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HOMOMORPHISMS BETWEEN JC∗-ALGEBRAS

CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

Abstract. It is shown that every almost linear mapping h : A → B of a

JC∗-algebra A into a JC∗-algebra B is a homomorphism when h(2nu◦y) =

h(2nu) ◦ h(y) for all unitaries u ∈ A, all y ∈ A and all n ∈ Z, and that

every almost linear continuous mapping h : A → B of a JC∗-algebra A of

real rank zero to a JC∗-algebra B is a homomorphism when h(2nu ◦ y) =

h(2nu) ◦ h(y) for all u ∈ {v ∈ A | v = v∗, ||v|| = 1, v is invertible}, all

y ∈ A and all n ∈ Z. We moreover prove the Hyers-Ulam stability of

homomorphisms in JC∗-algebras. This concept of stability of mappings

was introduced for the first time by Th.M. Rassias in his paper [On the

stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

72 (1978), 297-300].

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each

fixed x ∈ X. Th.M. Rassias [26] introduced the following inequality, that is known

as Cauchy-Rassias inequality : Assume that there exist constants ε ≥ 0 and p ∈ [0, 1)

such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [26] showed that there exists a unique R-linear

mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
||x||p
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for all x ∈ X. This inequality has provided a lot of influence in the development

of what is called generalized Hyers-Ulam stability of functional equations. Beginning

around the year 1980 the topic of approximate homomorphisms, or the stability of the

equation of homomorphism, was studied by a number of mathematicians. Găvruta

[7] generalized the Rassias’ result in the following form: Let G be an abelian group

and Y a Banach space. Denote by ϕ : G×G → [0,∞) a function such that

ϕ̃(x, y) =
∞∑

k=0

1
2k

ϕ(2kx, 2ky) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such that

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, x)

for all x ∈ G. C. Park [15] applied the Găvruta’s result to linear functional equa-

tions in Banach modules over a C∗-algebra. Various functional equations have been

investigated by several authors ([1], [3]-[6], [8]-[12], [16]-[25], [27]-[32]).

Throughout this paper, let A be a JC∗-algebra with norm ||·|| and unit e, and

B a JC∗-algebra with norm ‖ · ‖ and unit e′. Let U(A) = {u ∈ A | uu∗ = u∗u = e},

Asa = {x ∈ A | x = x∗}, and I1(Asa) = {v ∈ Asa | ||v|| = 1, v is invertible}.

Using the stability methods of linear mappings, we prove that every almost

linear mapping h : A → B is a homomorphism when h(2nu ◦ y) = h(2nu) ◦ h(y) for

all u ∈ U(A), all y ∈ A and all n ∈ Z, and that for a JC∗-algebra A of real rank

zero (see [2]), every almost linear continuous mapping h : A → B is a homomorphism

when h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z. We

moreover prove the Hyers-Ulam stability of homomorphisms in JC∗-algebras.

2. Homomorphisms between JC∗-algebras

The original motivation to introduce the class of nonassociative algebras

known as Jordan algebras came from quantum mechanics (see [33]). Let H be a
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complex Hilbert space, regarded as the “state space” of a quantum mechanical sys-

tem. Let L(H) be the real vector space of all bounded self-adjoint linear opera-

tors on H, interpreted as the (bounded) observables of the system. In 1932, Jordan

observed that L(H) is a (nonassociative) algebra via the anticommutator product

x ◦ y := xy+yx
2 . A commutative algebra X with product x ◦ y is called a Jordan

algebra if x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds.

A complex Jordan algebra C with product x◦y and involution x 7→ x∗ is called

a JB∗-algebra if C carries a Banach space norm ‖ · ‖ satisfying ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖

and ‖{xx∗x}|| = ‖x‖3. Here {xy∗z} := x ◦ (y∗ ◦ z) − y∗ ◦ (z ◦ x) + z ◦ (x ◦ y∗)

denotes the Jordan triple product of x, y, z ∈ C. A unital Jordan C∗-subalgebra of a

C∗-algebra, endowed with the anticommutator product, is called a JC∗-algebra (see

[23]-[25], [33]).

