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POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS
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Dedicated to Professor D. D. Stancu on his 80th birthday

Abstract. We present a complete collection of results dealing with the

polynomial approximation of functions on (0, +∞).

1. Introduction

This paper is dedicated to the approximation of functions which are defined

on (0,+∞), have singularities in the origin and increase exponentially for x → +∞.

Therefore, it is natural to consider weighted approximation with the generalized La-

guerre weight wα(x) = xαe−xβ

. We first prove the main polynomial inequalities:

“infinite-finite” range inequalities, Remez-type inequalities, Markov-Bernstein and

Nikolski inequalities. In Section 2 we introduce a new modulus of continuity, the

equivalent K−functional and some function spaces. With these tools we prove the

Jackson theorem, the Stechkin inequality and estimate the derivatives of the polyno-

mial of best approximation (or “near best approximant” polynomial). We will also

prove an embedding theorem between functional spaces. In Section 5, generalizing

analogous results proved in [10], we will study the behaviour of Fourier sums and La-

grange polynomials. This paper can be considered as a survey on the topic. However,

all the results are new and cover the ones available in the literature.
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2. Polynomial inequalities

In this context the main idea is to prove polynomial inequalities with expo-

nential weights on unbounded intervals by using well known polynomial inequalities

(eventually with weight) on bounded intervals. To this end the main gradients are

the “infinite-finite range inequality” and the approximation of weight by polynomials

on a finite interval.

In our case, the weight wα(x) = wαβ(x) = xαe−xβ

is related, by a quadratic trans-

formation, to the generalized Freud weight u(x) = |x|2α+1e−x2β

.

The Mhaskar-Rakhmanov-Saff number ām(u), related to the weight u, is [9]: ām(u) ∼
m1/2β where the constant in “∼” depends on α and β and does not depend on m.

Then for the weight wα we have

am(w) = ā2m(u)2 ∼ m1/β (2.1)

and, for an arbitrary polynomial Pm, the following inequalities easily follow:(∫ ∞

0

|Pm(x)wαβ(x)|pdx

)1/p

≤ C

(∫
Γm

|Pm(x)wαβ(x)|pdx

)1/p

, (2.2)

(∫ +∞

am(1+δ)

|Pm(x)wαβ(x)|pdx

)1/p

≤ Ce−Am

(∫ +∞

0

|Pm(x)wαβ(x)|pdx

)1/p

(2.3)

where Γm = [0, am(1− k/m2/3)] (k =const), p ∈ (0,+∞], β > 1
2 , α > − 1

p if p < +∞
and α ≥ 0 if p = +∞; the constants A and C are independent of m and p and A

depend on δ > 0. Then, as a consequence of some results in [5], [11], with x ∈ [0, Aam],

A ≥ 1 fixed, there exist polynomials Qm such that Qm(x) ∼ e−xβ

and

√
am

m
|
√

xQ′
m(x)| ≤ Ce−xβ

, (2.4)

where C and the constants in “∼” are independent of x. Therefore, by using (2.2)

and (2.4) and a linear transformation in [0, 1), polynomial inequalities of Bernstein-

type, Remez and Shur can be deduced by analogous inequalities in [0, 1] with Jacobi

weights xα.

The next theorems can be proved by using the previous considerations.
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With A > 0 0 < t1 < . . . < tr < am fixed, we put

Am =
[
A

am

m2
, am

(
1− A

m2/3

)]
\

(
r⋃

i=1

[
ti −A

√
am

m
, ti + A

√
am

m

])

where m is sufficiently large (m > m0), r ≥ 0. Let us specify that if r = 0 then

Am =
[
Aam

m2 , am

(
1− A

m2/3

)]
.

Theorem 2.1. Let A, t1, . . . , tr be as in the previous definition and 0 < p ≤ +∞.

Then, for each polynomial Pm, there exists a constant C = C(A), independent of m,

p and Pm, such that(∫ +∞

0

|(Pmwαβ)(x)|pdx

)1/p

≤ C

(∫
Am

|(Pmwαβ)(x)|pdx

)1/p

. (2.5)

Theorem 2.2. For each polynomial Pm and 0 < p ≤ +∞ we have(∫ +∞

0

|P ′m(x)
√

xwαβ(x)|pdx

)1/p

≤ C
m
√

am

(∫ +∞

0

|Pm(x)wαβ(x)|pdx

)1/p

(2.6)

and(∫ +∞

0

|P ′m(x)wαβ(x)|pdx

)1/p

≤ C

(
m
√

am

)2(∫ +∞

0

|Pm(x)wαβ(x)|pdx

)1/p

(2.7)

with C 6= C(m, p, Pm).

As in the Markoff-Bernstein inequalities, we have two versions of Nikolski

inequality.

Theorem 2.3. Let Pm ∈ IPm be an arbitrary polynomial and 1 ≤ q < p ≤ +∞.

Then there exists a constant K, independent of m, p, q and Pm such that, for α ≥ 0

if p = +∞ and α > − 1
p if p < +∞, we have

‖Pmwαβϕ
1
q ‖p ≤ K

(
m
√

am

) 1
q−

1
p

‖Pmwαβ‖q, (2.8)

‖Pmwαβ‖p ≤ K

(
m
√

am

) 2
q−

2
p

‖Pmwαβ‖q, (2.9)

where ϕ(x) =
√

x.
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Proof. We first suppose α ≥ 0 and prove (2.8) with p = +∞ and 1 ≤ q < +∞.

Set Ix = [x, x + ∆m(x)], where x ≥ 0, ∆m(x) =
√

am

m

√
x.

From the relation

∫
Ix

Pm(t)dt = Pm(x)∆m(x) +
∫

Ix

P ′m(t) (x + ∆m(x)− t) dt,

(by using Hölder inequality for q > 1) we get for q ≥ 1:

|Pm(x)ϕ(x)
1
q | ≤

(
m
√

am

)1/q
[(∫

Ix

|Pm(t)|q dt

)1/q

+
√

am

m

(∫
Ix

|P ′m(t)ϕ(t)|q dt

)1/q
]

.

