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MEAN CONVERGENCE OF FOURIER SUMS
ON UNBOUNDED INTERVALS

G. MASTROIANNI AND D. OCCORSIO

Dedicated to Professor D. D. Stancu on his 80th birthday

Abstract. In this paper we consider the approximation of functions by

suitable ”truncated” Fourier Sums in the generalized Freud and Laguerre

systems. We prove necessary and sufficient conditions for the uniform

boundedness in Lp weighted spaces.

1. Introduction

Let be Wα,β(x) =: Wα(x) = |x|αe−|x|
β

, x ∈ IR, α > −1, β > 1 a generalized

Freud weight and denote by {pm(Wα)}m the corresponding sequence of orthonormal

polynomials with positive leading coefficients, i.e.

pm(Wα, x) = γm(Wα)xm + . . . , γm(Wα) > 0, m = 0, 1, . . . .

These polynomials introduced and studied in [3](see also [4], [5]) are a generalization

of Sonin-Markov polynomials. Let be Sm(Wα, f) the m−th partial Fourier sum of a

measurable function f in the system {pm(Wα)}m, i.e.

Sm(Wα, f, x) =
m∑

k=0

ckpk(Wα, x), ck =
∫
IR

f(t)pk(Wα, t)Wα(t)dt.

For α = 0, the boundedness in weighted Lp spaces of Sm(Wα, f, x) holds only for a

”small” range of p (see [2]). To be more precise, in [2] the authors proved the bound

‖Sm(W0(x), f, )
√

W0‖p ≤ C‖f
√

W0‖p (1)
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for 4
3 < p < 4 and β = 2, 4, 6..., while for p ≥ 4 and p ≤ 4

3 estimate of kind (1) cannot

always hold. In the same paper [2] the authors, in order to extend the range of p,

modify the weight in the norm obtaining, under suitable assumptions on b, B, β, not

homogenous estimates of the kind

‖Sm(W0(x), f)
√

W0(1 + |x|)b‖p ≤ C‖f
√

W0(1 + |x|)B‖p, 1 < p < ∞. (2)

In the case α = 0 and β = 2 (Hermite polynomials) estimates of types (1) and (2)

were already proved in [12] (see also [1]).

Let be Uγ(x) = |x|γe−
|x|β

2 , x ∈ IR, γ > − 1
p . Denote by am = am(Wα) the Mhaskar-

Rahmanov-Saff number (M-R-S number) with respect to Wα and by ∆m,θ the char-

acteristic function of the segment Am = [−θam, θam], with 0 < θ < 1. In this paper,

we will prove inequalities of kind

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖p ≤ C‖fUγ∆m,θ‖p, (3)

with 1 < p < ∞, under certain conditions on α and γ which are necessary and suffi-

cient. Since we prove also that, for m →∞, the norm ‖[f−∆m,θSm(Wα,∆m,θf)]Uγ‖p

converges to zero essentially like the error of the best approximation in Lp
Uγ

, then in

order to approximate a function f ∈ Lp
Uγ

(see (7) for the definition) the sequence

{∆m,θSm(Wα, f∆m,θ)}m is simpler and more convenient than the ordinary Fourier

sum.

An inequality of type (3) has been proved in [12], in the special case of

the Hermite weight. The proof in [12] requires a precise estimate of the difference

|pm+1(x) − pm−1(x)| where pm(x) is the m−th Hermite polynomial. This estimate

for weights Wα is not available in the literature and, on the other hand, it isn’t

required in our proof. The case p = 1 is also considered when the functions are in the

Calderon-Zygmund spaces.

As consequence of estimate (3) we derive the analogous one for Fourier sums

in the system of orthogonal polynomials w.r.t generalized Laguerre weights wα(x) =

xαe−xβ/2, x ≥ 0, α > −1, β > 1
2 .
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The plan of the paper is the following: next section contains some basic facts

necessary to introduce the main results given in section 3. Section 4 contains all the

proofs.

2. Preliminary

In the sequel C denotes a positive constant which can be different in different

formulas. Moreover we write C 6= C(a, b, ..) when the constant C is independent of

a, b, ..

