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A MONOTONY METHOD IN QUASISTATIC PROCESSES
FOR VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI AND SEDIK DJABI

Abstract. In this paper, we study a quasistatic problem for semi-linear
rate-type viscoplastic models with two parameters y, 6; x may be inter-
preted as the absolute temperature or an internal state variable. The exis-
tence and uniqueness of the solution is proved using monotony arguments

followed by a Cauchy-Lipschitz technique.

1. Introduction

Throughout the paper, 2 is a bounded in IRN(N = 1,2, 3) with a smooth
boundary 92 = I" and T'; is an open subset of I' such that measl’y > 0. We denote
I'y; =T —T4. Let v be the outward unit normal vector on I' and Sy the set of second

order symmetric tensors on IR™. Let T be a real positive constant. LET us the mixed

problem.
& = E(e(u),0,x) + F(o,e(w),0) inQx (0,T) (1)

Divo+f=0 inQx(0,7T) (2)

w=g ononl; x (0,T) (3)

ov="h onTlyx(0,T) (4)

u(0) = g, o(0) =0y inQ (5)

in which the unknowns are the displacement function u : Q x [0,7] — R, the
stress function o : Q x [0,7] — Sy This problem represents a quasistatic problem

for rate-type models of the form (1) in with € is a nonlinear function depending on
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e(u) ,0 and x ,are parameters and €(u) : Q x [0,7] — Sy is the small strain tensor
(i.e. e(u) = $Vu+ Vu). In (1) £ and F are given constitutive function .

In (2) Div o represent the divergence of vector valued function o and f
represents the given body force, g and h are the given bounded data and, finally,
ug, 09 are the initial data.

In the case when e depends only on Yy, existence and uniqueness results for
problems of the form (1)-(5) was obtained by Sofonea (1991) reducing the studied
problem to an ordinary differential equation in a Hilbert space. In the case when
£ is a nonlinear function depending only on (%) and x existence and uniqueness
results for problems of the form (1)-(5) was obtained by Djabi (1993) using monotony
arguments followed by a Cauchy-Lipschitz technique.

The purpose of this paper is to give a now proof for the existence and unique-
ness of the solution for the problem (1)-(5) there based only on monotony arguments

followed by a Cauchy-Lipschitz technique (theorem 3.1).

2. Notations and preliminaries

Everywhere in this paper we utilize the following notations: ”.“ the inner
product on the spaces RN, RM and Sy and |- | are the Euclidean norms on these

spaces.

H ={v=(v)|vuel?*Q),i=1,N},

le{’l):('l}i)|’l]7;EH1(Q), Zzl,N},

H={7= () | 7y =750 € L*(), i,j =1,N },
Hi={717=(m;) | DivreH},
Y={r=(rn)|m €L?R),i=1M}

The spaces H, Hy, H, H1 and Y are real Hilbert spaces endowed with the canonical

inner products denoted by < -, >y, < -,- >H,, < 5, >y, < 5,0 >y, and < -, >y

1

respectively.
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Let Hp = [H2(T')] and ~ : H; — Hp be the trace map. We denote by
V={ueH |yu=0onT; }
and let E be the subspace of Hr defined by
E=~V)={¢{€Hr|{=0o0nT1}. (6)

Let H}. = [H2(I')]" be the strong dual of the space Hr and let < -,- > denote the

duality between H{. and Hy. If 7 € H; there exists an element v, 7 € H}. such that
< YT,y >=<T,e(v) >4 + < Div 7, >y for all v € Hy. (7)

By 7v we shall understand the element of E’ (the strong dual of E) that is
the projection of ~,7 on E.

Let us now denote by V the following subspace of H;.
V={7€H| Divr=0inQ, 7v=0o0n I'y}
Using (7), it may be proved that (V') is the orthogonal complement of V in H, hence
<7,e(v) >y=0, forallv eV, r € V. (8)

Finally, for every real Hilbert space X we denote by |- |x the norm on X and

by C7(0,T,X)(j = 0,1) the spaces defined as follows:
C%0,T,X) ={z:[0,T] — X | z is continuous }.
Let us recall that if C7(0,T, X) are real Banach spaces endowed with the norms

C*0,T,X) = {z:]0,T] — X | there exists # the derivate of z and 2 € C°(0,T, X)}.

