HOMOMORPHISMS BETWEEN $J C^{*}$-ALGEBRAS

CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

Abstract

It is shown that every almost linear mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ of a $J C^{*}$-algebra \mathcal{A} into a $J C^{*}$-algebra \mathcal{B} is a homomorphism when $h\left(2^{n} u \circ y\right)=$ $h\left(2^{n} u\right) \circ h(y)$ for all unitaries $u \in \mathcal{A}$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, and that every almost linear continuous mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ of a $J C^{*}$-algebra \mathcal{A} of real rank zero to a $J C^{*}$-algebra \mathcal{B} is a homomorphism when $h\left(2^{n} u \circ y\right)=$ $h\left(2^{n} u\right) \circ h(y)$ for all $u \in\left\{v \in \mathcal{A} \mid v=v^{*},\|v\|=1, v\right.$ is invertible $\}$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$. We moreover prove the Hyers-Ulam stability of homomorphisms in $J C^{*}$-algebras. This concept of stability of mappings was introduced for the first time by Th.M. Rassias in his paper [On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300].

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Th.M. Rassias [26] introduced the following inequality, that is known as Cauchy-Rassias inequality: Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in X$. Th.M. Rassias [26] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. This inequality has provided a lot of influence in the development of what is called generalized Hyers-Ulam stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was studied by a number of mathematicians. Găvruta [7] generalized the Rassias' result in the following form: Let G be an abelian group and Y a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \varphi\left(2^{k} x, 2^{k} y\right)<\infty
$$

for all $x, y \in G$. Suppose that $f: G \rightarrow Y$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$

for all $x \in G$. C. Park [15] applied the Găvruta's result to linear functional equations in Banach modules over a C^{*}-algebra. Various functional equations have been investigated by several authors ([1], [3]-[6], [8]-[12], [16]-[25], [27]-[32]).

Throughout this paper, let \mathcal{A} be a $J C^{*}$-algebra with norm $\|\cdot\|$ and unit e, and \mathcal{B} a $J C^{*}$-algebra with norm $\|\cdot\|$ and unit e^{\prime}. Let $\mathcal{U}(\mathcal{A})=\left\{u \in \mathcal{A} \mid u u^{*}=u^{*} u=e\right\}$, $\mathcal{A}_{s a}=\left\{x \in \mathcal{A} \mid x=x^{*}\right\}$, and $I_{1}\left(\mathcal{A}_{s a}\right)=\left\{v \in \mathcal{A}_{s a} \mid\|v\|=1, v\right.$ is invertible $\}$.

Using the stability methods of linear mappings, we prove that every almost linear mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism when $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, and that for a $J C^{*}$-algebra \mathcal{A} of real rank zero (see [2]), every almost linear continuous mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism when $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$. We moreover prove the Hyers-Ulam stability of homomorphisms in $J C^{*}$-algebras.

2. Homomorphisms between $J C^{*}$-algebras

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [33]). Let \mathcal{H} be a
complex Hilbert space, regarded as the "state space" of a quantum mechanical system. Let $\mathcal{L}(\mathcal{H})$ be the real vector space of all bounded self-adjoint linear operators on \mathcal{H}, interpreted as the (bounded) observables of the system. In 1932, Jordan observed that $\mathcal{L}(\mathcal{H})$ is a (nonassociative) algebra via the anticommutator product $x \circ y:=\frac{x y+y x}{2}$. A commutative algebra X with product $x \circ y$ is called a Jordan algebra if $x^{2} \circ(x \circ y)=x \circ\left(x^{2} \circ y\right)$ holds.

A complex Jordan algebra \mathcal{C} with product $x \circ y$ and involution $x \mapsto x^{*}$ is called a $J B^{*}$-algebra if \mathcal{C} carries a Banach space norm $\|\cdot\|$ satisfying $\|x \circ y\| \leq\|x\| \cdot\|y\|$ and $\left\|\left\{x x^{*} x\right\}\right\|=\|x\|^{3}$. Here $\left\{x y^{*} z\right\}:=x \circ\left(y^{*} \circ z\right)-y^{*} \circ(z \circ x)+z \circ\left(x \circ y^{*}\right)$ denotes the Jordan triple product of $x, y, z \in \mathcal{C}$. A unital Jordan C^{*}-subalgebra of a C^{*}-algebra, endowed with the anticommutator product, is called a $J C^{*}$-algebra (see [23]-[25], [33]).