Let be Uγ(x) = |x|γe−
|x|β

2 , γ > − 1
p , β > 1 and denote by am = am(Uγ) the

M-R-S number w.r.t. Uγ . The following ”infinite-finite range inequality” holds [3]

‖PmUγ‖Lp(IR) ≤ C‖PmUγ‖Lp(|x|≤am(1−Cm−2/3).

We remark that am = am(Uγ) can be expressed as [7]

am = m
1
β C(β, γ), (4)

where the positive constant C(β, γ) will not be used in the sequel (analogously for

am = am(Wα)). Moreover we recall the following inequalities [7]:

‖PmUγ‖Lp(|x|≥am(1+δ)) ≤ C1e
−C2m‖PmUγ‖Lp(−am,am) (5)

and

‖PmUγ‖Lp(IR) ≤ C‖PmUγ‖Lp( am
m ≤|x|≤am), (6)

where δ > 0 is fixed and the constants C, C1, C2 are independent of m and Pm.

For 1 ≤ p < ∞ define the space

Lp
Uγ

=

{
f :

(∫ ∞

−∞
|f(x)Uγ(x)|pdx

) 1
p

< ∞

}
(7)

and denote by

Em(f)Uγ ,p = inf
P∈IPm

‖(f − P )Uγ‖p (8)

the error of the best approximation in Lp
Uγ

.
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For a fixed real θ with 0 < θ < 1 we shall denote by ∆m,θ the characteristic

function of Dm = (−θam, θam), am = am(Uγ). Next Proposition is useful for our

goals.

Proposition 2.1. Let f ∈ Lp
Uγ

and 1 ≤ p ≤ ∞. For m sufficiently large (say

m > m0) we have

‖f(1−∆m,θ)Uγ‖p ≤ C1

(
EM (f)Uγ ,p + e−C2m‖fUγ‖p

)
, (9)

where M =
[
m

(
θ

1+θ

)β
]

1 and the constants C, C1, C2 are independent on m and f .

By (9) we get

‖fUγ‖p ≤ C
(
EM (f)Uγ ,p + ‖f∆m,θUγ‖p

)
. (10)

Then, by virtue of Proposition 2.1 we will go to consider the behaviour of the sequence

{∆m,θSm(Wα,∆m,θf)}m instead of {Sm(Wα, f)}m, where here and in the sequel ∆m,θ

is the characteristic function of [−θam, θam], with am = am(Wα) < am(Uγ).

3. Main results

Now we are able to state the next two Theorems.

Theorem 3.1. Let be Uγ(x) = |x|γe−|x|
β/2, γ > − 1

p , β > 1, 1 < p < ∞ and f ∈ Lp
Uγ

.

Then, there exists a constant C 6= C(m, f) such that

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖p ≤ C‖fUγ∆m,θ‖p, (11)

if and only if

−1
p

< γ − α

2
<

1
q
, q =

p

p− 1
. (12)

Moreover, if (12) holds, it results also

‖[f −∆m,θSm(Wα,∆m,θf)]Uγ‖p ≤ C
(
EM (f)Uγ ,p + e−C1m‖fUγ‖p

)
(13)

with C 6= C(m, f), C1 6= C1(m, f).

Setting

log+ f(x) = log (max(1, f(x))) ,

we prove

1[a] denotes the largest integer smaller than or equal to a ∈ R+
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Theorem 3.2. Let be Uγ(x) = |x|γe−|x|
β/2, γ > −1, β > 1, and let be f such that∫

IR |f(x)Uγ(x)| log+ |f(x)|dx < ∞. If it results

−1 < γ − α

2
< 0 (14)

then

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖1 ≤ C + C
∫
IR
|f(x)Uγ(x)|

[
1 + log+ |f(x)|+ log+ |x|

]
dx,

(15)

where C 6= C(m, f).

Theorem 3.2 can be useful to prove the convergence of some product integration rules.

We state now some inequalities that can be useful in different contests. Assuming (12)

true with p belonging to the right hand mentioned intervals, the following inequalities

hold

‖Sm(Wα, f)Uγ∆m,θ‖p ≤ C‖fUγ‖p, 1 < p < 4 (16)

‖Sm(Wα, f∆m,θ)Uγ‖p ≤ C‖fUγ∆m,θ‖p, p >
4
3

(17)

‖Sm(Wα, f)Uγ‖p ≤ C‖fUγ‖p,
4
3

< p < 4 (18)

‖Sm(Wα, f)Uγ‖p ≤ Cm
1
3 ‖fUγ‖p, p ∈

(
1,

4
3

)
∪ (4,∞) (19)

with C 6= C(m, f).

