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Abstract. Let X, Y ∈ L2(Ω, K, P ) be a pair of random variables, where

L2(Ω, K, P ) is the space of random variables with finite second moments.

If we suppose that X is an observable random variable but Y is not, than

we wish to estimate the unobservable component Y from the knowledge of

observations of X. Thus, if g = g(x) is a Borel function and if the random

variable g(X) is an estimator of Y, then e = E{[Y − g(X)]2} is the mean

-square error of this estimator. Also, if ĝ(X) is an optimal estimator (in

the mean-square sense) of Y, then we have the following relation emin =

e(Y, ĝ(X)) = E{[Y − ĝ(X)]2} = inf
g

E{[Y − g(X)]2}, where inf is taken

over all Borel functions g = g(x). In this paper we shall present some

results relative to the mean-square estimation, conditional expectations

and conditional densities.

1. Convergence in the mean-square

Let (Ω,K, P ) be a probability space and F(Ω,K, P ) the family of all random

variables defined on (Ω,K, P ). Let

Lp = Lp(Ω,K, P ) = {X ∈ F(Ω,K, P ) | E(|X|p) < ∞} , p ∈ N∗ (1.1)

be the set of random variables with finite moments of order p, that is

βp = E(|X|p) =
∫

R
|x|p dF (x) < ∞, p ∈ N∗, (1.2)
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where

F (x) = P (X < x), x ∈ R (1.3)

is the distribution function of the random variable X.

This set Lp(Ω,K, P ) represent a linear space. An important role among the

spaces Lp = Lp(Ω,K, P ), p ≥ 1, is played by the space L2 = L2(Ω,K, P ), the space

of random variables with finite second moments.

Definition 1.1. If X, Y ∈ L2(Ω,K, P ), then the distance in mean square

between X and Y , denoted by d2(X, Y ), is defined by the equality

d2(X, Y ) = ‖X − Y ‖ = [E(|X − Y |2)]1/2. (1.4)

Remark 1.1. It is easy to verify that d2(X, Y ) represents a semi-metric on

the linear space L2.

Definition 1.2. If (X, Xn, n ≥ 1) ⊂ L2(Ω,K, P ), then about the sequence

(Xn)n∈N∗ is said to converge to X in mean square (converge in L2) if

lim
n→∞

d2(Xn, X) = lim
n→∞

E(|Xn −X|2)1/2 =

= lim
n→∞

E(|Xn −X|2) = 0. (1.5)

We write l.i.m.Xn = X or Xn
m.p.−→ X, n → ∞, and call X the limit in the

mean (or mean square limit) of Xn.

Remark 1.2. If X ∈ L2(Ω,K, P ), then

V ar(X) = E[(X −m)2] = E[|X −m|2] = ‖X −m‖2 = d2
2(X, m),

where m = E(X).

Consider two random variables X and Y. Suppose that only X can be ob-

served. If X and Y are correlated, we may expect that knowing the value of X allows

us to make some inference about the value of the unobserved variable Y. In this case

an interesting problem, namely that of estimating one random variable with another

or one random vector with another. If we consider any function X̂ = g(X) on X,

then that is called an estimator for Y.
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Definition 1.3. We say that a function X∗ = g∗(X) on X is best estimator

in the mean-square sense if

E{[Y −X∗]2} = E{[Y − g∗(X)]2} = inf
g

E{[Y − g(X)]2}. (1.6)

If X ∈ L2(Ω,K, P ) then a very simple but basic problem consists in: find

a constant a (i.e. the constant random variable a, a ∈ L2(Ω,K, P )) such that the

mean-square error

e = e(X; a) = E[(X − a)2] =
∫

R
(x− a)2dF (x) =

= ‖X − a‖2 = d2
2(X, a) (1.7)

is minimum.

Evidently, the solution of a such problem is the following: if a = E(X) then

the mean-square error is minimum and we have

min
a∈R

E[(X − a)2] = V ar(X).