We investigate homomorphisms between $J C^{*}$-algebras.
Theorem 1. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ\right.$ $y)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: \mathcal{A} \times \mathcal{A} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty \tag{2.1}\\
\|h(\mu x+\mu y)-\mu h(x)-\mu h(y)\| \leq \varphi(x, y) \tag{2.2}
\end{gather*}
$$

for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$ and all $x, y \in \mathcal{A}$. Assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{h\left(2^{n} e\right)}{2^{n}}=e^{\prime} \tag{2.3}
\end{equation*}
$$

Then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.
Proof. Put $\mu=1 \in \mathbb{T}^{1}$. It follows from Găvruta Theorem [7] that there exists a unique additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x) \tag{2.4}
\end{equation*}
$$

for all $x \in \mathcal{A}$. The additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is given by

$$
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right)
$$

for all $x \in \mathcal{A}$.
By the assumption, for each $\mu \in \mathbb{T}^{1}$,

$$
\left\|h\left(2^{n} \mu x\right)-2 \mu h\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)
$$

for all $x \in \mathcal{A}$. One can show that

$$
\left\|\mu h\left(2^{n} x\right)-2 \mu h\left(2^{n-1} x\right)\right\| \leq|\mu| \cdot\left\|h\left(2^{n} x\right)-2 h\left(2^{n-1} x\right)\right\| \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. So

$$
\begin{aligned}
\left\|h\left(2^{n} \mu x\right)-\mu h\left(2^{n} x\right)\right\| & \leq\left\|h\left(2^{n} \mu x\right)-2 \mu h\left(2^{n-1} x\right)\right\|+\left\|2 \mu h\left(2^{n-1} x\right)-\mu h\left(2^{n} x\right)\right\| \\
& \leq \varphi\left(2^{n-1} x, 2^{n-1} x\right)+\varphi\left(2^{n-1} x, 2^{n-1} x\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Thus $2^{-n}\left\|h\left(2^{n} \mu x\right)-\mu h\left(2^{n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$. Hence

$$
\begin{equation*}
H(\mu x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} \mu x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{\mu h\left(2^{n} x\right)}{2^{n}}=\mu H(x) \tag{2.5}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in \mathcal{A}$.
Now let $\lambda \in \mathbb{C}(\lambda \neq 0)$ and M an integer greater than $4|\lambda|$. Then $\left|\frac{\lambda}{M}\right|<\frac{1}{4}<$ $1-\frac{2}{3}=\frac{1}{3}$. By [13], Theorem 1, there exist three elements $\mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{T}^{1}$ such that $3 \frac{\lambda}{M}=\mu_{1}+\mu_{2}+\mu_{3}$. So by (2.5)

$$
\begin{aligned}
H(\lambda x) & =H\left(\frac{M}{3} \cdot 3 \frac{\lambda}{M} x\right)=M \cdot H\left(\frac{1}{3} \cdot 3 \frac{\lambda}{M} x\right)=\frac{M}{3} H\left(3 \frac{\lambda}{M} x\right) \\
& =\frac{M}{3} H\left(\mu_{1} x+\mu_{2} x+\mu_{3} x\right)=\frac{M}{3}\left(H\left(\mu_{1} x\right)+H\left(\mu_{2} x\right)+H\left(\mu_{3} x\right)\right) \\
& =\frac{M}{3}\left(\mu_{1}+\mu_{2}+\mu_{3}\right) H(x)=\frac{M}{3} \cdot 3 \frac{\lambda}{M} H(x) \\
& =\lambda H(x)
\end{aligned}
$$

for all $x \in \mathcal{A}$. Hence

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}(\zeta, \eta \neq 0)$ and all $x, y \in \mathcal{A}$. We have that $H(0 x)=0=0 H(x)$ for all $x \in \mathcal{A}$. So the unique additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is a \mathbb{C}-linear mapping.

Since $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$,

$$
\begin{equation*}
H(u \circ y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u \circ y\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right) \circ h(y)=H(u) \circ h(y) \tag{2.6}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. By the additivity of H and (2.6),

$$
2^{n} H(u \circ y)=H\left(2^{n} u \circ y\right)=H\left(u \circ\left(2^{n} y\right)\right)=H(u) \circ h\left(2^{n} y\right)
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Hence

$$
\begin{equation*}
H(u \circ y)=\frac{1}{2^{n}} H(u) \circ h\left(2^{n} y\right)=H(u) \circ \frac{1}{2^{n}} h\left(2^{n} y\right) \tag{2.7}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Taking the limit in (2.7) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u \circ y)=H(u) \circ H(y) \tag{2.8}
\end{equation*}
$$