(2.10)

Since wαβ(x) ∼ wαβ(t) for t ∈ Ix, α ≥ 0 it also holds

∣∣∣Pm(x)wαβ(x)ϕ(x)1/q
∣∣∣ ≤ C

(
m
√

am

)1/q
[(∫

Ix

|Pm(t)wαβ(t)|q dt

)1/q

(2.11)

+
√

am

m

(∫
Ix

|P ′m(t)ϕ(t)wαβ(t)|q dt

)1/q
]

.

By extending the integrals to (0,+∞) and by using Bernstein inequality we deduce:

∥∥∥Pmwαβϕ
1
q

∥∥∥
∞
≤ K

(
m
√

am

)1/q

‖Pmwαβ‖q . (2.12)

Moreover, using (2.5) with r = 0 and A = 1, one has

‖Pmwαβ‖∞ ≤ C
∥∥∥Pmwαβϕ1/qϕ−1/q

∥∥∥
L∞([ am

m2 ,∞))

≤ C

(
m
√

am

)1/q ∥∥∥Pmwαβϕ1/q
∥∥∥
∞

.

Then from (2.12) it follows

‖Pmwαβ‖∞ ≤ K

(
m
√

am

)2/q

‖Pmwαβ‖q . (2.13)
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Then (2.8) and (2.9) are true with α ≥ 0, p = +∞, 1 ≤ q < +∞.

When α ≥ 0 and 1 ≤ q < p < +∞, then to prove (2.9), we write

‖Pmwαβ‖p
p =

∥∥∥|Pmwαβ |p−q |Pmwαβ |q
∥∥∥

1

≤ ‖Pmwαβ‖p−q
∞

∫ +∞

0

|Pmwαβ |q (x)dx ≤

≤ Kp−q

(
m
√

am

)(p−q) 2
q

‖Pmwαβ‖p−q
q ‖Pmwαβ‖q

q ,

from which

‖Pmwαβ‖p ≤ K

(
m
√

am

)2( 1
q−

1
p )
‖Pmwαβ‖q

i.e. (2.9) with α ≥ 0. In an analogous way we can prove(2.8).

Let us suppose now 1 ≤ q < p < +∞ and − 1
p < α < 0. From Theorem 2.1 we get

‖Pmwαβ‖p ∼ ‖Pmwαβ‖Lp( am
m2 ,am) .

In the interval
[

am

m2 , am

]
we can construct a polynomial Qlm (with l a fixed integer)

for which it holds Qlm ∼ xα (see [8] in [−1, 1]) and

‖Pmw0β‖p ∼ ‖(PmQlm)w0β‖Lp( am
m2 ,am) ≤ C ‖(PmQlm)w0β‖p .

Then we can use (2.9) with α = 0, PmQlm instead of Pm and, finally, Theorem 2.1 to

replace Qlm by xα.

Relation (2.8) can be proved in a similar way and the proof is complete.

3. Function spaces, modulus of continuity and K-functionals

With wαβ(x) = xαe−xβ

and 1 ≤ p < +∞ we denote by Lp
wαβ

the set of all

measurable functions such that

‖fwαβ‖p
p =

∫ +∞

0

|fwαβ |p(x)dx < +∞, α > −1
p
.

If p = +∞ we define

L∞wαβ
= {f ∈ C0[(0,+∞)] : lim

x→0,x→+∞
(fwαβ)(x) = 0}, α > 0

and

L∞w0β
= {f ∈ C0[[0,+∞)] : lim

x→+∞
(fwαβ)(x) = 0},
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where C0(A) is the set of all continuous functions in A ⊆ [0,+∞).

For more regular functions we introduce the Sobolev-type space

W p
r = W p

r (wαβ) = {f ∈ Lp
wαβ

: f (r−1) ∈ AC((0,+∞)) and ‖f (r)ϕrwαβ‖p < +∞}

where r ≥ 1, 1 ≤ p ≤ +∞, ϕ(x) =
√

x and AC(A) is the set of absolutely continuous

functions in A ⊆ [0,+∞).

In order to define in Lp
wαβ

a modulus of smoothness, for every h > 0 we introduce the

quantity h∗ = 1

h
2

2β−1
, β > 1

2 and the segment Irh = [8r2h2, Ah∗] where A is a fixed

positive constant.

Then, following [3] (see also [1]), we define

Ωr
ϕ(f, t)wαβ ,p = sup

0<h≤t
‖(∆r

hϕf)wαβ‖Lp(Irh) (3.1)

as the main part of the modulus of continuity, where r ≥ 1, 1 ≤ p ≤ +∞, ∆r
hϕf(x) =

r∑
k=0

(−1)k

 r

k

 f(x+(r−k)h
√

x). The complete modulus of continuity ωr
ϕ is defined

by

ωr
ϕ(f, t)wαβ ,p = inf

P∈IPr−1

‖(f − P )wαβ‖Lp([0,8r2t2]) + Ωr
ϕ(f, t)wαβ ,p + (3.2)

+ inf
P∈IPr−1

‖(f − P )wαβ‖Lp(At∗,∞).

Connected with the modulus of continuity ωr
ϕ is the K-functional

K(f, tr)ωαβ ,p = inf
g∈W p

r

{‖(f − g)wαβ‖p + tr‖g(r)ϕrwαβ‖p} (3.3)

where r ≥ 1 and 1 ≤ p ≤ +∞, 0 < t < 1.

In some contexts it is useful to define the main part of the previous K- functional

K̃(f, tr)ωαβ ,p = sup
0<h≤t

inf
g∈W p

r

{‖(f − g)wαβ‖Lp(Irh) + hr‖g(r)ϕrwαβ‖Lp(Irh)} (3.4)

In fact the following theorem holds

Theorem 3.1. Let f ∈ Lp
wαβ

and 1 ≤ p ≤ +∞. Then, as t → 0, we have

ωr
ϕ(f, t)wαβ ,p ∼ K(f, tr)wαβ ,p (3.5)

and

Ωr
ϕ(f, t)wαβ ,p ∼ K̃(f, tr)wαβ ,p (3.6)
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where the constants in “∼” are independent of f and t.