Theorem 1.1. ([1]) (The orthogonality principle) Let X, Y be two ran-

dom variables such that E(X) = 0, E(Y ) = 0 and X̂ a new random variable,

X̂ ∈ L2(Ω,K, P ), defined as

X̂ = g(X) = a0X, a0 ∈ R. (1.8)

The real constant a0 that minimize the mean-square error

E[(Y − X̂)2] = E[(Y − a0X)2] (1.9)

is such that the random variable Y − a0X is orthogonal to X; that is,

E[(Y − a0X)X] = 0 (1.10)

and the minimum mean-square error is given by

emin(Y, X̂) = emin = E[(Y − a0X)Y ], (1.11)

where

a0 =
E(XY )
E(X2)

=
cov(X, Y )

σ2
1

(1.12)
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2. General mean-square estimation

Let us now remove the constraints of linear estimator and consider the more

general problem of estimating Y with a (possibly nonlinear) function of X. For this,

we recall the notion of inner (scalar) product.

Thus, if X and Y ∈ L2 (Ω,K, P ), we put

(X, Y ) = E(XY ). (2.1)

It is clear that if X, Y, Z ∈ L2 (Ω,K, P ) then
(aX + bY, Z) = a(X, Z) + b(Y, Z), a, b ∈ R,

(X, X) ≥ 0,

(X, X) = 0 ⇐⇒ X = 0, a.s.

(2.2)

Consequently (X, Y ) is a scalar product. The space L2 (Ω,K, P ) is complete

with respect to the norm

‖ X ‖= (X, X)1/2 (2.3)

induced by this scalar product. In accordance with the terminology of functional

analysis, a space with the scalar product (2.1) is a Hilbert space.

Hibert space methods are extensively used in the probability theory to study

proprieties that depend only on the first two moments of random variables.

In the next, we want to estimate the random variable Y by a suitable function

g(X) of X so that the mean-square estimation error

e = e(Y, g(X)) = E
{
[(Y − g(X)]2

}
=

∫∫
R2

[y − g(x)]2f(x, y)dxdy (2.4)

is minimum.

Theorem 2.1. ([3]) Let X̂ be a random variable defined as a nonlinear

function of X, namely

X̂ = g(X) (2.5)
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where g(x) represents the value of this random variable g(X) in the point x, x ∈ Dx =

{x ∈ R | f(x) > 0}.Then, the minimum value of the mean-square error, namely,

emin = emin(Y, X̂) = E
{
[(Y − E(Y | X)]2

}
(2.6)

is obtained if

g(X) = E(Y | X), (2.7)

where

E(Y | X = x) = E(Y | x) =

=

∞∫
−∞

yf(y | x)dy (2.8)

is the random variable defined by the conditional expectation of Y with respect to

X.

Definition 2.1.We say that the estimator (the nonlinear function)

X̂ = g(X) = E(Y | X) (2.9)

is best (optimal) in the mean-square sense for the unknown random variable Y if

emin(Y, X̂) = min
g(X)

E
{
[(Y − g(X)]2

}
=

= E
{
[(Y − E(Y | X)]2

}
. (2.10)

Lemma 2.1. ([1]) If X and Y are two independent random variable, then

E(Y | X) = E(Y ). (2.11)

Corollary 2.1. If X, Y are two independent random variables then the best

mean-square estimator of Y in terms of X is E(Y ). Thus knowledge of X does not

help in the estimation of Y.
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3. Conditional expectation and conditional densities

We assume that the random vector (X, Y ) have the bivariate normal distri-

bution with the probability density function

f(x, y) =
1

2πσ1σ2

√
1− r2

e
− 1

2(1−r2)

[(
x−m1

σ1

)2
− 2r(x−m1)(y−m2)

σ1σ2
+

(
y−m2

σ2

)2
]
, (3.1)

where:

m1 = E(X) ∈ R,m2 = E(Y ) ∈ R, σ2
1 = V ar(X) > 0, σ2

2 = V ar(Y ) > 0, (3.1a)

r = r(X, Y ) =
cov(X, Y )

σ1σ2
, r ∈ (−1, 1), (3.2)

r being the correlation coefficient between X and Y .