for all $u \in \mathcal{U}(\mathcal{A})$ and all $y \in \mathcal{A}$. Since H is \mathbb{C}-linear and each $x \in \mathcal{A}$ is a finite linear combination of unitary elements (see [14], Theorem 4.1.7), i.e., $x=\sum_{j=1}^{m} \lambda_{j} u_{j}\left(\lambda_{j} \in\right.$ $\mathbb{C}, u_{j} \in \mathcal{U}(\mathcal{A})$), it follows from (2.8) that

$$
\begin{aligned}
H(x \circ y) & =H\left(\sum_{j=1}^{m} \lambda_{j} u_{j} \circ y\right)=\sum_{j=1}^{m} \lambda_{j} H\left(u_{j} \circ y\right) \\
& =\sum_{j=1}^{m} \lambda_{j} H\left(u_{j}\right) \circ H(y)=H\left(\sum_{j=1}^{m} \lambda_{j} u_{j}\right) \circ H(y) \\
& =H(x) \circ H(y)
\end{aligned}
$$

for all $x, y \in \mathcal{A}$.
By (2.3) and (2.6),

$$
H(y)=H(e \circ y)=H(e) \circ h(y)=e^{\prime} \circ h(y)=h(y)
$$

for all $y \in \mathcal{A}$.
Therefore, the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, as desired.
Corollary 2. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ\right.$ $y)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|h(\mu x+\mu y)-\mu h(x)-\mu h(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in \mathcal{A}$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(2^{n} e\right)}{2^{n}}=e^{\prime}$. Then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ and apply Theorem 1 .
Theorem 3. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ\right.$ $y)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in \mathcal{U}(\mathcal{A})$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: \mathcal{A} \times \mathcal{A} \rightarrow[0, \infty)$ satisfying (2.1) and (2.3) such that

$$
\begin{equation*}
\|h(\mu x+\mu y)-\mu h(x)-\mu h(y)\| \leq \varphi(x, y) \tag{2.9}
\end{equation*}
$$

for $\mu=1, i$ and all $x, y \in \mathcal{A}$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.
Proof. Put $\mu=1$ in (2.9). By the same reasoning as in the proof of Theorem 1, there exists a unique additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (2.4).

By the same reasoning as in the proof of [26], Theorem, the additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{R}-linear.

Put $\mu=i$ in (2.9). By the same method as in the proof of Theorem 1, one can obtain that

$$
H(i x)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} i x\right)}{2^{n}}=\lim _{n \rightarrow \infty} \frac{i h\left(2^{n} x\right)}{2^{n}}=i H(x)
$$

for all $x \in \mathcal{A}$.
For each element $\lambda \in \mathbb{C}, \lambda=s+i t$, where $s, t \in \mathbb{R}$. So

$$
\begin{aligned}
H(\lambda x) & =H(s x+i t x)=s H(x)+t H(i x)=s H(x)+i t H(x)=(s+i t) H(x) \\
& =\lambda H(x)
\end{aligned}
$$

for all $\lambda \in \mathbb{C}$ and all $x \in \mathcal{A}$. Thus

$$
H(\zeta x+\eta y)=H(\zeta x)+H(\eta y)=\zeta H(x)+\eta H(y)
$$

for all $\zeta, \eta \in \mathbb{C}$, and all $x, y \in \mathcal{A}$. Hence the additive mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear.
The rest of the proof is the same as in the proof of Theorem 1.

From now on, assume that \mathcal{A} is a $J C^{*}$-algebra of real rank zero, where "real rank zero" means that the set of invertible self-adjoint elements is dense in the set of self-adjoint elements (see [2]).

Now we investigate continuous homomorphisms between $J C^{*}$-algebras.
Theorem 4. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in I_{1}\left(\mathcal{A}_{\text {sa }}\right)$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: \mathcal{A} \times \mathcal{A} \rightarrow[0, \infty)$ satisfying (2.1), (2.2) and (2.3). Then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (2.4).