= t 9
lorx = ma |2(0)]x )
and

lzl1,7,x = |zlo,r,x + [£]o,r,x
respectively.
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Let us recall that if K is a convex closed non empty set of X and P: X — K

is the projector map on K, we have
y=Pzrifonlyifye Kand <y—=x, z—x >x>0forall z € K. (10)

3. An existence and uniqueness result

In the study of the problem (1)-(5), we consider the following assumptions:

E:Q xSy x LA(Q)PxL*(Q)M— Sy and

(a) there exists m > 0 such that

< &(e1,0,x) — E(e2,0,x),e1 — 2 >>

> mle; — eo|? forall e1,e5 € Sy, ,0 € L2(Q)P, x € L*(2)Ma.e.in Q,

(b) there exists L’ > 0 such that

(11)
E(e1,01,x1) — E(e2,02, x2)| < L'|er — 2| + {61 — 02 + [x1 — x|
forall 1,69 € Sy, a.e.in €,
(¢) x — &(x,¢e, 0, x) isa measurable function with respect to
the lebesgue measurein € foralle € Sy
(d) z — &(x,0,0,0) e H
F:Qx Sy xSy x L2(Q)PxL*(Q)M — Sy and
a) there exists L > Osuch that
|F(z,01,61,61,x1) — F(,02,62,02, x2)| <
< L(Joy — oa| + |e1 — g2 + 01 — 02| + [x1 — x2l) (12)
(b)x—F(z,0,¢,0,x)is a measurable function with respect to
the Lebesgue measureon 2, forallo,e € Sy, x € RM 0 € RY,
(¢)x — F(,0,0,0,0) € H.
fect(0,1,H), ge€(0.T Hr), heC'(0,T,E) (13)
Ug € Hl, oo € Hi (14)
Divog+ f(0)=0inQ, uy=g(0) onTy, oov=~hn(0) onIs. (15)
9P (o,T, L2 (Q)P) x€EC° (o,T, L2 (Q)M) (16)

The main result of this section is as follows.
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Theorem 3.1. Let (11)-(16) hold. Then there exists a unique solution
ue CH(0,T,Hy),0 € C*(0,T,H;) of the problem (1)-(5). In order to prove theorem
3.1, we need some preliminaries.

Let @ € C*(0,T,Hy),5 € C*(0,T,H;)be two functions such that

Dive+ f=0in Q2 x (0,T) (17)
@=gonTy x(0,T) (18)
gv=honTyx(0,T) (19)

(the existence of this couple follows from (13) and the properties of the trace maps).

Considering the functions defined by
U= u—1u, Oo0=0-—0, (20)
Ug = Ug — Uo, 09 = 09 — 0g, (21)
it easy to see that the triplet (u,o) € C1 (0,7, H x H;)is a solution of the problem
(1)-(5) if and only if
(a,5) € C* (0, T,V x V) (22)
& = E(e(i) +e(a),0,x) + F(6 +6,2(u) +£(@),0,x) =6 in @ x (0,T)  (23)

w(0) = @g, 7(0) =3¢ in (24)

y(t) = G(0(), x(8), 2(t), y(t), (1)) (25)

2(0) = zo, ¥(0) =yo (26)

In which the unknowns are the function z : [0.7] — X and y : [0.T] —

Y G:L2(Q)PxL*(Q)M x X x Y x H— H is a nonlinear operator, and X : [0.7] —

L2(Q)M 0 : [0.T] — L?*(Q2)P are parameters, where H is a real Hilbert space, X,Y,

are two orthogonal subspaces of H such that H = X @ Y and L2(Q)™, L2(Q)P, are
real normed space.

Hence (22)-(24) may be written in the form (25)-(26) where

y=0,r= c(u),t= e(ﬁ)
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and replacing the spaces ¢ (V),V,H, by X,Y,H respectively.
For resolving the problem (22)-(24), we consider the product Hilbert
space Z = ¢ (V) x V which H=¢ (V') @ V,and the problem G defined by

G: L2(Q)PxL*(Q)M x e (V) xvx H—H

G0, . 2,y.) = € (q-+ (), 000), (1)) + Fly+5(8), w+2(@),0(0), (1)) —5(¢) (27)

We have the following result.
Lemma 3.1. Let 0(t) € L2 (Q)", x(t) € L2 Q)M z € X,y € Y and t € [0.T].

Then there exists a unique element z = (¢ (v),7) € Z such that
T=G(0,x,2,y,e(v)) (28)
Proof. The uniqueness part is a consequence of (11); indeed, if
z1=(e(v1), 1), 2z2=1(e(va),2)EZ

are such that

1 = g (9, X,$7y,5(7]1>)

T2 = g (07Xa l‘,y75(7)2)) )
using (11-a) we have

(11— 72, e(v1) —e(v2))y =

((e(w1) +2(a(0), 00), (1)) — E(e(wa) + (1), 0(0), (1), e(w1) = 2(02))

>mle(v1) —e(v2)|y

Using now the orthogonality in H of (11 —72) € V and (e(v1) — e(v2)) €
e (V) ,we deduce that £(vy) = e(v2), which implies 7 = 5.