We investigate homomorphisms between JC∗-algebras.

Theorem 1. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exists a

function ϕ : A×A → [0,∞) such that

ϕ̃(x, y) :=
∞∑

j=0

1
2j

ϕ(2jx, 2jy) < ∞, (2.1)

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.2)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y ∈ A. Assume that

lim
n→∞

h(2ne)
2n

= e′. (2.3)

Then the mapping h : A → B is a homomorphism.

Proof. Put µ = 1 ∈ T1. It follows from Găvruta Theorem [7] that there exists a

unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x) (2.4)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx)
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for all x ∈ A.

By the assumption, for each µ ∈ T1,

‖h(2nµx)− 2µh(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all x ∈ A. One can show that

‖µh(2nx)− 2µh(2n−1x)‖ ≤ |µ| · ‖h(2nx)− 2h(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all µ ∈ T1 and all x ∈ A. So

‖h(2nµx)− µh(2nx)‖ ≤‖h(2nµx)− 2µh(2n−1x)‖+ ‖2µh(2n−1x)− µh(2nx)‖

≤ϕ(2n−1x, 2n−1x) + ϕ(2n−1x, 2n−1x)

for all µ ∈ T1 and all x ∈ A. Thus 2−n‖h(2nµx) − µh(2nx)‖ → 0 as n → ∞ for all

µ ∈ T1 and all x ∈ A. Hence

H(µx) = lim
n→∞

h(2nµx)
2n

= lim
n→∞

µh(2nx)
2n

= µH(x) (2.5)

for all µ ∈ T1 and all x ∈ A.

Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then | λ
M | < 1

4 <

1 − 2
3 = 1

3 . By [13], Theorem 1, there exist three elements µ1, µ2, µ3 ∈ T1 such that

3 λ
M = µ1 + µ2 + µ3. So by (2.5)

H(λx) = H(
M

3
· 3 λ

M
x) = M ·H(

1
3
· 3 λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x + µ2x + µ3x) =

M

3
(H(µ1x) + H(µ2x) + H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) =

M

3
· 3 λ

M
H(x)

= λH(x)

for all x ∈ A. Hence

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A. We have that H(0x) = 0 = 0H(x) for all

x ∈ A. So the unique additive mapping H : A → B is a C-linear mapping.
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Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z,

H(u ◦ y) = lim
n→∞

1
2n

h(2nu ◦ y) = lim
n→∞

1
2n

h(2nu) ◦ h(y) = H(u) ◦ h(y) (2.6)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (2.6),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)

for all u ∈ U(A) and all y ∈ A. Hence

H(u ◦ y) =
1
2n

H(u) ◦ h(2ny) = H(u) ◦ 1
2n

h(2ny) (2.7)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (2.7) as n →∞, we obtain

H(u ◦ y) = H(u) ◦H(y) (2.8)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a finite linear

combination of unitary elements (see [14], Theorem 4.1.7), i.e., x =
∑m

j=1 λjuj (λj ∈

C, uj ∈ U(A)), it follows from (2.8) that

H(x ◦ y) = H(
m∑

j=1

λjuj ◦ y) =
m∑

j=1

λjH(uj ◦ y)

=
m∑

j=1

λjH(uj) ◦H(y) = H(
m∑

j=1

λjuj) ◦H(y)

= H(x) ◦H(y)

for all x, y ∈ A.

By (2.3) and (2.6),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A.

Therefore, the mapping h : A → B is a homomorphism, as desired. �

Corollary 2. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exist

constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p)
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for all µ ∈ T1 and all x, y ∈ A. Assume that limn→∞
h(2ne)

2n = e′. Then the mapping

h : A → B is a homomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 1. �

Theorem 3. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exists a

function ϕ : A×A → [0,∞) satisfying (2.1) and (2.3) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.9)

for µ = 1, i and all x, y ∈ A. If h(tx) is continuous in t ∈ R for each fixed x ∈ A,

then the mapping h : A → B is a homomorphism.