Since $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$,

$$
\begin{equation*}
H(u \circ y)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u \circ y\right)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} u\right) \circ h(y)=H(u) \circ h(y) \tag{2.10}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$. By the additivity of H and (2.10),

$$
2^{n} H(u \circ y)=H\left(2^{n} u \circ y\right)=H\left(u \circ\left(2^{n} y\right)\right)=H(u) \circ h\left(2^{n} y\right)
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$. Hence

$$
\begin{equation*}
H(u \circ y)=\frac{1}{2^{n}} H(u) \circ h\left(2^{n} y\right)=H(u) \circ \frac{1}{2^{n}} h\left(2^{n} y\right) \tag{2.11}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$. Taking the limit in (2.11) as $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
H(u \circ y)=H(u) \circ H(y) \tag{2.12}
\end{equation*}
$$

for all $u \in I_{1}\left(\mathcal{A}_{s a}\right)$ and all $y \in \mathcal{A}$.
By (2.3) and (2.10),

$$
H(y)=H(e \circ y)=H(e) \circ h(y)=e^{\prime} \circ h(y)=h(y)
$$

for all $y \in \mathcal{A}$. So $H: \mathcal{A} \rightarrow \mathcal{B}$ is continuous. But by the assumption that \mathcal{A} has real rank zero, it is easy to show that $I_{1}\left(\mathcal{A}_{s a}\right)$ is dense in $\left\{x \in A_{s a} \mid\|x\|=1\right\}$. So for each $w \in\left\{z \in \mathcal{A}_{s a} \mid\|z\|=1\right\}$, there is a sequence $\left\{\kappa_{j}\right\}$ such that $\kappa_{j} \rightarrow w$ as $j \rightarrow \infty$
and $\kappa_{j} \in I_{1}\left(\mathcal{A}_{s a}\right)$. Since $H: \mathcal{A} \rightarrow \mathcal{B}$ is continuous, it follows from (2.12) that

$$
\begin{align*}
H(w \circ y) & =H\left(\lim _{j \rightarrow \infty} \kappa_{j} \circ y\right)=\lim _{j \rightarrow \infty} H\left(\kappa_{j} \circ y\right) \tag{2.13}\\
& =\lim _{j \rightarrow \infty} H\left(\kappa_{j}\right) \circ H(y)=H\left(\lim _{j \rightarrow \infty} \kappa_{j}\right) \circ H(y) \\
& =H(w) \circ H(y)
\end{align*}
$$

for all $w \in\left\{z \in \mathcal{A}_{s a} \mid\|z\|=1\right\}$ and all $y \in \mathcal{A}$.
For each $x \in \mathcal{A}, x=\frac{x+x^{*}}{2}+i \frac{x-x^{*}}{2 i}$, where $x_{1}:=\frac{x+x^{*}}{2}$ and $x_{2}:=\frac{x-x^{*}}{2 i}$ are self-adjoint.

First, consider the case that $x_{1} \neq 0, x_{2} \neq 0$. Since $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear, it follows from (2.13) that

$$
\begin{aligned}
H(x \circ y) & =H\left(x_{1} \circ y+i x_{2} \circ y\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} \circ y+i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} \circ y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} \circ y\right)+i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|} \circ y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) \circ H(y)+i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) \circ H(y) \\
& =\left\{H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right)+i H\left(\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right)\right\} \circ H(y)=H\left(x_{1}+i x_{2}\right) \circ H(y) \\
& =H(x) \circ H(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$.
Next, consider the case that $x_{1} \neq 0, x_{2}=0$. Since $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear, it follows from (2.13) that

$$
\begin{aligned}
H(x \circ y) & =H\left(x_{1} \circ y\right)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|} \circ y\right)=\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|} \circ y\right) \\
& =\left\|x_{1}\right\| H\left(\frac{x_{1}}{\left\|x_{1}\right\|}\right) \circ H(y)=H\left(\left\|x_{1}\right\| \frac{x_{1}}{\left\|x_{1}\right\|}\right) \circ H(y)=H\left(x_{1}\right) \circ H(y) \\
& =H(x) \circ H(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$.

Finally, consider the case that $x_{1}=0, x_{2} \neq 0$. Since $H: \mathcal{A} \rightarrow \mathcal{B}$ is \mathbb{C}-linear, it follows from (2.13) that

$$
\begin{aligned}
H(x \circ y) & =H\left(i x_{2} \circ y\right)=H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|} \circ y\right)=i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|} \circ y\right) \\
& =i\left\|x_{2}\right\| H\left(\frac{x_{2}}{\left\|x_{2}\right\|}\right) \circ H(y)=H\left(i\left\|x_{2}\right\| \frac{x_{2}}{\left\|x_{2}\right\|}\right) \circ H(y)=H\left(i x_{2}\right) \circ H(y) \\
& =H(x) \circ H(y)
\end{aligned}
$$