The proof of this theorem is similar to the proof in [1] and later we will prove

some crucial steps.

It is useful to observe that, by (3.6) and (3.4) with g = f , it follows

Ωr
ϕ(f, t)wαβ ,p ≤ C inf

0<h≤t
hr‖f (r)ϕrwαβ‖Lp(Irh);

this last relation allows us to evaluate the main part of the modulus of continu-

ity of differentiable functions in (0,+∞). For example, for f(x) = | log x| we have

Ωr
ϕ(f, t)wαβ ,1 ∼ t2+2α.

Now, as in the case of periodic functions or of functions defined on finite intervals,

we can define the Besov-type spaces Bp
sq(wαβ) by means of modulus of continuity. To

this end, with 1 ≤ p ≤ +∞, we introduce the seminorms

‖f‖p,q,s =



(∫ 1/k

0

[
ωk

ϕ(f, t)wαβ ,p

ts+1/q

]q

dt

)1/q

, 1 ≤ q < +∞, k > s

sup
t>0

ωk
ϕ(f, t)wαβ ,p

ts
, q = +∞, k > s

(3.7)

and define

Bp
sq = Bp

sq(wαβ) = {f ∈ Lp
wαβ

: ‖f‖p,q,s < +∞}

equipped with the norm ‖f‖Bp
sq(wαβ) = ‖fwαβ‖p + ‖f‖p,q,s. Here we cannot study

these spaces in details. In the next section we will prove some embedding theorems

and will characterize the Besov spaces by the error of the best approximation.

4. Polynomial approximation

For each function f ∈ Lp
wαβ

with 1 ≤ p ≤ +∞, β > 1
2 , α > − 1

p if p < +∞
and α ≥ 0 if p = +∞, we define, as usual,the error of best approximation

Em(f)wαβ ,p = inf
P∈IPm−1

‖(f − P )wαβ‖p.

In this section we will estimate Em(f)wαβ ,p by means of the modulus of continuity

and will characterize the classes functions defined in the previous section.

In order to establish a Jakson theorem it is necessary the following
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Proposition 4.1. For each function f ∈ W p
1 (wαβ), 1 ≤ p ≤ +∞, we have

Em(f)wαβ ,p ≤ C

√
am

m
‖f ′ϕwαβ‖p, (4.1)

where ϕ(x) =
√

x, C 6= C(m, f) and am ∼ m1/β.

Proof. We first prove that the condition(∫ +∞

0

|f ′(x)e−xβ

|pdx

)1/p

< +∞ (4.2)

implies the estimate

Em(f)wαβ ,p ≤ C

√
am

m

(∫ +∞

0

∣∣∣∣f ′(x)
(
x +

am

m2

)α+ 1
2

e−xβ

∣∣∣∣p dx

)1/p

. (4.3)

To this end, let 1 ≤ p < +∞, u(x) = |x|2α+1/pe−x2β

, g(x) = f(x2), x ∈ IR and p2m

the best approximation of g. By using Theorem 2.1 in [9] we have

A :=
(∫ +∞

−∞
|(g(x)− p2m(x))u(x)|pdx

)1/p

≤

≤ C
ā2m

2m

(∫ +∞

−∞

∣∣∣∣∣g′(x)
(
|x|+ ā2m

2m

)2α+ 1
p

e−x2β

∣∣∣∣∣
p

dx

)1/p

=: B

where ā2m = ā2m(u) ∼ m
1
2β is the M-R-S number related to the weight u and as we

first observed ā2m ∼
√

am(wαβ). Then a change of variables in A and B leads to

(4.3).

Now we suppose f ∈ W p
1 (wαβ) and we introduce the function

fm(x) =

 f
(

am

m2

)
x ∈

[
0, am

m2

]
f(x) x ≥ am

m2

.

Obviously the condition ‖f ′me−xβ‖p < +∞ is satisfied, (4.3) can be used and we easily

deduce

Em(fm)wαβ ,p ≤ C

√
am

m
‖f ′ϕwαβ‖Lp([ am

m2 ,∞) ). (4.4)

Then, since Em(f)wαβ ,p ≤ ‖(f − fm)wαβ‖p + Em(fm)wαβ ,p, we have to estimate only

the Lp
wαβ

-norm of f − fm.

To this end, we put x0 = am

m2 and get

‖(f − fm)wαβ‖p =
(∫ x0

0

|[f(x)− f(x0)]wαβ(x)|pdx

)1/p
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=
(∫ x0

0

∣∣∣∣∫ x0

0

(t− x)0+f ′(t)wαβ(x)dt

∣∣∣∣p dx

)1/p

≤
∫ x0

0

|f ′(t)|
(∫ x0

0

(t− x)0+wp
αβ(x)dx

)1/p

dt

=
∫ x0

0

|f ′(t)|
(∫ t

0

wp
αβ(x)dx

)1/p

dt ∼
∫ x0

0

|f ′(t)|tα+ 1
p e−tβ

dt ≤

≤ C‖f ′ϕwαβ‖Lp((0,x0))

(∫ x0

0

tq(1/p−1/2)dt

)1/q

∼
√

am

m
‖f ′ϕwαβ‖Lp(0, am

m2 ),

which, with (4.4), proves (4.1) when 1 ≤ p < +∞. The case p = +∞ is similar and

(4.1) is proved.

By iterating (4.1) we have, for each g ∈ W p
r (wαβ), the estimate

Em(g)wαβ ,p ≤ C

(√
am

m

)r

‖g(r)ϕrwαβ‖p, C 6= C(m, f),

from which, by using the K-functional and its equivalence with ωr
ϕ, the Jackson

theorem follows.

Theorem 4.2. For all f ∈ Lp
wαβ

, 1 ≤ p ≤ +∞ and r < m we have

Em(f)wαβ
≤ Cωr

ϕ

(
f,

√
am

m

)
wαβ ,p

, C 6= C(f,m). (4.5)

By using the K-functional and the Bernstein inequality, in a usual way we

obtain the Stechkin inequality formulated in the following theorem

Theorem 4.3. For each f ∈ Lp
wαβ

, 1 ≤ p ≤ +∞, and an arbitrary integer r ≥ 1 we

have:

ωr
ϕ

(
f,

√
am

m

)
wαβ ,p

≤ C

(√
am

m

)r m∑
k=0

(
1 + k
√

ak

)r Ek(f)wαβ ,p

1 + k
(4.6)

with C = C(r) independent of m and f .

