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A MONOTONY METHOD IN QUASISTATIC PROCESSES
FOR VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI AND SEDIK DJABI

Abstract. In this paper, we study a quasistatic problem for semi-linear

rate-type viscoplastic models with two parameters χ, θ; χ may be inter-

preted as the absolute temperature or an internal state variable. The exis-

tence and uniqueness of the solution is proved using monotony arguments

followed by a Cauchy-Lipschitz technique.

1. Introduction

Throughout the paper, Ω is a bounded in IRN (N = 1, 2, 3) with a smooth

boundary ∂Ω = Γ and Γ1 is an open subset of Γ such that measΓ1 > 0. We denote

Γ2 = Γ −Γ1. Let ν be the outward unit normal vector on Γ and SN the set of second

order symmetric tensors on IRN . Let T be a real positive constant.LET us the mixed

problem.

σ̇ = E(ε(u̇), θ, χ) + F (σ, ε(u), θ) in Ω× (0, T ) (1)

Div σ + f = 0 in Ω× (0, T ) (2)

u = g on onΓ1 × (0, T ) (3)

σν = h on Γ2 × (0, T ) (4)

u(0) = u0, σ(0) = σ0 in Ω (5)

in which the unknowns are the displacement function u : Ω × [0, T ] → RN , the

stress function σ : Ω × [0, T ] → SN This problem represents a quasistatic problem

for rate-type models of the form (1) in with ε is a nonlinear function depending on
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ε(u̇) , θ and χ ,are parameters and ε(u) : Ω × [0, T ] → SN is the small strain tensor

(i.e. ε(u) = 1
2∇u +∇tu). In (1) E and F are given constitutive function .

In (2) Div σ represent the divergence of vector valued function σ and f

represents the given body force, g and h are the given bounded data and, finally,

u0, σ0 are the initial data.

In the case when ε depends only on χ, existence and uniqueness results for

problems of the form (1)-(5) was obtained by Sofonea (1991) reducing the studied

problem to an ordinary differential equation in a Hilbert space. In the case when

E is a nonlinear function depending only on ε(u̇) and χ existence and uniqueness

results for problems of the form (1)-(5) was obtained by Djabi (1993) using monotony

arguments followed by a Cauchy-Lipschitz technique.

The purpose of this paper is to give a now proof for the existence and unique-

ness of the solution for the problem (1)-(5) there based only on monotony arguments

followed by a Cauchy-Lipschitz technique (theorem 3.1).

2. Notations and preliminaries

Everywhere in this paper we utilize the following notations: ”.“ the inner

product on the spaces RN , RM and SN and | · | are the Euclidean norms on these

spaces.

H = { v = (vi) | vi ∈ L2(Ω), i = 1, N },

H1 = { v = (vi) | vi ∈ H1(Ω), i = 1, N },

H = { τ = (τij) | τij = τji ∈ L2(Ω), i, j = 1, N },

H1 = { τ = (τij) | Div τ ∈ H },

Y = { κ = (κi) | κi ∈ L2(Ω), i = 1,M }.

The spaces H, H1, H, H1 and Y are real Hilbert spaces endowed with the canonical

inner products denoted by < ·, · >H , < ·, · >H1 , < ·, · >H, < ·, · >H1 and < ·, · >Y

respectively.
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Let HΓ = [H
1
2 (Γ)]N and γ : H1 → HΓ be the trace map. We denote by

V = { u ∈ H1 | γu = 0 on Γ1 }

and let E be the subspace of HΓ defined by

E = γ(V ) = { ξ ∈ HΓ | ξ = 0 on Γ1}. (6)

Let H ′
Γ = [H− 1

2 (Γ)]N be the strong dual of the space HΓ and let < ·, · > denote the

duality between H ′
Γ and HΓ. If τ ∈ H1 there exists an element γντ ∈ H ′

Γ such that

< γντ, γv >=< τ, ε(v) >H + < Div τ, v >H for all v ∈ H1. (7)

By τν we shall understand the element of E′ (the strong dual of E) that is

the projection of γντ on E.

Let us now denote by V the following subspace of H1.

