A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI AND SEDIK DJABI

Abstract

In this paper, we study a quasistatic problem for semi-linear rate-type viscoplastic models with two parameters $\chi, \theta ; \chi$ may be interpreted as the absolute temperature or an internal state variable. The existence and uniqueness of the solution is proved using monotony arguments followed by a Cauchy-Lipschitz technique.

1. Introduction

Throughout the paper, Ω is a bounded in $\operatorname{IR}^{N}(N=1,2,3)$ with a smooth boundary $\partial \Omega=\Gamma$ and Γ_{1} is an open subset of Γ such that meas $\Gamma_{1}>0$. We denote $\Gamma_{2}=\Gamma-\bar{\Gamma}_{1}$. Let ν be the outward unit normal vector on Γ and S_{N} the set of second order symmetric tensors on $I R^{N}$. Let T be a real positive constant.LET us the mixed problem.

$$
\begin{gather*}
\dot{\sigma}=\mathcal{E}(\varepsilon(\dot{u}), \theta, \chi)+F(\sigma, \varepsilon(u), \theta) \quad \text { in } \Omega \times(0, T) \tag{1}\\
\text { Div } \sigma+f=0 \quad \text { in } \Omega \times(0, T) \tag{2}\\
u=g \quad \text { on } \text { on } \Gamma_{1} \times(0, T) \tag{3}\\
\sigma \nu=h \quad \text { on } \Gamma_{2} \times(0, T) \tag{4}\\
u(0)=u_{0}, \quad \sigma(0)=\sigma_{0} \quad \text { in } \Omega \tag{5}
\end{gather*}
$$

in which the unknowns are the displacement function $u: \Omega \times[0, T] \rightarrow R^{N}$, the stress function $\sigma: \Omega \times[0, T] \rightarrow S_{N}$ This problem represents a quasistatic problem for rate-type models of the form (1) in with ε is a nonlinear function depending on

[^0]$\varepsilon(\dot{u}), \theta$ and χ, are parameters and $\varepsilon(u): \Omega \times[0, T] \rightarrow S_{N}$ is the small strain tensor (i.e. $\varepsilon(u)=\frac{1}{2} \nabla u+\nabla^{t} u$). In (1) \mathcal{E} and F are given constitutive function .

In (2) Div σ represent the divergence of vector valued function σ and f represents the given body force, g and h are the given bounded data and, finally, u_{0}, σ_{0} are the initial data.

In the case when ε depends only on χ, existence and uniqueness results for problems of the form (1)-(5) was obtained by Sofonea (1991) reducing the studied problem to an ordinary differential equation in a Hilbert space. In the case when \mathcal{E} is a nonlinear function depending only on $\varepsilon(\dot{u})$ and χ existence and uniqueness results for problems of the form (1)-(5) was obtained by Djabi (1993) using monotony arguments followed by a Cauchy-Lipschitz technique.

The purpose of this paper is to give a now proof for the existence and uniqueness of the solution for the problem (1)-(5) there based only on monotony arguments followed by a Cauchy-Lipschitz technique (theorem 3.1).

2. Notations and preliminaries

Everywhere in this paper we utilize the following notations: "." the inner product on the spaces $\mathbb{R}^{N}, \mathbb{R}^{M}$ and S_{N} and $|\cdot|$ are the Euclidean norms on these spaces.

$$
\begin{gathered}
H=\left\{v=\left(v_{i}\right) \mid v_{i} \in L^{2}(\Omega), i=\overline{1, N}\right\} \\
H_{1}=\left\{v=\left(v_{i}\right) \mid v_{i} \in H^{1}(\Omega), i=\overline{1, N}\right\} \\
\mathcal{H}=\left\{\tau=\left(\tau_{i j}\right) \mid \tau_{i j}=\tau_{j i} \in L^{2}(\Omega), i, j=\overline{1, N}\right\}, \\
\mathcal{H}_{1}=\left\{\tau=\left(\tau_{i j}\right) \mid \operatorname{Div} \tau \in H\right\} \\
Y=\left\{\kappa=\left(\kappa_{i}\right) \mid \kappa_{i} \in L^{2}(\Omega), i=\overline{1, M}\right\}
\end{gathered}
$$

The spaces $H, H_{1}, \mathcal{H}, \mathcal{H}_{1}$ and Y are real Hilbert spaces endowed with the canonical inner products denoted by $\left.\left.\left.<\cdot, \cdot\rangle_{H},<\cdot, \cdot\right\rangle_{H_{1}},<\cdot, \cdot\right\rangle_{\mathcal{H}},<\cdot, \cdot\right\rangle_{\mathcal{H}_{1}}$ and $\left.<\cdot, \cdot\right\rangle_{Y}$ respectively.