for all $y \in \mathcal{A}$. Hence

$$
H(x \circ y)=H(x) \circ H(y)
$$

for all $x, y \in \mathcal{A}$.
Therefore, the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism, as desired.
Corollary 5. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in I_{1}\left(\mathcal{A}_{\text {sa }}\right)$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\|h(\mu x+\mu y)-\mu h(x)-\mu h(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y \in \mathcal{A}$. Assume that $\lim _{n \rightarrow \infty} \frac{h\left(2^{n} e\right)}{2^{n}}=e^{\prime}$. Then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.
Proof. Define $\varphi(x, y)=\theta\left(\|x\|^{p}+\|y\|^{p}\right)$ and apply Theorem 4.
Theorem 6. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous mapping satisfying $h(0)=0$ and $h\left(2^{n} u \circ y\right)=h\left(2^{n} u\right) \circ h(y)$ for all $u \in I_{1}\left(\mathcal{A}_{\text {sa }}\right)$, all $y \in \mathcal{A}$ and all $n \in \mathbb{Z}$, for which there exists a function $\varphi: \mathcal{A} \times \mathcal{A} \rightarrow[0, \infty)$ satisfying (2.1), (2.3) and (2.9). Then the mapping $h: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (2.4).

The rest of the proof is the same as in the proofs of Theorems 1 and 4.

3. Stability of homomorphisms in $J C^{*}$-algebras

In this section, we prove the generalized Hyers-Ulam stability of homomorphisms in $J C^{*}$-algebras.

Theorem 7. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ such that

$$
\begin{gather*}
\widetilde{\varphi}(x, y, z, w):=\sum_{j=0}^{\infty} 2^{-j} \varphi\left(2^{j} x, 2^{j} y, 2^{j} z, 2^{j} w\right)<\infty \tag{3.1}\\
\|h(\mu x+\mu y+z \circ w)-\mu h(x)-\mu h(y)-h(z) \circ h(w)\| \leq \varphi(x, y, z, w) \tag{3.2}
\end{gather*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in \mathcal{A}$. Then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\|h(x)-H(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x, 0,0) \tag{3.3}
\end{equation*}
$$

for all $x \in \mathcal{A}$.
Proof. Put $z=w=0$ in (3.2). By the same reasoning as in the proof of Theorem 1 , there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (3.3). The \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is given by

$$
\begin{equation*}
H(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} h\left(2^{n} x\right) \tag{3.4}
\end{equation*}
$$

for all $x \in \mathcal{A}$.
Let $x=y=0$ in (3.2). Then we get

$$
\|h(z \circ w)-h(z) \circ h(w)\| \leq \varphi(0,0, z, w)
$$

for all $z, w \in \mathcal{A}$. Since

$$
\begin{aligned}
& \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
& \frac{1}{2^{2 n}}\left\|h\left(2^{n} z \circ 2^{n} w\right)-h\left(2^{n} z\right) \circ h\left(2^{n} w\right)\right\| \leq \frac{1}{2^{2 n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right) \\
& \leq \frac{1}{2^{n}} \varphi\left(0,0,2^{n} z, 2^{n} w\right)
\end{aligned}
$$

for all $z, w \in \mathcal{A}$. By (3.1) and (3.5),

$$
\begin{aligned}
H(z \circ w) & =\lim _{n \rightarrow \infty} \frac{h\left(2^{2 n} z \circ w\right)}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} z \circ 2^{n} w\right)}{2^{n} \cdot 2^{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{h\left(2^{n} z\right)}{2^{n}} \circ \frac{h\left(2^{n} w\right)}{2^{n}}\right)=\lim _{n \rightarrow \infty} \frac{h\left(2^{n} z\right)}{2^{n}} \circ \lim _{n \rightarrow \infty} \frac{h\left(2^{n} w\right)}{2^{n}} \\
& =H(z) \circ H(w)
\end{aligned}
$$

for all $z, w \in \mathcal{A}$. Hence the \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism satisfying (3.3), as desired.

