, | [[2|[ = 1}. So for
each w € {z € Ay, | ||z|| = 1}, there is a sequence {x;} such that k; — w as j — oo
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and k; € I1(Asq). Since H : A — B is continuous, it follows from (2.12) that

H(woy) = ( hm Kjoy) = gll>n<>10 H(kjoy) (2.13)

— lim H(k;) o H(y) = H(lim r;)o H(y)
j—oo j—oo

= H(w) o H(y)

for all w € {z € Asq | ||2]] = 1} and all y € A.

For each x € A, z = “’2” + zmgf, where z1 := “‘29” and x5 1= :’35:” are
self-adjoint.
First, consider the case that x; # 0,22 # 0. Since H : A — B is C-linear, it

follows from (2.13) that

Hwoy) = Hizi oy +ivz oy) = Hllarl|lp e oy +illeall 2 0w)
= (& |[[H(m 0 y) + i |22 | [H (2 0 y)
| 1|| HMH
= H(x) o H(y)

for all y € A.
Next, consider the case that x; # 0,22 = 0. Since H : A — B is C-linear, it
follows from (2.13) that

H(zoy) = H(z10y) = <”x1”|\x ou) = HxluH(Hj—j” oy)
= HleH(ﬁ—jH) o H(y) = H<||x1||ﬁ> o H(y) = H(x1) o H(y)

= H(z) o H(y)

for all y € A.
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Finally, consider the case that 1 = 0,29 # 0. Since H : A — B is C-linear,
it follows from (2.13) that

H(zoy) = H(izsoy) = H(inxznufc—ju oy) = Z"'“”Hﬂéfzn oy)
- z‘||x2||H<Hjj—jH> o H(y) = H<i||x2||||j—j“> o H(y) = H(ix) o H(y)
— H(z) o H(y)

for all y € A. Hence
H(xzoy) = H(x)o H(y)
for all z,y € A.
Therefore, the mapping h : A — B is a homomorphism, as desired. [
Corollary 5. Let h : A — B be a continuous mapping satisfying h(0) = 0
and h(2"uoy) = h(2"u) o h(y) for allu € I1(As,), ally € A and all n € Z, for which
there exist constants 0 > 0 and p € [0,1) such that

[Pz + py) — ph(z) — ph(y)| < 0(|2(|” +[ly[[*)

h(2" .
(2ne) e'. Then the mapping

for all p € T' and all z,y € A. Assume that lim,,_

h: A — B is a homomorphism.
Proof. Define p(z,y) = 0(||z||” + ||y||’) and apply Theorem 4. O

Theorem 6. Let h : A — B be a continuous mapping satisfying h(0) = 0
and h(2"uoy) = h(2™u) o h(y) for allu € I1(As,), ally € A and alln € Z, for which
there exists a function ¢ : A x A — [0,00) satisfying (2.1), (2.3) and (2.9). Then the
mapping h : A — B is a homomorphism.
Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique
C-linear mapping H : A — B satisfying (2.4).

The rest of the proof is the same as in the proofs of Theorems 1 and 4. [J

3. Stability of homomorphisms in JC*-algebras

In this section, we prove the generalized Hyers-Ulam stability of homomor-
phisms in JC*-algebras.
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Theorem 7. Let h : A — B be a mapping with h(0) = 0 for which there

exists a function ¢ : A* — [0,00) such that

o(z,y,z,w) == ZQ*jga(ij,ij,sz,ij) < 00, (3.1)
3=0
[h(px 4 py + 2z 0o w) — ph(x) — ph(y) — h(z) o h(w)|| < @z, y, 2, w) (3.2)

for all p € T' and all x,y,2z,w € A. Then there exists a unique homomorphism

H: A — B such that

Iha) ~ H@)| < 53(r,,0,0) (33)
for all x € A.
Proof. Put z = w = 0 in (3.2). By the same reasoning as in the proof of Theorem
1, there exists a unique C-linear mapping H : A — B satisfying (3.3). The C-linear
mapping H : A — B is given by

H(z) = lim %h(?”x) (3.4)

n—oo

for all z € A.
Let x =y =01in (3.2). Then we get

[h(z 0 w) — h(z) o h(w)]| < ¢(0,0, z, w)
for all z,w € A. Since

1 1
27,1@(0,072712,2”111) < 27@(0,0,2”2,2"10),

1

1
2n 11(272 0 2"w) = h(2"2) o h(2"w)|| < Z57¢(0,0,2%2,2"w)

IN

1
2790(0, 0,2"z,2"w)

for all z,w € A. By (3.1) and (3.5),

h(2%" h(2"z o0 2™
Hzow) = i METZO) _ py D202
2" 2 h(2™ 2
= lim (h( 2) o ut w)) = lim 7( ?) o lim L( w)
= H(z) o H(w)
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for all z,w € A. Hence the C-linear mapping H : A — B is a homomorphism
satisfying (3.3), as desired. OJ

Corollary 8. Let h : A — B be a mapping with h(0) = 0 for which there
exist constants 0 > 0 and p € [0,1) such that

[P + py + 2 0 w) — ph(x) — ph(y) —h(z) o h(w)]|
< OU2l” + [lyl1” + [12[1” + [lw]?)

for all p € T' and all z,y,2z,w € A. Then there exists a unique homomorphism

H : A— B such that
20
2-—-2p

1h(z) = H(z)[| < IEdlis

forall x € A.

Proof. Define ¢(x,y, z,w) = 0(||z[|” + ||ly||? + ||z||” + ||w||?) and apply Theorem 7. OJ
Theorem 9. Let h : A — B be a mapping with h(0) = 0 for which there

exists a function ¢ : A* — [0,00) satisfying (3.1) such that

[h(px + py + 2 0o w) — ph(z) = ph(y) = h(z) o h(w)]| < p(z,y, 2, w)

foru=1,i and all z,y,z,w € A. If h(tx) is continuous int € R for each fized x € A,
then there exists a unique homomorphism H : A — B satisfying (3.3).

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique
C-linear mapping H : A — B satisfying (3.3).

The rest of the proof is the same as in the proofs of Theorems 1 and 7. [J
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