A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS
Let $H_{\Gamma}=\left[H^{\frac{1}{2}}(\Gamma)\right]^{N}$ and $\gamma: H_{1} \rightarrow H_{\Gamma}$ be the trace map. We denote by

$$
V=\left\{u \in H_{1} \mid \gamma u=0 \text { on } \Gamma_{1}\right\}
$$

and let E be the subspace of H_{Γ} defined by

$$
\begin{equation*}
E=\gamma(V)=\left\{\xi \in H_{\Gamma} \mid \xi=0 \text { on } \Gamma_{1}\right\} . \tag{6}
\end{equation*}
$$

Let $H_{\Gamma}^{\prime}=\left[H^{-\frac{1}{2}}(\Gamma)\right]^{N}$ be the strong dual of the space H_{Γ} and let $\left.<\cdot, \cdot\right\rangle$ denote the duality between H_{Γ}^{\prime} and H_{Γ}. If $\tau \in \mathcal{H}_{1}$ there exists an element $\gamma_{\nu} \tau \in H_{\Gamma}^{\prime}$ such that

$$
\begin{equation*}
<\gamma_{\nu} \tau, \gamma v>=<\tau, \varepsilon(v)>_{\mathcal{H}}+<\operatorname{Div} \tau, v>_{H} \text { for all } v \in H_{1} . \tag{7}
\end{equation*}
$$

By $\tau \nu$ we shall understand the element of E^{\prime} (the strong dual of E) that is the projection of $\gamma_{\nu} \tau$ on E.

Let us now denote by \mathcal{V} the following subspace of \mathcal{H}_{1}.

$$
\mathcal{V}=\left\{\tau \in \mathcal{H}_{1} \mid \text { Div } \tau=0 \text { in } \Omega, \quad \tau \nu=0 \text { on } \Gamma_{2}\right\}
$$

Using (7), it may be proved that $\varepsilon(V)$ is the orthogonal complement of \mathcal{V} in \mathcal{H}, hence

$$
\begin{equation*}
<\tau, \varepsilon(v)>_{\mathcal{H}}=0, \text { for all } v \in V, \tau \in \mathcal{V} . \tag{8}
\end{equation*}
$$

Finally, for every real Hilbert space X we denote by $|\cdot|_{X}$ the norm on X and by $C^{j}(0, T, X)(j=0,1)$ the spaces defined as follows:

$$
C^{0}(0, T, X)=\{z:[0, T] \rightarrow X \mid z \text { is continuous }\} .
$$

Let us recall that if $C^{j}(0, T, X)$ are real Banach spaces endowed with the norms $C^{1}(0, T, X)=\left\{z:[0, T] \rightarrow X \mid\right.$ there exists \dot{z} the derivate of z and $\left.\dot{z} \in C^{0}(0, T, X)\right\}$.

$$
\begin{equation*}
|z|_{0, T, X}=\max _{t \in[0, T]}|z(t)|_{X} \tag{9}
\end{equation*}
$$

and

$$
|z|_{1, T, X}=|z|_{0, T, X}+|\dot{z}|_{0, T, X}
$$

respectively

Let us recall that if K is a convex closed non empty set of X and $P: X \rightarrow K$ is the projector map on K, we have

$$
\begin{equation*}
y=P x \text { if only if } y \in K \text { and }<y-x, z-x>_{X} \geq 0 \text { for all } z \in K \tag{10}
\end{equation*}
$$