By proceeding as in [1], Lemma 3.5 (see also [3], p. 94-95) it is not difficult

to show that, setting

Ẽm(f)wαβ ,p = inf
Pm

‖(f − Pm)wαβ‖Lp( am
m2 ,am) , 1 ≤ p ≤ +∞,

if t−1Ωr
ϕ(f, t)wαβ ,p ∈ L1, it results

Ẽm(f)wαβ ,p ≤ CΩr
ϕ

(
f,

√
am

m

)
wαβ ,p

. (4.7)
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From this last result the next theorem easily follows.

Theorem 4.4. For each function f ∈ Lp
wαβ

, 1 ≤ p ≤ +∞, we have

Em(f)wαβ ,p ≤ C

∫ √
am
m

0

Ωk
ϕ(f, t)wαβ,p

t
dt (4.8)

where C 6= C(m, f) and k < m.

Recall that the main part of the modulus Ωk
ϕ is smaller than ωk

ϕ and generally

the two moduli are not equivalent. Moreover if, for some p, Ωk
ϕ(f, t)wαβ ,p ∼ tλ,

0 < λ < k, then by (4.8), we have Em(f)wαβ ,p ∼
(√

am

m

)λ

and, by using (4.6), also

ωk
ϕ(f, t)wαβ ,p ∼ tλ. Then for these classes of functions the two moduli are equivalent.

By using Jackson and Stechkin inequalities we can represent the seminorms of the

Besov spaces in (3.7) by means of the error of best approximation (see, for instance,

[3]). In fact, for 1 ≤ p ≤ +∞, the following equivalences hold:

‖f‖pqs ∼

(
+∞∑
k=1

k(1− 1
2β )sq−1Ek(f)q

wαβ,p

)1/q

, 1 ≤ q < +∞

‖f‖pqs ∼ sup
m≥1

m(1− 1
2β )sEm(f)wαβ,p

, q = +∞.

The next theorem is useful in more contexts.

Theorem 4.5. For each f ∈ Lp
wαβ

, 1 ≤ p ≤ +∞, we have

ωr
ϕ

(
f,

√
am

m

)
wαβ ,p

∼ inf
P∈IPm

{
‖(f − P )wαβ‖p +

(√
am

m

)r

‖P (r)ϕrwαβ‖p

}
(4.9)

where the constants in “∼” are independent of m and f .

A consequence of formula (4.9) is the useful inequality(√
am

m

)r ∥∥∥P (r)
m ϕrwαβ

∥∥∥
p
≤ Cωr

ϕ

(
f,

√
am

m

)
wαβ ,p

, (4.10)

being Pm the polynomial of quasi best approximation, i.e.

‖(f − Pm) wαβ‖p ≤ CEm(f)wαβ ,p.

For the proof of Theorem 4.5 the reader can use the same tool in [1] with some small

changes.

Now we will show some embedding theorems which connect different function norms
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and moduli of smoothness. For different classes of functions the reader can consult

[2].

In the sequel, to simplify the notations, we will set w = wαβ with α ≥ 0.

Theorem 4.6. Let f ∈ Lp
w, 1 ≤ p < +∞ and let us assume that the condition∫ 1

0

Ωr
ϕ(f, t)w,p

t1+1/p
dt < +∞ (4.11)

is satisfied. Then f is a continuous function in any interval [a,+∞), a > 0.

Moreover, if, with w̃ = w/ϕ1/p, and∫ 1

0

Ωr
ϕ(f, t)w̃,p

t1+1/p
dt < +∞ (4.12)

then we have
Em(f)w,∞

Ωr
ϕ

(
f,
√

am

m

)
w,∞

 ≤ C

∫ √
am
m

0

Ωr
ϕ(f, t)w̃,p

t1+1/p
dt (4.13)

and

‖fw‖∞ ≤ C

(
‖fw̃‖p +

∫ 1

0

Ωr
ϕ(f, t)w̃,p

t1+1/p
dt

)
. (4.14)

Finally (4.12) implies (4.13) and (4.14) with w in place of w̃ and 2
p in place of 1

p .

Here the positive constants C are independent of m, t and f .

Proof. In virtue of (4.8), (4.11) implies, for 1 ≤ p < +∞, limm Em(f)w,p = 0. There-

fore, if Pm denotes the polynomial of best approximation (or quasi best approxima-

tion) in Lp
w, the equality

w(f − Pm) =
+∞∑
k=0

(P2k+1m − P2km) w (4.15)

is true a.e. in (0,+∞). If we prove that the series uniformly converges on each

half-line [a,+∞), a > 0, then the equality holds everywhere in [a,+∞) and f is

continuous.

Now, by using (2.8), with p = +∞ and q = p, one has

‖(P2k+1m − P2km)w‖L∞([a,+∞)) ≤ a−
1
2p

∥∥∥(P2k+1m − P2km)wϕ
1
p

∥∥∥
L∞((a,+∞))

≤ a−
1
2p K

(
2k+1m
√

a2k+1m

)1/p

‖(P2k+1m − P2km) w‖p
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≤ a−
1
2p KC

(
2k+1m
√

a2k+1m

)1/p

‖(P2k+1m − P2km)w‖Lp(Imk)

having used (2.5) in the last inequality and setting Imk =
[

a2k+1m

(2k+1m)2
, a2k+1m

]
. Conse-

quently one has, for (4.7),

‖(P2k+1m − P2km) w‖L∞([a,+∞)) ≤ C

(
2km
√

a2km

)1/p

Ẽ2km(f)w,p

≤ C

(
2km
√

a2km

)1/p

Ωr
ϕ

(
f,

√
a2km

2km

)
w,p

and

+∞∑
k=0

‖(P2k+1m − P2km) w‖L∞([a,+∞)) ≤ C

+∞∑
k=0

(
2km
√

a2km

)1/p

Ωr
ϕ

(
f,

√
a2km

2km

)
w,p

≤ C

∫ √
am
m

0

Ωr
ϕ(f, t)w,p

t1+1/p
dt < +∞.