For the existence part,let us consider the operator S : e (V) — & (V) given by
S = Pog, where P is the projector map ¢ (V).
30



A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

Using now the hypothesis £, F' and the properties of the projectors, we can

prove for 6, x, x,y fixed, the following inequalities:

<S (aaX7x7y7Q1) - S(e,X,zyy,QQ) ,q1 — q2>H Z
Z <g (97X7x,y7q1) - g (G,X,%ya%) ,q1 — Q2>H Z (29)

2
>mlq — g2y -

Moreover, from (11), (12), and the properties of the projectors, we get

190, %2, 4, 1) = S (0,X: 2,4, @2) |5, <
<G O, x wy.q1) = G0, X%, ,q2) |y < (30)
<L'|g - Q2|31-
Hence S (6,x,y,.) : € (V) — & (V) is a strongly monotone Lipschitz operator.
Using now Browder’s surjectivity theorem we get that there exists e(v) € ¢(V)such
that S(0, x,,y,e(v)) = O.vy. It results that the element G(6, x,z,y,(v)) belongs

to V and we finish the proof using z = (£(v), ) where

T = g(97 X5 &5y Y,s E(U))'

The previous lemma allows to consider the operator B : L?(Q)F x L2(Q)M x
Z — Z defined as follows:
B0, x,w) =z
w=(x,y),z = (e(v),7) (31)
T=G(0,x 7, y,£(v)).
Moreover we have
Lemma 3.2. For all § € L2(Q)? and x € L}*(Q)M wy,ws € Z, the operator
L2(Q)P x L2(Q)M x Z — Z is continuous and there exists C' > 0 such that

[B(0, x,w1) — B(0, x,w5)|z < Clwy — waz (32)

for all € L2(Q)F and x € L2(Q)Mwy,wy € Z.
Proof. Let 0; € L*(Q)F, w; = (z;,y;) € Z and

zi = (e(v;), ) = B(0s, x4, w;) , 1=1,2.
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Using (32)
T; :g(oi,Xivxivyi75(vi)))7 1= 132 (33)
which implies
S(0s, xi» i, Yi, €(vi)) = Ocqvry 5 0= 1,2. (34)
Using the hypothesis on £, F', and the properties of the projectors, we get:
mle (v1) — € (v1)y 3 << S(01, X1, 21,91, 2(v1))
=801, x1,71,y1,€(02)),6(v1) — (v2) >3
=< S(02, X2, 22, Y2,€(v2)) — S(01, x1, 21, Y1, €(v2)), €(v1) — £(v2) >3,<
< 1G(02, X2, %2, y2,(v2)) — G(01, X1, %1, y1,€(v2)) |1 X |e(v1) — 5(U2)‘${
which implies
1
|5('Ul) - 5(”2)|’H < E X |Q(92,X2,x2,y2,5(’02)) - g(glathlayl’g(vQ)”H . (35)
Using now (12), (34) we get

|71 — Tl < L'le(v1) — e(va|n+

(36)
|G (01, X1, 71, y1,€(v2)) — G(62, X2, 2, Y2, €(v2) |1
Hence by (36) it result
— <
|Tl 7'2|H = (37)

< (E 41601, x1, 21,91, 2(v2)) — G602, X2, T2, Y2, £(v2) |10
Using now (11)-(12)(27) and the fact that ,& are continuous, we get that
‘g(elathlvylaff(UQ)) - g(027x27$27 y27€(’l}2>|')-( -0

When 0, — 65,in LQ(Q)Pﬂcl — xoin X, y1 — y2 in Y it follows that B is
continuous operator. Taking 6; = 63 and X;=Xs from (37) we get (33).
Proof of theorem 3.1. Let A: [0.T] x Z — Z and 2 be defined by:

{A(t,z) = B(0(t), x(t),2) for all t € [0.T] and z € Z (38)

20 = (w0, 90) = € ((u0) , G0) -

32



A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS
Using the definition of operator B, we get that
x=¢e(u) € CH0,T,e(V)) € CH0,T,7'),y =7 € C(0,T,V)
is solution to (22)-(24), if and only
2= (&,9) = A0, 2(t)) for all t € [0.T] (39)

z(0) = 2o (40)
In order to study the problem (39)-(40), let us remark that, by lemma 3.2, A

is a continuous operator and
|A(t, z1) — A(t, 22)|z < Clz1 — 22|, for all t € [0.T] and 21,20 € Z.

Moreover, by (14), (38), @ € C1(0,T, H;) and ¢ € C*(0,T,H1)
We get 2y belongs to Z and by lemma 3.2 and the classical Cauchy-Lipschitz
theorem we have that z € C1(0,T, Z) and the proof of theorem 3.1 is complete.
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