3. An existence and uniqueness result

In the study of the problem (1)-(5), we consider the following assumptions:
$\mathcal{E}: \Omega \times S_{N} \times L^{2}(\Omega)^{p} \times L^{2}(\Omega)^{M} \rightarrow S_{N}$ and
(a) there exists $m>0$ such that
$<\mathcal{E}\left(\varepsilon_{1}, \theta, \chi\right)-\mathcal{E}\left(\varepsilon_{2}, \theta, \chi\right), \varepsilon_{1}-\varepsilon_{2}>\geq$
$\geq m\left|\varepsilon_{1}-\varepsilon_{2}\right|^{2}$ for all $\varepsilon_{1}, \varepsilon_{2} \in S_{N}, \theta \in L^{2}(\Omega)^{p}, \chi \in L^{2}(\Omega)^{M}$ a.e.in Ω,
(b) there exists $L^{\prime}>0$ such that
$\left|\mathcal{E}\left(\varepsilon_{1}, \theta_{1}, \chi_{1}\right)-\mathcal{E}\left(\varepsilon_{2}, \theta_{2}, \chi_{2}\right)\right| \leq L^{\prime}\left|\varepsilon_{1}-\varepsilon_{2}\right|+\left|\theta_{1}-\theta_{2}\right|+\left|\chi_{1}-\chi_{2}\right|$
for all $\varepsilon_{1}, \varepsilon_{2} \in S_{N}$, a.e. in Ω,
(c) $x \rightarrow \mathcal{E}(x, \varepsilon, \theta, \chi)$ is a measurable function with respect to
the lebesgue measure in Ω for all $\varepsilon \in \mathrm{S}_{N}$,
(d) $x \rightarrow \mathcal{E}(x, 0,0,0) \in \mathcal{H}$
$\int: \Omega \times S_{N} \times S_{N} \times L^{2}(\Omega)^{p} \times L^{2}(\Omega)^{M} \rightarrow S_{N}$ and
a) there exists $L>0$ such that

$$
\begin{align*}
& \quad\left|F\left(x, \sigma_{1}, \varepsilon_{1}, \theta_{1}, \chi_{1}\right)-F\left(x, \sigma_{2}, \varepsilon_{2}, \theta_{2}, \chi_{2}\right)\right| \leq \\
& \leq L\left(\left|\sigma_{1}-\sigma_{2}\right|+\left|\varepsilon_{1}-\varepsilon_{2}\right|+\left|\theta_{1}-\theta_{2}\right|+\left|\chi_{1}-\chi_{2}\right|\right) \tag{12}
\end{align*}
$$

(b) $x \rightarrow F(x, \sigma, \varepsilon, \theta, \chi)$ is a measurable function with respect to the Lebesgue measure on Ω, for all $\sigma, \varepsilon \in S_{N}, \kappa \in \mathbb{R}^{M}, \theta \in \mathbb{R}^{P}$, (c) $x \rightarrow F(x, 0,0,0,0) \in \mathcal{H}$.
$f \in C^{1}(0, T, H), \quad g \in\left(0, T, H_{\Gamma}\right), \quad h \in C^{1}\left(0, T, E^{\prime}\right)$

$$
\begin{equation*}
u_{0} \in H_{1}, \quad \sigma_{0} \in \mathcal{H}_{1} \tag{13}
\end{equation*}
$$

Div $\sigma_{0}+f(0)=0$ in $\Omega, \quad u_{0}=g(0)$ on $\Gamma_{1}, \quad \sigma_{0} \nu=h(0)$ on Γ_{2}.

$$
\begin{equation*}
\theta \in C^{0}\left(0, T, L^{2}(\Omega)^{P}\right) \cdot \chi \in C^{0}\left(0, T, L^{2}(\Omega)^{M}\right) \tag{15}
\end{equation*}
$$

The main result of this section is as follows.

A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

Theorem 3.1. Let (11)-(16) hold. Then there exists a unique solution $u \in C^{1}\left(0, T, H_{1}\right), \sigma \in C^{1}\left(0, T, \mathcal{H}_{1}\right)$ of the problem (1)-(5). In order to prove theorem 3.1, we need some preliminaries.