Then the series in (4.15) absolutely and uniformly converges and the equality in (4.15)

is true everywhere in [a,+∞).

To prove the first relation of (4.13) we use (2.8) in an equivalent form and with the

previous notations we obtain

‖(P2k+1m − P2km)w‖∞ ≤ K

(
2k+1m
√

a2k+1m

)1/p ∥∥∥(P2k+1m − P2km) w/ϕ1/p
∥∥∥

p

≤ K

(
2k+1m
√

a2k+1m

)1/p

Ẽ2km(f)w̃,p

≤ C

(
2k+1m
√

a2k+1m

)1/p

Ωr
ϕ

(
f,

√
a2km

2km

)
w̃,p

.

It follows

‖(f − Pm)w‖∞ ≤ lim
k
‖(P2k+1m − P2km)w‖∞ = lim

k

∥∥∥∥∥
k∑

i=0

(P2i+1m − P2im) w

∥∥∥∥∥
∞

≤
+∞∑
i=0

‖(P2i+1m − P2im)w‖∞ ≤ C

∫ √
am
m

0

Ωr
ϕ(f, t)w̃,p

t1+1/p
dt.
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To prove the second estimate in (4.13) we observe that, with Pm as the polynomial

of best approximation in Lp
w̃, we have

Ωr
ϕ

(
f,

√
am

m

)
w,∞

≤ C

[
‖(f − Pm)w‖∞ +

(√
am

m

)r ∥∥∥P (r)
m ϕrw

∥∥∥
∞

]

≤ C

[
Em(f)w,∞ +

(√
am

m

)r ∥∥∥P (r)
m ϕrw̃

∥∥∥
p

(
m
√

am

)1/p
]

.

Now for the first term let us use the first estimate of (4.13). The second term, by

proceeding as in [3], p.99-100 (see also [1]) is dominated by

C

(
m
√

am

)1/p ∫ √
am
m

0

Ωr
ϕ(f, t)w̃,p

t
dt. ≤ C

∫ √
am
m

0

Ωr
ϕ(f, t)w̃,p

t1+1/p
dt.

Then the second estimate in (4.13) follows.

Finally to prove (4.14) we write

‖fw‖∞ ≤ ‖(f − P1)w‖∞ + ‖P1w‖∞

with P1 as best approximation in Lp
w̃. Since

‖P1w‖∞ ≤ KP1w̃‖p ≤ 2K‖fw̃‖p,

for the first term we use the first estimate of (4.13) with m = 1.

To show the last part of the theorem we proceed as in the proof of (4.13), using

inequality (2.9) in place of (2.8).

5. Fourier Sum and Lagrange Polynomial

The approximation of functions by means of their Fourier sums in the system

{pm(wα)}m, where pm(wα, x) = γmxm + · · · , γm > 0, and∫ +∞

0

pm(wα, x)pn(wα, x)wα(x)dx = δmn,

is useful in different contexts. Moreover, the weighted Lagrange interpolation based on

the zeros of pm(wα, x) is useful in numerous problems of numerical analysis, too. We

will consider these two approximation processes in the space Lp
u, where u(x) = xγe−

xβ

2

and 1 ≤ p ≤ +∞.
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5.1. Fourier Sums. For f ∈ Lp
u, the m-th Fourier sum Sm(wα, f) is defined as

follows

Sm(wα, f) =
m−1∑
k=0

ckpk(wα),

where

ck =
∫ +∞

0

f(t)pk(wα, t)wα(t)dt.

Analogously to the cases of Laguerre, Hermite and Freud polynomials (see [10]) the

uniform boundedness of Sm(wα) in Lp
u holds true for p ∈

(
4
3 , 4
)

and then for a

restricted class of functions. This fact leads to modify the polynomial Sm(wα, f)

following a procedure used in [7][6][10] that we will briefly illustrate. Let am := am(u)

be the M-R-S number related to the weight u. Let θ ∈ (0, 1),M =
⌊

mθ
1+θ

⌋
∼ m and

let ∆̄θm be the characteristic function of the segment [0, θam]. Then, using (2.3) with

u in place of wαβ , for every f ∈ Lp
u, we get

‖f(1− ∆̄θm)u‖p ≤ C
(
EM (f)u,p + e−Am‖fu‖p

)
(5.1)

and

‖fu‖p ≤ C
(
‖f∆̄θmu‖p + EM (f)u,p

)
, (5.2)

where 1 ≤ p ≤ +∞ and EM (f)u,p is the error of best approximation of f in IPM .

Therefore, by (5.2), it is sufficient to approximate the function f in the more re-

stricted interval [0, θam] or, equivalently, to replace {Sm(wα, f)}m with the sequence

{∆θmSm(wα, f∆θm)}m, where am = am(wα) and ∆θm is the characteristic function

of [0, θam] with θ ∈ (0, 1) arbitrary. The theorems that follow show that this proce-

dure is convenient.

Theorem 5.1. Let u ∈ Lp with 1 < p < +∞. Then, for every f ∈ Lp
u there exists a

constant C 6= C(m, f) such that

‖Sm(wα,∆θmf)∆θmu‖p ≤ C‖f∆θmu‖p (5.3)

if and only if

vγ

√
vαϕ

∈ Lp(0, 1) and
√

vα

ϕ

1
vγ

∈ Lq(0, 1), (5.4)
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where vρ(x) = xρ, ϕ(x) =
√

x and p−1 + q−1 = 1. Moreover, under the conditions

(5.4), (5.3) is equivalent to

‖[f −∆θmSm(wα,∆θmf)]u‖p ≤ C
(
EM (f)u,p + e−Am‖fu‖p

)
, (5.5)

where A and C are positive constant independent of m and f .