Proof. Put µ = 1 in (2.9). By the same reasoning as in the proof of Theorem 1, there

exists a unique additive mapping H : A → B satisfying (2.4).

By the same reasoning as in the proof of [26], Theorem, the additive mapping

H : A → B is R-linear.

Put µ = i in (2.9). By the same method as in the proof of Theorem 1, one

can obtain that

H(ix) = lim
n→∞

h(2nix)
2n

= lim
n→∞

ih(2nx)
2n

= iH(x)

for all x ∈ A.

For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x) = (s + it)H(x)

= λH(x)

for all λ ∈ C and all x ∈ A. Thus

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping H : A → B is C-linear.

The rest of the proof is the same as in the proof of Theorem 1. �
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From now on, assume that A is a JC∗-algebra of real rank zero, where “real

rank zero” means that the set of invertible self-adjoint elements is dense in the set of

self-adjoint elements (see [2]).

Now we investigate continuous homomorphisms between JC∗-algebras.

Theorem 4. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exists a function ϕ : A×A → [0,∞) satisfying (2.1), (2.2) and (2.3). Then the

mapping h : A → B is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique

C-linear mapping H : A → B satisfying (2.4).

Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z,

H(u ◦ y) = lim
n→∞

1
2n

h(2nu ◦ y) = lim
n→∞

1
2n

h(2nu) ◦ h(y) = H(u) ◦ h(y) (2.10)

for all u ∈ I1(Asa) and all y ∈ A. By the additivity of H and (2.10),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)

for all u ∈ I1(Asa) and all y ∈ A. Hence

H(u ◦ y) =
1
2n

H(u) ◦ h(2ny) = H(u) ◦ 1
2n

h(2ny) (2.11)

for all u ∈ I1(Asa) and all y ∈ A. Taking the limit in (2.11) as n →∞, we obtain

H(u ◦ y) = H(u) ◦H(y) (2.12)

for all u ∈ I1(Asa) and all y ∈ A.

By (2.3) and (2.10),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A. So H : A → B is continuous. But by the assumption that A has real

rank zero, it is easy to show that I1(Asa) is dense in {x ∈ Asa | ||x|| = 1}. So for

each w ∈ {z ∈ Asa | ||z|| = 1}, there is a sequence {κj} such that κj → w as j →∞
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and κj ∈ I1(Asa). Since H : A → B is continuous, it follows from (2.12) that

H(w ◦ y) = H( lim
j→∞

κj ◦ y) = lim
j→∞

H(κj ◦ y) (2.13)

= lim
j→∞

H(κj) ◦H(y) = H( lim
j→∞

κj) ◦H(y)

= H(w) ◦H(y)

for all w ∈ {z ∈ Asa | ||z|| = 1} and all y ∈ A.

For each x ∈ A, x = x+x∗

2 + ix−x∗

2i , where x1 := x+x∗

2 and x2 := x−x∗

2i are

self-adjoint.

First, consider the case that x1 6= 0, x2 6= 0. Since H : A → B is C-linear, it

follows from (2.13) that

H(x ◦ y) = H(x1 ◦ y + ix2 ◦ y) = H(||x1||
x1

||x1||
◦ y + i||x2||

x2

||x2||
◦ y)

= ||x1||H(
x1

||x1||
◦ y) + i||x2||H(

x2

||x2||
◦ y)

= ||x1||H(
x1

||x1||
) ◦H(y) + i||x2||H(

x2

||x2||
) ◦H(y)

= {H(||x1||
x1

||x1||
) + iH(||x2||

x2

||x2||
)} ◦H(y) = H(x1 + ix2) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A.