First, we will recall some very important definitions and proprieties for a such

normal distribution.

Lemma 3.1. If two jointly normal random variable X and Y are uncorre-

lated, that is, cov(X, Y ) = 0 = r(x, y), then they are independent and we have

f(x, y) = f(x;m1, σ
2
1)f(y;m2, σ2), (3.3)

where

f(x;m1, σ
2
1) =

1√
2πσ1

e
− 1

2

(
x−m1

σ1

)2

, f(y;m2, σ
2
2) =

1√
2πσ2

e
− 1

2

(
y−m2

σ2

)2

(3.3a)

are the marginal probability density functions for the components X and Y of the

normal random vector (X, Y ).

Lemma 3.2. If (X, Y ) is a random vector with the bivariate normal prob-

ability density function (3.1), then for the conditional random variable (Y | X), for

example, the probability density function, denoted by f(y | x), has the form

f(y | x) =
1√

2π(1− r2)σ2

e
− 1

2σ2
2(1−r2)

[
y−

(
m2+r

σ2
σ1

(x−m1)
)]2

, (3.4)

This conditional probability density function (3.4) may be obtained using the

well-bred method which have in view the following relations

f(y | x) =
f(x, y)
f(x)

, f(x) > 0, f(x) = f(x;m1, σ
2
1) =

∞∫
−∞

f(x, y)dy. (3.5)
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In the next, we shall recover this conditional probability density function

using the orthogonality principle.

Theorem 3.1. Let (X, Y ) be a normal random vector which is characterized

by the relations (3.1), (3.1a) and (3.2). If

o

X = X −m1,
o

Y = Y −m2, (3.6)

are the deviation random variables and U is a new random variable which is defined

as

U =
o

Y − c0

o

X, where c0 ∈ R− {0}, (3.7)

then the orthogonality principle implies the conditional density function (3.4), which

corresponds to the conditional random variable (
o

Y |
o

X), and more we have the fol-

lowing relation

f(y | x) = f(u), (3.8)

where f(u) is the probability density function that corresponds to U.

Proof. Indeed, because
E(

o

X) = m0
x

= 0, V ar(
o

X) = σ2
0
x

= V ar(X) = σ2
1 ,

E(
o

Y ) = m0
y

= 0, V ar(
o

Y ) = σ2
0
y

= V ar(Y ) = σ2
2 ,

(3.9)

and

cov(
o

X,
o

Y ) = E(
o

X
o

Y ) = E[(X −m1)(Y −m2)] = cov(X, Y ) = rσ1σ2, (3.10)

then we obtain

E(U) = mU = 0. (3.11)

Also, for the variance of the random variable U, we obtain

V ar(U) = σ2
U = E

{
[U − E(U)]2

}
= E(U2) =

= E{[
o

Y − c0

o

X]2} =

= σ2
2 − 2c0cov(X, Y ) + c2

0σ
2
1 =

= σ2
2 − 2c0rσ1σ2 + c2

0σ
2
1 ,
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The value of the constant c0 will be determined using the orthogonality prin-

ciple, namely: the random variables U and
◦
X to be orthogonal. This condition implies

the following relation

E(U
o

X) = E

[
(

o

Y − c0

o

X) |
o

X)
]

= 0, (3.12)

and, more, the constant c0 must to minimize the mean-square error

e = E[(
o

Y − c0

o

X)2], (3.13)

that is,

emin = E[(
o

Y − c0

o

X)
o

Y ]. (3.14)

Indeed, using (1.12) we obtain the following value

c0 =
E(

o

X
o

Y )

E(
o

X2)
= r

σ2

σ1
, (3.15)

if we have in view the relations (3.9) and (3.10).

Also, from (3.12), we obtain

cov(U,
o

X) = E(U
o

X) = 0, ρ(U,
o

X) = 0, (3.16)

where ρ(U,
o

X) represents the correlation coefficient between the random variables U

and
o

X.