As an example, if f ∈ W p
r (u), r ≥ 1, and (5.4) holds true, we have

‖[f −∆θmSm(wα,∆θmf)]u‖p ≤ C
(√

am

m

)r

‖f‖W p
r (u),

i.e. the error of best approximation of functions belonging to W p
r (u). If wα(x) =

xαe−x and u(x) = xγe−
x
2 (Laguerre case), then Theorem 5.1 is equivalent to Theorem

2.2 in [10]. Moreover, as in the Laguerre case, if (5.4) holds true with 1 < p < 4 then

we get the estimate

‖Sm(wα,∆θmf)∆θmu‖p ≤ C‖f∆θmu‖p (5.6)

and if (5.4) holds true with p > 4
3 then it results

‖Sm(wα, f)∆θmu‖p ≤ C‖fu‖p. (5.7)

Moreover, we have

‖Sm(wα, f)u‖p ≤ C‖fu‖p, (5.8)

‖Sm(wα, f)u‖p ≤ C


m

1
3 ‖fu‖p

‖fu(1 + ·3)‖p

(5.9)

if (5.4) is satisfied with p ∈
(

4
3 , 4
)

or p ∈ (1,+∞)\
[
4
3 , 4
]

respectively. The cases p = 1

or p = +∞ are considered in the following theorems.

Theorem 5.2. Let f be such that∫ +∞

0

|f(x)u(x)| log+ |f(x)| < +∞,

with

log+ |z| =

0 if |z| ≤ 1

log |z| if z > 1.

If
vγ

√
vαϕ

∈ L1 and
√

vα

ϕ

1
vγ

∈ L∞, vρ(x) = xρ, ϕ(x) =
√

x, (5.10)
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then we have

‖Sm(wα,∆θmf)u∆θm‖1 ≤ C
[
1 +

∫ +∞

0

|fu|(x)(1 + log+ |f(x)|+ log+ x)dx

]
,

with C 6= C(m, f).

Theorem 5.3. Let f ∈ L∞u , u(x) = xγe−
xβ

2 , β > 1
2 , γ ≥ 0. If α

2 + 1
4 ≤ γ ≤ α

2 + 3
4 ,

then we have

‖Sm(wα,∆θmf)u∆θm‖∞ ≤ C‖f∆θmu‖∞(log m),

where C 6= C(m, f).

Theorems 5.1 and 5.2 and estimates (5.6)-(5.9) have been proved in [10].

Theorem 5.3 has been proved in [6].

5.2. Lagrange interpolation. If f is a continuous function in (0,+∞) then the

Lagrange polynomial interpolating f on the zeros x1 < x2 < · · · < xm of pm(wα) is

defined as

Lm(wα, f, x) =
m∑

i=1

li(x)f(xi), li(x) =
pm(wα, x)

p′m(wα, xk)(x− xk)
.

In the sequel we will consider the behaviour of Lm(wα, f) in Lp
u with u(x) = xγe−

xβ

2 .

Analogously to the Fourier sums, the behaviour of Lm(wα, f) in Lp
u is “poor”, i.e. it

can be used with good results only for a restricted class of functions. For example, if

p = +∞ and f ∈ L∞u with γ ≥ 0, then for every choice of α and γ,

‖Lm(wα)‖ := sup
‖fu‖∞=1

‖Lm(wα, f)u‖∞ > Cmρ,

with ρ > 0 and C 6= C(f,m). Then, as for the Fourier sums, we modify the Lagrange

polynomial. To this end, we introduce the following notations. Let

xj = min
k=1,...,m

{xk : xk ≥ θam},

where θ ∈ (0, 1) and am = am(wα),m sufficiently large. With

Ψ(x) =

0 if x ≤ 0

1 if x ≥ 1
and Ψj(x) = Ψ

(
x− xj

xj − xj−1

)
,
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define the truncated function fj := Φjf, where Φj = 1−Ψj . By definition, we deduce

that fj has the same smoothness as f and

fj(x) =

f(x) if x ∈ [0, xj ]

0 if x ∈ [xj+1,+∞).

Now, letting θ1 ∈ (θ, 1) and denoting by ∆θ1 := ∆θ1m the characteristic function of

[0, θ1am], we consider the behaviour of the sequence {∆θ1Lm(wα, fj)}m in Lp
u, u(x) =

xγe−
xβ

2 , 1 < p ≤ +∞.

Theorem 5.4. If the parameters α and γ of the weights wα and u satisfy

α

2
+

1
4
≤ γ ≤ α

2
+

5
4
, γ ≥ 0,

then

‖∆θ1Lm(wα, fj)u‖∞ ≤ C‖fju‖∞(log m),

with C 6= C(m, f).

The following lemma will be useful in the sequel, but it can be used in more

contexts too.

Lemma 5.5. Let 0 < θ < θ1 < 1, 1 ≤ p < +∞ and ∆xk = xk+1 − xk. Then, for an

arbitrary polynomial P ∈ Pml (l fixed integer), we have
j∑

k=1

∆xk|Pu|p(xk) ≤ C
∫ θ1am

x1

|Pu|p(x)dx,

with C 6= C(m, p, P ).

In order to simplify the notations, from now on we let vρ(x) = xρ.

Theorem 5.6. Let 1 < p < +∞ and assume that

vγ

√
vαϕ

∈ Lp and
√

vαϕ

vγ
∈ Lq, ϕ(x) =

√
x, q =

p

p− 1
. (5.11)

Then, for every f ∈ C0(0,+∞), we have

‖Lm(wα, fj)u∆θ1‖p ≤ C
j∑

k=1

∆xk|fu|p(xk), (5.12)

with C 6= C(m, f).

The following lemma estimates the right-hand side of (5.12) in terms of the

main part of the modulus of smoothness.
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Lemma 5.7. For every function f belonging to C0(0,+∞) we have(
j∑

k=1

∆xk|fu|p(xk)

) 1
p

≤ C

[
‖fu‖Lp(0,xj) +

(√
am

m

) 1
p
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t1+
1
p

dt

]
,

with r < m and C 6= C(m, f).

Now we can state the following

Theorem 5.8. Under the assumptions of Theorem 5.6, for every continuous function

in (0,+∞), we have

‖[f −∆θ1Lm(wα, fj)]u‖p ≤ C

[(√
am

m

) 1
p
∫ √

am
m

0

Ωr
ϕ(f, t)u,p

t1+
1
p

dt + e−Am‖fu‖Lp

]
,

where the constants A and C are independent of m and f.