Let $\tilde{u} \in C^{1}\left(0, T, H_{1}\right), \tilde{\sigma} \in C^{1}\left(0, T, \mathcal{H}_{1}\right)$ be two functions such that

$$
\begin{gather*}
\text { Div } \tilde{\sigma}+f=0 \text { in } \Omega \times(0, T) \tag{17}\\
\tilde{u}=g \text { on } \Gamma_{1} \times(0, T) \tag{18}\\
\tilde{\sigma} \nu=h \text { on } \Gamma_{2} \times(0, T) \tag{19}
\end{gather*}
$$

(the existence of this couple follows from (13) and the properties of the trace maps).
Considering the functions defined by

$$
\begin{gather*}
\bar{u}=u-\tilde{u}, \quad \bar{\sigma}=\sigma-\tilde{\sigma}, \tag{20}\\
\bar{u}_{0}=u_{0}-\tilde{u}_{0}, \quad \bar{\sigma}_{0}=\sigma_{0}-\tilde{\sigma}_{0}, \tag{21}
\end{gather*}
$$

it easy to see that the triplet $(u, \sigma) \in C^{1}\left(0, T, H \times \mathcal{H}_{1}\right)$ is a solution of the problem (1)-(5) if and only if

$$
\begin{gather*}
(\bar{u}, \bar{\sigma}) \in C^{1}(0, T, V \times \mathcal{V}) \tag{22}\\
\dot{\sigma}=\mathcal{E}(\varepsilon(\dot{u})+\varepsilon(\dot{\tilde{u}}), \theta, \chi)+F(\bar{\sigma}+\tilde{\sigma}, \varepsilon(\bar{u})+\varepsilon(\tilde{u}), \theta, \chi)-\dot{\tilde{\sigma}} \text { in } \Omega \times(0, T) \tag{23}\\
\bar{u}(0)=\bar{u}_{0}, \quad \bar{\sigma}(0)=\bar{\sigma}_{0} \text { in } \Omega \tag{24}
\end{gather*}
$$

hence we may write (22)-(24) in the form

$$
\begin{gather*}
\dot{y}(t)=\mathcal{G}(\theta(t), \chi(t), x(t), y(t), \dot{x}(t)) \tag{25}\\
x(0)=x_{0}, \quad y(0)=y_{0} \tag{26}
\end{gather*}
$$

In which the unknowns are the function $x:[0 . T] \rightarrow X$ and $y:[0 . T] \rightarrow$ $Y \mathcal{G}: L^{2}(\Omega)^{p} \times L^{2}(\Omega)^{M} \times X \times Y \times H \rightarrow H$ is a nonlinear operator, and $X:[0 . T] \rightarrow$ $L^{2}(\Omega)^{M}, \theta:[0 . T] \rightarrow L^{2}(\Omega)^{p}$ are parameters, where H is a real Hilbert space, X, Y, are two orthogonal subspaces of H such that $\mathrm{H}=X \oplus Y$ and $L^{2}(\Omega)^{M}, L^{2}(\Omega)^{p}$, are real normed space.

Hence (22)-(24) may be written in the form (25)-(26) where

$$
y=\bar{\sigma}, x=\varepsilon(\bar{u}), \dot{x}=\varepsilon(\dot{\bar{u}})
$$

and replacing the spaces $\varepsilon(V), \mathcal{V}, \mathcal{H}$, by X, Y, H respectively.
For resolving the problem (22)-(24), we consider the product Hilbert space $Z=\varepsilon(V) \times V$ which $H=\varepsilon(V) \oplus V$,and the problem \mathcal{G} defined by

$$
\mathcal{G}: L^{2}(\Omega)^{p} \times L^{2}(\Omega)^{M} \times \varepsilon(V) \times v \times H \rightarrow H
$$

$$
\begin{equation*}
\mathcal{G}(\theta, \chi, x, y, q)=\mathcal{E}(q+\varepsilon(\dot{\tilde{u}}), \dot{\theta}(t), \chi(t)))+F(y+\tilde{\sigma}(t), x+\varepsilon(\tilde{u}), \theta(t), \chi(t))-\dot{\tilde{\sigma}}(t) \tag{27}
\end{equation*}
$$

We have the following result.
Lemma 3.1. Let $\theta(t) \in L^{2}(\Omega)^{P}, \chi(t) \in L^{2}(\Omega)^{M} x \in X, y \in Y$ and $t \in[0 . T]$.
Then there exists a unique element $z=(\varepsilon(v), \tau) \in Z$ such that

$$
\begin{equation*}
\tau=\mathcal{G}(\theta, \chi, x, y, \varepsilon(v)) \tag{28}
\end{equation*}
$$