Corollary 8. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping with $h(0)=0$ for which there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\| h(\mu x+\mu y+z \circ w) & -\mu h(x)-\mu h(y)-h(z) \circ h(w) \| \\
& \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, y, z, w \in \mathcal{A}$. Then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ such that

$$
\|h(x)-H(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

for all $x \in \mathcal{A}$.
Proof. Define $\varphi(x, y, z, w)=\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right)$ and apply Theorem 7.
Theorem 9. Let $h: \mathcal{A} \rightarrow \mathcal{B}$ be a mapping with $h(0)=0$ for which there exists a function $\varphi: \mathcal{A}^{4} \rightarrow[0, \infty)$ satisfying (3.1) such that

$$
\|h(\mu x+\mu y+z \circ w)-\mu h(x)-\mu h(y)-h(z) \circ h(w)\| \leq \varphi(x, y, z, w)
$$

for $\mu=1, i$ and all $x, y, z, w \in \mathcal{A}$. If $h(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathcal{A}$, then there exists a unique homomorphism $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (3.3).

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique \mathbb{C}-linear mapping $H: \mathcal{A} \rightarrow \mathcal{B}$ satisfying (3.3).

The rest of the proof is the same as in the proofs of Theorems 1 and 7.

References

[1] Baker, J.A., A general functional equation and its stability, Proc. Amer. Math. Soc., 133(2005), 1657-1664.
[2] Brown, L., Pedersen, G., C^{*}-algebras of real rank zero, J. Funct. Anal., 99(1991), 131149.
[3] Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002.
[4] Czerwik, S., Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press Inc., Palm Harbor, Florida, 2003.
[5] Doróczy, Z., Maksa, G., Páles, Z., Functional equations involving means and their Gauss composition, Proc. Amer. Math. Soc., 134(2006), 521-530.
[6] Faizev, V.A., Rassias, Th.M., Sahoo, P.K., The space of (ψ, γ)-additive mappings on semigroups, Trans. Amer. Math. Soc., 354(2002), 4455-4472.
[7] Găvruta, P., A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[8] Haruki, H., Rassias, Th.M., A new functional equation of Pexider type related to the complex exponential function, Trans. Amer. Math. Soc., 347(1995), 3111-3119.
[9] Hyers, D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
[10] Hyers, D.H., Isac, G., Rassias, Th.M., Stability of Functional Equations in Several Variables, Birkhäuser, Boston, Basel and Berlin, 1998.
[11] Hyers, D.H., Rassias, Th.M., Approximate homomorphisms, Aequationes Math., 44(1992), 125-153.
[12] Jung, S., Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., 126(1998), 3137-3143.
[13] Kadison, R.V., Pedersen, G., Means and convex combinations of unitary operators, Math. Scand., 57(1985), 249-266.
[14] Kadison, R.V., Ringrose, J.R., Fundamentals of the Theory of Operator Algebras, Elementary Theory, Academic Press, New York, 1983.
[15] Park, C., On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., 275(2002), 711-720.
[16] Park, C., Functional equations in Banach modules, Indian J. Pure Appl. Math., 33(2002), 1077-1086.
[17] Park, C., Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc., 131(2003), 2501-2504.
[18] Park, C., Modified Trif's functional equations in Banach modules over a C^{*}-algebra and approximate algebra homomorphisms, J. Math. Anal. Appl., 278(2003), 93-108.
[19] Park, C., Linear functional equations in Banach modules over a C^{*}-algebra, Acta Appl. Math., 77(2003), 125-161.
[20] Park, C., On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc., 132(2004), 1739-1745.
[21] Park, C., Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl., 293(2004), 419-434.
[22] Park, C., Universal Jensen's equations in Banach modules over a C^{*}-algebra and its unitary group, Acta Math. Sinica, 20(2004), 1047-1056.
[23] Park, C., Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc., 36(2005), 79-97.
[24] Park, C., Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC ${ }^{*}$-algebra derivations, J. Lie Theory, 15(2005), 393-414.
[25] Park, C., Approximate homomorphisms on JB*-triples, J. Math. Anal. Appl., 306 (2005), 375-381.
[26] Rassias, Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[27] Rassias, Th.M., The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378.
[28] Rassias, Th.M., On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251(2000), 264-284.
[29] Rassias, Th.M., On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130.
[30] Rassias, Th.M., Šemrl, P., On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114(1992), 989-993.
[31] Sinopoulos, P., Wilson's functional equation for vector and matrix functions, Proc. Amer. Math. Soc., 125(1997), 1089-1094.
[32] Ulam, S.M., Problems in Modern Mathematics, Wiley, New York, 1960.
[33] Upmeier, H., Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, Regional Conference Series in Mathematics No. 67, Amer. Math. Soc., Providence, 1987.

Department of Mathematics, Chungnam National University,
Daejeon 305-764, South Korea
E-mail address: cgparkcnu.ac.kr

Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
E-mail address: trassiasmath.ntua.gr