V = { τ ∈ H1 | Div τ = 0 in Ω, τν = 0 on Γ2 }

Using (7), it may be proved that ε(V ) is the orthogonal complement of V in H, hence

< τ, ε(v) >H= 0, for all v ∈ V, τ ∈ V. (8)

Finally, for every real Hilbert space X we denote by | · |X the norm on X and

by Cj(0, T, X)(j = 0, 1) the spaces defined as follows:

C0(0, T,X) = {z : [0, T ] → X | z is continuous }.

Let us recall that if Cj(0, T, X) are real Banach spaces endowed with the norms

C1(0, T, X) = {z : [0, T ] → X | there exists ż the derivate of z and ż ∈ C0(0, T,X)}.

|z|0,T,X = max
t∈[0,T ]

|z(t)|X (9)

and

|z|1,T,X = |z|0,T,X + |ż|0,T,X

respectively.
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Let us recall that if K is a convex closed non empty set of X and P : X → K

is the projector map on K, we have

y = Px if only if y ∈ K and < y − x, z − x >X≥ 0 for all z ∈ K. (10)

3. An existence and uniqueness result

In the study of the problem (1)-(5), we consider the following assumptions:

E : Ω× SN × L2(Ω)p×L2(Ω)M→ SN and

(a) there exists m > 0 such that

< E(ε1, θ, χ)− E(ε2, θ, χ), ε1 − ε2 >≥

≥ m|ε1 − ε2|2 for all ε1, ε2 ∈ SN , , θ ∈ L2(Ω)p, χ ∈ L2(Ω)Ma.e. inΩ,

(b) there exists L′ > 0 such that

|E(ε1, θ1, χ1)− E(ε2, θ2, χ2)| ≤ L′|ε1 − ε2|+ |θ1 − θ2|+ |χ1 − χ2|

for all ε1, ε2 ∈ SN , a.e. inΩ,

(c) x → E(x, ε, θ, χ) is a measurable function with respect to

the lebesgue measure in Ω for all ε ∈ SN ,

(d) x → E(x, 0, 0, 0) ∈ H

(11)



F : Ω× SN × SN × L2(Ω)p×L2(Ω)M → SN and

a) there exists L > 0such that

|F (x, σ1,ε1,θ1, χ1)− F (x, σ2,ε2,θ2, χ2)| ≤

≤ L (|σ1 − σ2|+ |ε1 − ε2|+ |θ1 − θ2|+ |χ1 − χ2|)

(b) x→F (x, σ, ε, θ, χ) is a measurable function with respect to

the Lebesgue measure onΩ, for allσ, ε ∈ SN , κ ∈ RM , θ ∈ RP ,

(c) x → F (x, 0, 0, 0, 0) ∈ H.

(12)

f ∈ C1 (0, T, H) , g ∈ (0, T, HΓ) , h ∈ C1 (0, T, E′) (13)

u0 ∈ H1, σ0 ∈ H1 (14)

Div σ0 + f (0) = 0 in Ω, u0 = g (0) on Γ1, σ0ν = h (0) on Γ2. (15)

θ ∈ C0
(
0, T, L2 (Ω)P

)
.χ ∈ C0

(
0, T, L2 (Ω)M

)
(16)

The main result of this section is as follows.
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Theorem 3.1. Let (11)-(16) hold. Then there exists a unique solution

u ∈ C1 (0, T, H1) , σ ∈ C1 (0, T,H1) of the problem (1)-(5). In order to prove theorem

3.1, we need some preliminaries.

Let ũ ∈ C1 (0, T, H1) , σ̃ ∈ C1 (0, T,H1)be two functions such that

Div σ̃ + f = 0 in Ω× (0, T ) (17)

ũ = g on Γ1 × (0, T ) (18)

σ̃ν = h on Γ2 × (0, T ) (19)

(the existence of this couple follows from (13) and the properties of the trace maps).