Proof. The uniqueness part is a consequence of (11); indeed, if

$$
z_{1}=\left(\varepsilon\left(v_{1}\right), \tau_{1}\right), \quad z_{2}=\left(\varepsilon\left(v_{2}\right), \tau_{2}\right) \in Z
$$

are such that

$$
\begin{aligned}
\tau_{1} & =\mathcal{G}\left(\theta, \chi, x, y, \varepsilon\left(v_{1}\right)\right) \\
\tau_{2} & =\mathcal{G}\left(\theta, \chi, x, y, \varepsilon\left(v_{2}\right)\right),
\end{aligned}
$$

using (11-a) we have

$$
\begin{gathered}
\left\langle\tau_{1}-\tau_{2}, \varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right\rangle_{\mathcal{H}}= \\
\left.\left\langle\mathcal{E}\left(\varepsilon\left(v_{1}\right)+\varepsilon(\dot{\tilde{u}}(t)), \theta(t), \chi(t)\right)\right)-\mathcal{E}\left(\varepsilon\left(v_{2}\right)+\varepsilon(\dot{\tilde{u}}(t)), \theta(t), \chi(t)\right), \varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right\rangle_{\mathcal{H}} \\
\geq m\left|\varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}}
\end{gathered}
$$

Using now the orthogonality in H of $\left(\tau_{1}-\tau_{2}\right) \in \mathcal{V}$ and $\left(\varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right) \in$ $\varepsilon(V)$, we deduce that $\varepsilon\left(v_{1}\right)=\varepsilon\left(v_{2}\right)$, which implies $\tau_{1}=\tau_{2}$.

For the existence part, let us consider the operator $S: \varepsilon(V) \rightarrow \varepsilon(V)$ given by $S=P \circ \mathcal{G}$, where P is the projector map $\varepsilon(V)$.

A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

Using now the hypothesis \mathcal{E}, F and the properties of the projectors, we can prove for θ, χ, x, y fixed, the following inequalities:

$$
\left\{\begin{array}{c}
\left\langle S\left(\theta, \chi, x, y, q_{1}\right)-S\left(\theta, \chi, x, y, q_{2}\right), q_{1}-q_{2}\right\rangle_{\mathcal{H}} \geq \tag{29}\\
\geq\left\langle\mathcal{G}\left(\theta, \chi, x, y, q_{1}\right)-\mathcal{G}\left(\theta, \chi, x, y, q_{2}\right), q_{1}-q_{2}\right\rangle_{\mathcal{H}} \geq \\
\geq m\left|q_{1}-q_{2}\right|_{\mathcal{H}}^{2}
\end{array}\right.
$$

Moreover, from (11), (12), and the properties of the projectors, we get

$$
\left\{\begin{array}{c}
\left|S\left(\theta, \chi, x, y, q_{1}\right)-S\left(\theta, \chi, x, y, q_{2}\right)\right|_{\mathcal{H}} \leq \tag{30}\\
\leq\left|\mathcal{G}\left(\theta, \chi, x, y, q_{1}\right)-\mathcal{G}\left(\theta, \chi, x, y, q_{2}\right)\right|_{\mathcal{H}} \leq \\
\leq L^{\prime}\left|q_{1}-q_{2}\right|_{\mathcal{H}}^{2}
\end{array}\right.
$$

Hence $S(\theta, x, y,):. \varepsilon(V) \rightarrow \varepsilon(V)$ is a strongly monotone Lipschitz operator. Using now Browder's surjectivity theorem we get that there exists $\varepsilon(v) \in \varepsilon(V)$ such that $S(\theta, \chi, x, y, \varepsilon(v))=0_{\varepsilon(V)}$. It results that the element $\mathcal{G}(\theta, \chi, x, y, \varepsilon(v))$ belongs to \mathcal{V} and we finish the proof using $z=(\varepsilon(v), \tau)$ where

$$
\tau=\mathcal{G}(\theta, \chi, x, y, \varepsilon(v))
$$

The previous lemma allows to consider the operator $B: L^{2}(\Omega)^{P} \times L^{2}(\Omega)^{M} \times$ $Z \rightarrow Z$ defined as follows:

$$
\left\{\begin{array}{l}
B(\theta, \chi, \omega)=z \tag{31}\\
\omega=(x, y), z=(\varepsilon(v), \tau) \\
\tau=\mathcal{G}(\theta, \chi, x, y, \varepsilon(v))
\end{array}\right.
$$