Next, consider the case that x1 6= 0, x2 = 0. Since H : A → B is C-linear, it

follows from (2.13) that

H(x ◦ y) = H(x1 ◦ y) = H(||x1||
x1

||x1||
◦ y) = ||x1||H(

x1

||x1||
◦ y)

= ||x1||H(
x1

||x1||
) ◦H(y) = H(||x1||

x1

||x1||
) ◦H(y) = H(x1) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A.
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Finally, consider the case that x1 = 0, x2 6= 0. Since H : A → B is C-linear,

it follows from (2.13) that

H(x ◦ y) = H(ix2 ◦ y) = H(i||x2||
x2

||x2||
◦ y) = i||x2||H(

x2

||x2||
◦ y)

= i||x2||H(
x2

||x2||
) ◦H(y) = H(i||x2||

x2

||x2||
) ◦H(y) = H(ix2) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A. Hence

H(x ◦ y) = H(x) ◦H(y)

for all x, y ∈ A.

Therefore, the mapping h : A → B is a homomorphism, as desired. �

Corollary 5. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p)

for all µ ∈ T1 and all x, y ∈ A. Assume that limn→∞
h(2ne)

2n = e′. Then the mapping

h : A → B is a homomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 4. �

Theorem 6. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exists a function ϕ : A×A → [0,∞) satisfying (2.1), (2.3) and (2.9). Then the

mapping h : A → B is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique

C-linear mapping H : A → B satisfying (2.4).

The rest of the proof is the same as in the proofs of Theorems 1 and 4. �

3. Stability of homomorphisms in JC∗-algebras

In this section, we prove the generalized Hyers-Ulam stability of homomor-

phisms in JC∗-algebras.
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Theorem 7. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function ϕ : A4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw) < ∞, (3.1)

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖ ≤ ϕ(x, y, z, w) (3.2)

for all µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique homomorphism

H : A → B such that

‖h(x)−H(x)‖ ≤ 1
2
ϕ̃(x, x, 0, 0) (3.3)

for all x ∈ A.

Proof. Put z = w = 0 in (3.2). By the same reasoning as in the proof of Theorem

1, there exists a unique C-linear mapping H : A → B satisfying (3.3). The C-linear

mapping H : A → B is given by

H(x) = lim
n→∞

1
2n

h(2nx) (3.4)

for all x ∈ A.

Let x = y = 0 in (3.2). Then we get

‖h(z ◦ w)− h(z) ◦ h(w)‖ ≤ ϕ(0, 0, z, w)

for all z, w ∈ A. Since

1
22n

ϕ(0, 0, 2nz, 2nw) ≤ 1
2n

ϕ(0, 0, 2nz, 2nw),

1
22n

‖h(2nz ◦ 2nw)− h(2nz) ◦ h(2nw)‖ ≤ 1
22n

ϕ(0, 0, 2nz, 2nw)

≤ 1
2n

ϕ(0, 0, 2nz, 2nw)

for all z, w ∈ A. By (3.1) and (3.5),

H(z ◦ w) = lim
n→∞

h(22nz ◦ w)
22n

= lim
n→∞

h(2nz ◦ 2nw)
2n · 2n

= lim
n→∞

(
h(2nz)

2n
◦ h(2nw)

2n
) = lim

n→∞

h(2nz)
2n

◦ lim
n→∞

h(2nw)
2n

= H(z) ◦H(w)
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for all z, w ∈ A. Hence the C-linear mapping H : A → B is a homomorphism

satisfying (3.3), as desired. �

Corollary 8. Let h : A → B be a mapping with h(0) = 0 for which there

exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖

≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique homomorphism

H : A → B such that

‖h(x)−H(x)‖ ≤ 2θ

2− 2p
||x||p

for all x ∈ A.

Proof. Define ϕ(x, y, z, w) = θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) and apply Theorem 7. �

Theorem 9. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function ϕ : A4 → [0,∞) satisfying (3.1) such that

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖ ≤ ϕ(x, y, z, w)

for µ = 1, i and all x, y, z, w ∈ A. If h(tx) is continuous in t ∈ R for each fixed x ∈ A,

then there exists a unique homomorphism H : A → B satisfying (3.3).

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique

C-linear mapping H : A → B satisfying (3.3).

The rest of the proof is the same as in the proofs of Theorems 1 and 7. �
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