Considering the functions defined by

ū = u− ũ, σ̄ = σ − σ̃, (20)

ū0 = u0 − ũ0, σ̄0 = σ0 − σ̃0, (21)

it easy to see that the triplet (u, σ) ∈ C1 (0, T, H ×H1)is a solution of the problem

(1)-(5) if and only if

(ū, σ̄) ∈ C1 (0, T, V × V) (22)

σ̇ = E(ε(u̇) + ε(
.
ũ), θ, χ) + F (σ̄ + σ̃, ε(ū) + ε(ũ), θ, χ)−

.
σ̃ in Ω× (0, T ) (23)

ū(0) = ū0, σ̄(0) = σ̄0 in Ω (24)

hence we may write (22)-(24) in the form

ẏ(t) = G(θ(t), χ(t), x(t), y(t), ẋ(t)) (25)

x(0) = x0, y(0) = y0 (26)

In which the unknowns are the function x : [0.T ] → X and y : [0.T ] →

Y G:L2(Ω)p×L2(Ω)M × X × Y × H→ H is a nonlinear operator, and X : [0.T ] →

L2(Ω)M , θ : [0.T ] → L2(Ω)p are parameters, where H is a real Hilbert space, X, Y ,

are two orthogonal subspaces of H such that H = X ⊕ Y and L2(Ω)M , L2(Ω)p, are

real normed space.

Hence (22)-(24) may be written in the form (25)-(26) where

y = σ̄, x = ε (ū) , ẋ = ε
( .
ū
)
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and replacing the spaces ε (V ) ,V,H, by X, Y,H respectively.

For resolving the problem (22)-(24), we consider the product Hilbert

space Z = ε (V )× V which H=ε (V )⊕ V,and the problem G defined by

G : L2(Ω)p×L2(Ω)M × ε (V )× v × H→H

G(θ, χ, x, y, q) = E
(
q + ε(

.
ũ), θ̇(t), χ(t))

)
+F (y+ σ̃(t), x+ε(ũ), θ(t), χ(t))−

.
σ̃(t) (27)

We have the following result.

Lemma 3.1. Let θ(t) ∈ L2 (Ω)P
, χ(t) ∈ L2(Ω)M x ∈ X, y ∈ Y and t ∈ [0.T ].

Then there exists a unique element z = (ε (v) , τ) ∈ Z such that

τ = G (θ, χ, x, y, ε(v)) (28)

Proof. The uniqueness part is a consequence of (11); indeed, if

z1 = (ε (v1) , τ1), z2 = (ε (v2) , τ2) ∈ Z

are such that

τ1 = G (θ, χ, x, y, ε(v1))

τ2 = G (θ, χ, x, y, ε(v2)) ,

using (11-a) we have

〈τ1 − τ2, ε(v1)− ε(v2)〉H =

〈
E(ε(v1) + ε(

.
ũ(t)), θ(t), χ(t)))− E(ε(v2) + ε(

.
ũ(t)), θ(t), χ(t)), ε(v1)− ε(v2)

〉
H

≥ m |ε(v1)− ε(v2)|H

Using now the orthogonality in H of (τ1 − τ2) ∈ V and (ε(v1)− ε(v2)) ∈

ε (V ) ,we deduce that ε(v1) = ε(v2), which implies τ1 = τ2.

For the existence part,let us consider the operator S : ε (V ) → ε (V ) given by

S = P ◦ G, where P is the projector map ε (V ) .
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Using now the hypothesis E , F and the properties of the projectors, we can

prove for θ, χ, x, y fixed, the following inequalities:
〈S (θ, χ, x, y, q1)− S (θ, χ, x, y, q2) , q1 − q2〉H ≥

≥ 〈G (θ, χ, x, y, q1)− G (θ, χ, x, y, q2) , q1 − q2〉H ≥

≥ m |q1 − q2|2H .

(29)

Moreover, from (11), (12), and the properties of the projectors, we get
|S (θ, χ, x, y, q1)− S (θ, χ, x, y, q2)|H ≤

≤ |G (θ, χ, x, y, q1)− G (θ, χ, x, y, q2)|H ≤

≤ L
′ |q1 − q2|2H .

(30)

Hence S (θ, x, y, .) : ε (V ) → ε (V ) is a strongly monotone Lipschitz operator.