As an example, for every f ∈ W p
r (u), we have

‖[f −∆θ1Lm(wα, fj)]u‖p ≤ C
(√

am

m

)r

‖f‖W p
r (u),

that is the error of best approximation in W p
r (u).

6. Proofs

We first state two propositions whose proofs are easy.

Proposition 6.1. Let x ∈ [(2rh)2, h∗], with h∗ = 1

h
2

2β−1
, β > 1

2 , and y ∈ [x −
rh
√

x, x + rh
√

x]. Then it results:

wαβ(x) ∼ wαβ(y),

where the constant in “ ∼ ” are independent of x and h.

Proposition 6.2. Let z > 0 be such that wαβ(x) = xαe−xβ

, β > 1
2 is a non-decreasing

function in [z,+∞]. Then, for every f ∈ W p
r (wαβ), with r ≥ 1 and 1 ≤ p ≤ +∞,(∫ +∞

z

∣∣∣∣wαβ(x)
∫ x

z

(x− u)r−1f (r)(u)du

∣∣∣∣p dx

) 1
p

≤ C
(zβ− 1

2 )r
‖f (r)ϕrwαβ‖p,

with C 6= C(f, z, p).

Proof of Theorem 3.1. We first point out the main steps of the proof. In order to

prove (3.6), constructing a suitable function Gh ∈ W p
r (wαβ), we state the inequality

K̃(f, tr)wαβ ,p ≤ CΩr
ϕ(f, t)wαβ ,p. (6.13)
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Let t0 < 8r2h2 ≤ t1 < t2 < · · · < tj ≤ h∗ < tj+1, h > 0, be a system of knots such

that ti+1 − ti ∼ h
√

ti, i = 0, . . . , j. With Ψ ∈ C∞(IR) a non-decreasing function such

that

Ψ(x) =

0 if x ≤ 0

1 if x ≥ 1,

and with yk = tk+tk+1
2 , define the functions Ψk(x) = Ψ

(
x−yk

tk+1−yk

)
, where k =

1, 2, . . . , j and Ψ0(x) = 0 = Ψj+1(x). With

fτ (x) = rr

∫ 1
r

0

· · ·
∫ 1

r

0

(
r∑

l=1

(−1)l+1

(
r

l

)
f(x + lτ(u1 + · · ·+ ur))

)
du1 . . . dur

and

Fhk(x) =
2
h

∫
h
2

hfτϕ(tk)(x)dτ,

we introduce the function

Gh(x) =
j∑

k=1

Fhk(x)Ψk−1(x)(1−Ψk(x)). (6.14)

After that, in order to prove the inequalities

‖(f −Gh)wαβ‖Lp(8r2h2,h∗)

hr‖G(r)
h ϕrwαβ‖Lp(8r2h2,h∗)

 ≤ C‖wαβ
−→
∆hϕf‖Lp(8r2h2,Ah∗),

for some constant A, it is sufficient to repeat word for word [3], p. 194-197, with some

simplifications due to the forward difference
−→
∆hϕ appearing in the definition of the

modulus Ωr
ϕ. Thus (3.6) follows. In order to prove the inverse inequality of (3.6), we

now prove that for every g ∈ W p
r (wαβ)

‖wαβ
−→
∆hϕf‖Lp(8r2h2,h∗)

≤ C
{
‖(f − g)wαβ‖Lp(8r2h2,Ah∗) + hr‖g(r)ϕrwαβ‖Lp(8r2h2,Ah∗)

}
,

with A = 1 + rh
2β

2β−1 . In fact, we have

|wαβ(x)(
−→
∆hϕf)(x)| ≤

r∑
k=0

(
r

k

)
|f − g|(x + (r − k)h

√
x)wαβ(x) + |wαβ(x)(

−→
∆hϕg)(x)|.
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Now, x and x+(r−k)h
√

x belong to [8r2h2, Ah∗] and |x−(x+(r−k)h
√

x)| ≤ rh
√

x.

Thus, by Proposition 6.1, wαβ(x) ≤ Cwαβ(x + (r − k)h
√

x) and

‖wαβ
−→
∆hϕ(f − g)‖Lp(8r2h2,h∗) ≤ C

r∑
k=0

(
r

k

)
‖(f − g)wαβ(·+ (r − k)h

√
·)‖Lp(8r2h2,h∗)

≤ C2r‖(f − g)wαβ‖Lp(8r2h2,Ah∗),

making the change of variable u = x + (r − k)h
√

x and using
∣∣du
dx

∣∣ ≤ 2. Moreover,

since

−→
∆r

hg(x) = r!hr

∫ 1

0

∫ t1

0

· · ·
∫ tr−1

0

g(r)(x + h(t1 + · · ·+ tr))dt1 . . . dtr

=: r!hr

∫
Tr

g(r)(x + hτ)dTr,

with τ = t1 + · · ·+ tr < r and Tr = [0, 1]× [0, t1]× · · · × [0, tr], we can write

wαβ(x)
−→
∆r

hϕg(x) = r!(hϕ)r

∫
Tr

g(r)(x + hτ
√

x)wαβ(x)dTr.

Consequently, by Proposition 6.1, we have

‖wαβ
−→
∆r

hϕg‖Lp(8r2h2,h∗) ≤ Cr!hr

(∫ h∗

8r2h2

∣∣∣∣∫
Tr

g(r)(x + hτ
√

x)wαβ(x)dTr

∣∣∣∣p
) 1

p

≤ Cr!hr

∫
Tr

(∫ h∗

8r2h2

∣∣∣g(r)ϕrwαβ

∣∣∣p (x + hτ
√

x)dx

) 1
p

dTr

≤ Chr

(∫ Ah∗

8r2h2

∣∣∣g(r)ϕrwαβ

∣∣∣p (u)du

) 1
p

,

being
∫

Tr
dTr = 1

r! . Then the equivalence (3.6) easily follows. Now we prove equiva-

lence (3.5), i.e.