Because the random variables U and
o

X are normal distributed with ρ(U,
o

X) =

0 then, using the Lemma 3.1, it follows that these random variables are independent

and their joint probability density function, denoted by f(
0
x, u), has the form

f(
o
x, u) = f(

o
x)f(u), (3.17)

where f(
o
x) is the probability density function for the random variable

o

X, that is,

f(
o
x) =

1√
2πσo

x

e
− 1

2

[ o
x−mo

x
σ0

x

]2

=
1√

2πσ1

e
− 1

2

(
x−m1

σ1

)2

=

= f(x;m1σ
2
1), x ∈ R, (3.18)

if we have in view the relations (3.6) and (3.9).
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Also, for the probability density function f(u), we obtain the following forms

f(u) =
1√

2πσu

e−
1
2 [u−mu

σu
]2 =

=
1

σ2

√
2π(1− r2)

e
− 1

2(1−r2)

(
u

σ2

)2

=

=
1

σ2

√
2π(1− r2)

e
− 1

2σ2
2(1−r2)

{
y−

[
m2+r

σ2
σ1

(x−m1)
]}2

=
1

σ2

√
2π(1− r2)

e
− 1

2σ2
2(1−r2)

(y−my|x)2

, (3.19)

if we have in view the relations (3.6) and (3.11) as well as the fact that the values of

the random variable U =
o

Y − c0

o

X can be express as

u =
o
y − c0

o
x = y − [m2 + r

σ2

σ1
(x−m1)] = y −mY |x. (3.20)

Therefore, the form (3.1a) of the probability density function f(u), together

with the relation (3.4), give us just the relation (3.8), that is, we obtain the following

equality

f(u) = f(y | x) =
1

σ2

√
2π(1− r2)

e
− 1

2σ2
2(1−r2)

(y−my|x)2

. (3.21)

Utilizing the forms (3.18) and (3.21) of the probability density functions f(
◦
x)

and f(u), from the relation (3.17), we obtain the following expressions

f(
o
x, u) = f(

o
x)f(u) = f(x;m1σ

2
1)f(y | x) = (3.22)

=

[
1√

2πσ1

e
− 1

2
(x−m1)2

σ2
1

] [
1

σ2

√
2π(1− r2)

e
− 1

2σ2
2(1−r2)

{
y−

[
m2+r

σ2
σ1

(x−m1)
]}2

]
=

=

[
1√

2πσ1

e
− 1

2
(x−m1)2

σ2
1

] [
1

σ2

√
2π(1− r2)

e
− 1

2(1−r2)

[
y−m2

σ2
−r

x−m1
σ1

]2
]

=

=
1

2πσ1σ2
e
− 1

2(1−r2)

[
(x−m1)2

σ2
1

−2r
(x−m1)(y−m2)

σ1σ2
+

(y−m2)2

σ2
2

]2

= f(x, y),

and, hence, it follows the equality

f(x, y) = f(x)f(y | x). (3.23)
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In the next, we must to prove that the minimum of the mean-square error,

specified in the relation (3.14), can be obtained if the constant c0 has the value

(3.15).

But, in the beginning, we recall some definitions and some properties of the

conditional means.

Lemma 3.3. ([1]) The conditional mean E(. | X) is a linear operator, that

is,

E(cY + dZ | X) = cE(Y | X) + dE(Z | X), c, d ∈ R. (3.24)

Definition 3.1. If (X, Y ) is a bivariate random vector with the probability

density function f(x, y) and Z = g(X, Y ) is a new random variable which is a function

of the random variables X and Y, then the conditional mean of the random variable

Z = g(X, Y ), given X = x, is defined as

E[g(X, Y ) | X = x] =

∞∫
−∞

g(x, y)f(y | X = x)dy, (3.25)

for any x ∈ Dx = {x ∈ R | f(x) > 0}.