Using now Browder’s surjectivity theorem we get that there exists ε(v) ∈ ε(V )such

that S(θ, χ, x, y, ε(v)) = 0ε(V ). It results that the element G(θ, χ, x, y, ε(v)) belongs

to V and we finish the proof using z = (ε(v), τ) where

τ = G(θ, χ, x, y, ε(v)).

The previous lemma allows to consider the operator B : L2(Ω)P ×L2(Ω)M ×

Z → Z defined as follows: 
B(θ, χ, ω) = z

ω = (x, y), z = (ε(v), τ)

τ = G(θ, χ, x, y, ε(v)).

(31)

Moreover we have

Lemma 3.2. For all θ ∈ L2(Ω)P and χ ∈ L2(Ω)M ω1, ω2 ∈ Z, the operator

L2(Ω)P × L2(Ω)M × Z → Z is continuous and there exists C > 0 such that

|B(θ, χ, ω1)−B(θ, χ, ω2)|Z ≤ C|ω1 − ω2|Z (32)

for all θ ∈ L2(Ω)P and χ ∈ L2(Ω)Mω1, ω2 ∈ Z.

Proof. Let θi ∈ L2(Ω)P , ωi = (xi, yi) ∈ Z and

zi = (ε(vi), τi) = B(θi, χi, ωi) , i = 1, 2.
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Using (32)

τi = G(θi, χi, xi, yi, ε (vi))), i = 1, 2 (33)

which implies

S(θi, χi, xi, yi, ε(vi)) = 0ε(V ) , i = 1, 2. (34)

Using the hypothesis on E , F , and the properties of the projectors, we get:

m|ε (v1)− ε (v1)2 |
2
H ≤< S(θ1, χ1, x1, y1, ε(v1))

−S(θ1, χ1, x1, y1, ε(v2)), ε(v1)− ε(v2) >H

=< S(θ2, χ2, x2, y2, ε(v2))− S(θ1, χ1, x1, y1, ε(v2)), ε(v1)− ε(v2) >2
H≤

≤ |G(θ2, χ2, x2, y2, ε(v2))− G(θ1, χ1, x1, y1, ε(v2))|H × |ε(v1)− ε(v2)|2H

which implies

|ε(v1)− ε(v2)|H ≤ 1
m
× |G(θ2, χ2, x2, y2, ε(v2))− G(θ1, χ1, x1, y1, ε(v2))|H . (35)

Using now (12), (34) we get |τ1 − τ2|H ≤ L′|ε(v1)− ε(v2|H+

|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H
(36)

Hence by (36) it result |τ1 − τ2|H ≤

≤ (L′

m + 1)|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H
(37)

Using now (11)-(12)(27) and the fact that σ̄,
.
σ̃ are continuous, we get that

|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H → 0

When θ1 → θ2, in L2(Ω)P
x1 → x2 in X, y1 → y2 in Y it follows that B is

continuous operator. Taking θ1 = θ2 and X1=X2 from (37) we get (33).

Proof of theorem 3.1. Let A : [0.T ]× Z → Z and z0 be defined by:

{A(t, z) = B(θ(t), χ(t), z) for all t ∈ [0.T ] and z ∈ Z (38)

z0 = (x0, y0) = ε ((u0) , σ̄0) .
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Using the definition of operator B, we get that

x = ε(
.
ū) ∈ C1(0, T, ε (V )) ∈ C1(0, T, Z ′), y = σ̄ ∈ C1(0, T,V)

is solution to (22)-(24), if and only

ż = (ẋ, ẏ) = A(θ, z(t)) for all t ∈ [0.T ] (39)

z(0) = z0 (40)

In order to study the problem (39)-(40), let us remark that, by lemma 3.2,A

is a continuous operator and

|A(t, z1)−A(t, z2)|Z ≤ C|z1 − z2|Z , for all t ∈ [0.T ] and z1, z2 ∈ Z.

Moreover, by (14), (38), ũ ∈ C1(0, T, H1) and σ̃ ∈ C1(0, T,H1)

We get z0 belongs to Z and by lemma 3.2 and the classical Cauchy-Lipschitz

theorem we have that z ∈ C1(0, T, Z) and the proof of theorem 3.1 is complete.
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