Moreover we have
Lemma 3.2. For all $\theta \in L^{2}(\Omega)^{P}$ and $\chi \in L^{2}(\Omega)^{M} \omega_{1}, \omega_{2} \in Z$, the operator $L^{2}(\Omega)^{P} \times L^{2}(\Omega)^{M} \times Z \rightarrow Z$ is continuous and there exists $C>0$ such that

$$
\begin{equation*}
\left|B\left(\theta, \chi, \omega_{1}\right)-B\left(\theta, \chi, \omega_{2}\right)\right|_{Z} \leq C\left|\omega_{1}-\omega_{2}\right|_{Z} \tag{32}
\end{equation*}
$$

for all $\theta \in L^{2}(\Omega)^{P}$ and $\chi \in L^{2}(\Omega)^{M} \omega_{1}, \omega_{2} \in Z$.
Proof. Let $\theta_{i} \in L^{2}(\Omega)^{P}, \omega_{i}=\left(x_{i}, y_{i}\right) \in Z$ and

$$
z_{i}=\left(\varepsilon\left(v_{i}\right), \tau_{i}\right)=B\left(\theta_{i}, \chi_{i}, \omega_{i}\right), i=1,2
$$

Using (32)

$$
\begin{equation*}
\left.\tau_{i}=\mathcal{G}\left(\theta_{i}, \chi_{i}, x_{i}, y_{i}, \varepsilon\left(v_{i}\right)\right)\right), \quad i=1,2 \tag{33}
\end{equation*}
$$

which implies

$$
\begin{equation*}
S\left(\theta_{i}, \chi_{i}, x_{i}, y_{i}, \varepsilon\left(v_{i}\right)\right)=0_{\varepsilon(V)}, i=1,2 \tag{34}
\end{equation*}
$$

Using the hypothesis on \mathcal{E}, F, and the properties of the projectors, we get:

$$
\begin{gathered}
m\left|\varepsilon\left(v_{1}\right)-\varepsilon\left(v_{1}\right)_{2}\right|_{\mathcal{H}}^{2} \leq<S\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{1}\right)\right) \\
-S\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right), \varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)>_{\mathcal{H}} \\
=<S\left(\theta_{2}, \chi_{2}, x_{2}, y_{2}, \varepsilon\left(v_{2}\right)\right)-S\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right), \varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)>_{\mathcal{H}}^{2} \leq \\
\leq\left|\mathcal{G}\left(\theta_{2}, \chi_{2}, x_{2}, y_{2}, \varepsilon\left(v_{2}\right)\right)-\mathcal{G}\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right)\right|_{\mathcal{H}} \times\left|\varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}}^{2}
\end{gathered}
$$

which implies

$$
\begin{equation*}
\left|\varepsilon\left(v_{1}\right)-\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}} \leq \frac{1}{m} \times\left|\mathcal{G}\left(\theta_{2}, \chi_{2}, x_{2}, y_{2}, \varepsilon\left(v_{2}\right)\right)-\mathcal{G}\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right)\right|_{\mathcal{H}} \tag{35}
\end{equation*}
$$

Using now (12), (34) we get

$$
\left\{\begin{array}{c}
\left|\tau_{1}-\tau_{2}\right|_{\mathcal{H}} \leq L^{\prime} \mid \varepsilon\left(v_{1}\right)-\varepsilon\left(\left.v_{2}\right|_{\mathcal{H}}+\right. \tag{36}\\
\mid \mathcal{G}\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right)-\mathcal{G}\left(\theta_{2}, \chi_{2}, x_{2}, y_{2},\left.\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}}\right.
\end{array}\right.
$$

Hence by (36) it result

$$
\left\{\begin{align*}
& \left|\tau_{1}-\tau_{2}\right|_{\mathcal{H}} \leq \tag{37}\\
\leq & \left.\left(\frac{L^{\prime}}{m}+1\right) \right\rvert\, \mathcal{G}\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right)-\mathcal{G}\left(\theta_{2}, \chi_{2}, x_{2}, y_{2},\left.\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}}\right.
\end{align*}\right.
$$