Lemma 3.4. ([1]) If the random variable Z has the form

Z = g(X, Y ) = g1(X)g2(Y ), (3.26)

then we have the following relation

E[g1(X)g2(Y ) | X] = g1(X)E[g2(Y ) | X]. (3.27)

Lemma 3.5. ([1]) If X is a random variable and c is a real constant, then

E[c | X] = c. (3.28)

Now, we can return to the our problem, namely to prove that the minimum

of the mean-square error, specified in the relation (3.14), can be obtained if the

constant c0 has the value (3.15).
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Thus, because the random variables U =
0

Y − c0

0

X and
0

X are independent,

then from (3.12) and Lemma 2.1, we obtain

E(U
0

X) = E[(
0

Y − c0

0

X)
0

| X] =

= E[(
0

Y − c0

0

X)] =

= E(
0

Y )− c0E(
0

X) = 0,

that is, we have the following equality

E(U
o

X) = E(
o

Y )− c0E(
o

X) = 0. (3.29)

On the other hand, in accordance with the Lemma 3.4, (respectively, in ac-

cordance with the relation (3.26)) and the Lemma 3.5, where g1(X) = c0

o

X and

g2(Y ) = 1, we obtain

E[c0

o

X |
o

X =
o
x] = c0

o

XE[1 |
o

X =
o
x]︸ ︷︷ ︸

=1

= c0

o

X, (3.30)

for any
o
x = x−m1, x ∈ R

This last relation, together with the Lemma 3.3 give us the possibility to

rewritten the conditional mean E(U
o

X) = E[(
o

Y − c0

o

X) |
o

X] in an useful form

E(U
o

X) = E[(
o

Y − c0

o

X) |
o

X] =

= E(
o

Y |
o

X)− E(c0

o

X |
o

X) =

= E(
o

Y |
o

X)− c0

o

X,

that is,

E(U
o

X) = E(
o

Y |
o

X)− c0

o

X. (3.31)

From (3.29) and (3.31), we obtain the random variable

E(
o

Y |
o

X) = c0

o

X = r
σ2

σ1

o

X, (3.32)

which has the real values of the form

E(
o

Y |
o

X =
o
x) = r

σ2

σ1

o
x, for any

o
x = x−m1, x ∈ R. (3.32a)
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The conditional variance of the random variable (
o

Y |
o

X) can be express as

V ar(
o

Y |
o

X) = σ2
o
Y |

o
X

=

= E{[
o

Y − E(
o

Y |
o

X)]]2 |
o

X} =

= E[(
o

Y − c0

o

X)2 |
o

X], (3.33)

and, evidently, it is a random variable which has the real values of the form

V ar(
o

Y |
o

X =
o
x) = E[(

o

Y − c0

o

X)2 |
o

X =
o
x], for any

o
x = x−m1, x ∈ R. (3.33a)

Because the random variables U =
o

Y − c0

o

X and
o

X are independent then,

evidently, it follows that and the random variable U2 = (
o

Y − c0

o

X)2 and
o

X are

independent. Then, from (3.36), we obtain

V ar(
o

Y |
o

X) = E[(
o

Y − c0

o

X)2 |
o

X] = (3.34)

= E[(
o

Y − c0

o

X)2] =

= E[(
o

Y − c0

o

X)
o

Y + c0(
o

Y − c0

o

X)
o

X] =

= E[(
o

Y − c0

o

X)
o

Y ] + c0E[(
o

Y − c0

o

X)
o

X]︸ ︷︷ ︸
=0 (see, (3.14))

=

= E[(
o

Y − c0

o

X)
o

Y ]︸ ︷︷ ︸
(see, (3.16))

=

= emin = emin(
o

Y
o

, X) =

= E(
o

Y 2)− 2c0E(
o

Y
o

X) + c2
0E(

o

X2) =

= σ2
2 − r

σ2

σ1
rσ1σ2 = σ2

2(1− r2). (3.34a)

Therefore, the conditional variance of the deviation random variable
o

Y , given
o

X, represents just the minimum mean-square error.
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