ωr
ϕ(f, t)wαβ ,p ∼ K(f, tr)wαβ ,p.

In order to prove

ωr
ϕ(f, t)wαβ ,p ≤ CK(f, tr)wαβ ,p,

since

Ωr
ϕ(f, t)wαβ ,p ≤ CK(f, tr)wαβ ,p, 1 ≤ p ≤ +∞,
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holds true, it remains to prove that the first and third terms in the definition of ωr
ϕ

are dominated by the K−functional. About the first term, in [1], p. 200, we proved

that, with uα = xαe−x,

inf
qr∈IPr

‖(f − qr)uα‖Lp(0,8r2t2) ≤ C‖(f − g)uα‖Lp(0,8r2t2) + tr‖g(r)ϕruα‖Lp(0,8r2t2)

and then, since e−x ∼ e−xβ ∼ 1 for x ∈ [0, (2rh)2], we can replace uα with wαβ in the

above norms. About the third term, we have

inf
qr−1∈IPr−1

‖(f − qr−1)wαβ‖Lp(t∗,+∞) ≤ ‖(f − g)wαβ‖Lp(t∗,+∞)

+ ‖(g − Tr−1)wαβ‖Lp(t∗,+∞),

where g ∈ W p
r (wαβ) is arbitrary and Tr−1 is the Taylor polynomial of g with initial

point t∗. Consequently

‖(g − Tr−1)wαβ‖Lp(t∗,+∞) =
(∫ +∞

t∗

∣∣∣∣wαβ(x)
∫ x

t∗
(x− u)r−1g(r−1)(u)du

∣∣∣∣p dx

) 1
p

.

Then, using Proposition 6.2 with z = t∗ and f = g, the right-hand side of the above

equality is dominated by C[
(t∗)

2β−1
2

]r ‖g(r)ϕrwαβ‖Lp(t∗,+∞). By definition t∗ = 1

t
2

2β−1
,

i.e. 1[
(t∗)

2β−1
2

]r = tr, and the inequality

ωr
ϕ(f, t)wαβ ,p ≤ CK(f, t∗)wαβ ,p

follows. In order to prove the inverse inequality, recall that for two suitable polyno-

mials p1 and p2 belonging to IPr−1,

‖(f − p1)wαβ‖Lp(0,8r2t2) + tr‖p(r)
1 ϕr−1wαβ‖Lp(0,8r2t2) ≤ ωr

ϕ(f, t)wαβ ,p

‖(f − p2)wαβ‖Lp(t∗−1,+∞) + tr‖p(r)
2 ϕr−1wαβ‖Lp(t∗−1,+∞) ≤ ωr

ϕ(f, t)wαβ ,p

as previously proved. Moreover, for the function Gt(x) defined in (6.14), the inequality

‖(f −Gt)wαβ‖Lp(8r2t2,h∗) + tr‖G(r)
t ϕrwαβ‖Lp(8r2t2,h∗) ≤ CΩr

ϕ(f, t)wαβ ,p

≤ Cωr
ϕ(f, t)wαβ ,p
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holds. Now, with x1 = 4r2t2, x2 = 8r2t2, x3 = t∗ − 1, x4 = t∗, consider the function

Γt(x) =
(

1−Ψ
(

x− x1

x2 − x1

))
p1(x) + Ψ

(
x− x1

x2 − x1

)(
1−Ψ

(
x− x3

x4 − x3

))
Gt(x)

+ Ψ
(

x− x3

x4 − x3

)
p2(x).

Obviously Γt ∈ W p
r and it is not difficult to verify the inequality

‖(f − Γt)wαβ‖p + tr‖Γ(r)
t ϕrwαβ‖Lp(8r2t2,h∗) ≤ Cωr

ϕ(f, t)wαβ ,p.

Thus the proof of the theorem is complete.

In order to prove the theorems on interpolation, we recall some basic facts on

the orthonormal polynomials {pm(wα)}m. The zeros of pm(wα) are located as follows:

C am

m2
≤ x1 < · · · < xm ≤ am

(
1− C

m
2
3

)
.

Moreover,

∆xk = xk+1 − xk ∼
√

am

m

√
xk

1√
1− xk

am
+ 1

m
2
3

,

where am = am(wα) and C is a positive constant independent of m. The following

estimates are useful:

|pm(wα, x)
√

wα(x)| ≤ C

4
√

amx 4

√∣∣∣1− x
am

∣∣∣+ 1

m
2
3

,

where C am

m2 ≤ x ≤ Cam(1 + m− 2
3 ) and C 6= C(m,x), and

1
|p′m(wα, xk)

√
wα(xk)|

∼ 4
√

xkam∆xk

√
1− xk

am
+

1
m

2
3
, k = 1, . . . ,m,

where the constants in “ ∼ ” are independent of m and k. The above estimates can

be found in [5] or can be directly obtained by [4].

Proof of Theorem 5.4. Since

u(x)Lm(wα, fj , x) =
j∑

i=1

u(x)
li(x)
u(xi)

(fu)(xi)
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and, denoting by xd a knot closest to x, it results
∣∣∣u(x) ld(x)

u(xd)

∣∣∣ ∼ 1, for x ∈ [0, xj ].

Then we have

|u(x)Lm(wα, fj , x)| ≤ C‖fu‖L∞([0,xj ])

1 +
j∑

i=1
i6=d

u(x)
u(xi)

|li(x)|

 . (6.15)

Using the previous estimates and a Remez-type inequality, we get

|u(x)pm(wα, x)|
|p′m(wα, xi)u(xi)|

≤ C
(

x

xi

)γ−α
2−

1
4 ∆xi

|x− xi|
,

where i = 1, 2, . . . , j, i 6= d, and x ∈
[

am

m2 , xj

]
. Then, under the assumptions of α and

γ, the sum in (6.15) is dominated by log m and the theorem follows.

Here we omit the proofs of Lemmas 5.5 and 5.7 and the proofs of Theorems 5.6

and 5.8, being completely similar to the proofs of Lemmas 2.5 and 2.7 and Theorems

2.6 and 2.8 in [10] respectively.
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