Using now (11)-(12)(27) and the fact that $\bar{\sigma}, \dot{\tilde{\sigma}}$ are continuous, we get that

$$
\mid \mathcal{G}\left(\theta_{1}, \chi_{1}, x_{1}, y_{1}, \varepsilon\left(v_{2}\right)\right)-\mathcal{G}\left(\theta_{2}, \chi_{2}, x_{2}, y_{2},\left.\varepsilon\left(v_{2}\right)\right|_{\mathcal{H}} \rightarrow 0\right.
$$

When $\theta_{1} \rightarrow \theta_{2}$, in $L^{2}(\Omega)^{P} x_{1} \rightarrow x_{2}$ in $X, y_{1} \rightarrow y_{2}$ in $Y \quad$ it follows that B is continuous operator. Taking $\theta_{1}=\theta_{2}$ and $\mathrm{X}_{1}=\mathrm{X}_{2}$ from (37) we get (33).
Proof of theorem 3.1. Let $A:[0 . T] \times Z \rightarrow Z$ and z_{0} be defined by:

$$
\begin{gather*}
\{A(t, z)=B(\theta(t), \chi(t), z) \text { for all } \mathrm{t} \in[0 . T] \text { and } z \in Z \tag{38}\\
z_{0}=\left(x_{0}, y_{0}\right)=\varepsilon\left(\left(u_{0}\right), \bar{\sigma}_{0}\right)
\end{gather*}
$$

A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

Using the definition of operator B, we get that

$$
x=\varepsilon(\dot{\bar{u}}) \in C^{1}(0, T, \varepsilon(V)) \in C^{1}\left(0, T, Z^{\prime}\right), y=\bar{\sigma} \in C^{1}(0, T, \mathcal{V})
$$

is solution to (22)-(24), if and only

$$
\begin{gather*}
\dot{z}=(\dot{x}, \dot{y})=A(\theta, z(t)) \text { for all } t \in[0 . T] \tag{39}\\
z(0)=z_{0} \tag{40}
\end{gather*}
$$

In order to study the problem (39)-(40), let us remark that, by lemma $3.2, A$ is a continuous operator and

$$
\left|A\left(t, z_{1}\right)-A\left(t, z_{2}\right)\right|_{Z} \leq C\left|z_{1}-z_{2}\right|_{Z}, \text { for all } t \in[0 . T] \text { and } z_{1}, z_{2} \in Z
$$

Moreover, by (14), (38), $\tilde{u} \in C^{1}\left(0, T, H_{1}\right)$ and $\tilde{\sigma} \in C^{1}\left(0, T, \mathcal{H}_{1}\right)$
We get z_{0} belongs to Z and by lemma 3.2 and the classical Cauchy-Lipschitz theorem we have that $z \in C^{1}(0, T, Z)$ and the proof of theorem 3.1 is complete.

References

[1] Ionescu, I.R., Sofonea, M., Quasistatic processes for elastic-visco-plastic materials, Quart. App. Math., 2(1998), 229-243.
[2] Sofonea, M., Some remarks concerning a class of nonlinear evolution equation in Hilbert spaces, Ann. Sci. Univ. Blaise Pascal (Clermont II) Serie Math. 1991.
[3] Djabi, S., Sofonea, M., A fixed point method in quasi-static rate-type viscoplasticity, Appl. Math. and Comp. Sci. 3, 2(1993), 269-279.
[4] Djabi, S., Sofonea, M., A monotony method in quasi-static rate-type viscoplasticity, Theoretical and Applied Mechanics, 19(1993), 39-46.
[5] Djabi, S., A monotony method in quasi-static rate-type viscoplasticity with internal state variable, Rev. Roumaine. Math. Pures. Appl., 42, 5-6(1997), 401-408.
[6] Djabi, S., A monotony method in quasi-static process viscoplastic materials with $\mathcal{E}=\mathcal{E}(\varepsilon(\dot{u}), \kappa)$ Mathematical Reports, Vol. 2 (52), 1(2000), 9-20.

University of Sétif, Algeria
E-mail address: badri-merouani@yahoo.fr

[^0]: Received by the editors: 22.01.2006
 2000 Mathematics Subject Classification. 74M10, 74M15, 49J40, 74M99
 Key words and phrases. viscoplastic, existence and uniqueness, monotone operator, fixed point,
 Cauchy-Lipschitz, parameters, weak solution.