For β = 2 Theorem 3.1 and inequalities (16)-(19) were proved in [6]. Estimates of

Em(f)Uγ ,p can be found in [7] and [8].

Now we want to show an useful consequence of the previous results. Let wα(x) =

xαe−xβ

, x > 0, α > −1, β > 1
2 be a generalized Laguerre weight and let {pm(wα)}m

be the corresponding sequence of orthonormal polynomials with positive leading co-

efficients. With uγ(x) = xγe−xβ/2, γ > − 1
p , β > 1

2 , let Lp
uγ

, 1 < p < ∞, be the set of

measurable functions with norm

‖fuγ‖p =
(∫ ∞

0

|f(x)uγ(x)|pdx

) 1
p

< ∞

and denote by Sm(wα, f) the m−th Fourier sum of f ∈ Lp
uγ

, i.e.

Sm(wα, f, x) =
m∑

k=0

ckpk(wα, x), ck =
∫ ∞

0

f(t)pk(wα, t)wα(t)dt.
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The theorems that we are going to establish are a direct consequence of Theorems

3.1-3.2. To introduce these results, let am = am(wα) the M-R-S number with respect

to wα and for θ ∈ (0, 1) let be χm,θ the characteristic function of [0, θam]. We have

Theorem 3.3. Let uγ(x) = xγe−xβ/2, γ > − 1
p , β > 1

2 , f ∈ Lp
uγ

and 1 < p < ∞.

Then there exists a constant C 6= C(m, f) such that

‖Sm(wα, fχm,θ)uγχm,θ‖p ≤ C‖fuγχm,θ‖p, (20)

if and only if
vγ

√
vαϕ

∈ Lp(0, 1) and

√
vα

ϕ

1
vγ

∈ Lq(0, 1), (21)

where 1
p + 1

q = 1, vr = xr, and ϕ(x) =
√

x.

Moreover, if (21) holds, it results also

‖[f − χm,θSm(wα, χm,θf)]uγ‖p ≤ C
(
EM (f)uγ ,p + e−C1m‖fuγ‖p

)
(22)

with C 6= C(m, f), C1 6= C1(m, f).

Theorem 3.4. Let uγ(x) = xγe−xβ/2, γ > −1, β > 1
2 , and let be∫∞

0
|f(x)uγ(x)| log+ |f(x)|dx < ∞. If it results

vγ

√
vαϕ

∈ L1(0, 1)
√

vα

vγ√ϕ
∈ L∞(0, 1), (23)

then

‖Sm(wα, fχm,θ)uγχm,θ‖1 ≤ C + C
∫ ∞

0

|f(x)uγ(x)|
[
1 + log+ |f(x)|+ log+ x

]
dx,

(24)

where C 6= C(m, f), vr = xr, and ϕ(x) =
√

x.

The case β = 1 in the Theorem 3.3 was proved in [9].

The following inequalities

‖Sm(wα, f)uγχm,θ‖p ≤ C‖fuγ‖p, 1 < p < 4 (25)

‖Sm(wα, fχm,θ)uγ‖p ≤ C‖fuγχm,θ‖p, p >
4
3

(26)

‖Sm(wα, f)uγ‖p ≤ C‖fuγ‖p,
4
3

< p < 4 (27)

‖Sm(wα, f)uγ‖p ≤ Cm
1
3 ‖fuγ‖p, p ∈ (1,∞)\(4

3
, 4) (28)
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are true with C 6= C(m, f), and assuming (21) true with p belonging to the indicated

intervals.

The case β = 1 in Theorem 3.3 and in the inequalities (25)-(28) was just proved in

[9].

4. Proofs

4.1. Proof of Proposition 2.1. We have:

‖f(1−∆m,θ)Uγ‖p = ‖fUγ‖Lp(|x|≥θam)

≤ ‖[f − PM ]Uγ‖p + ‖PMUγ‖Lp(|x|≥θam),

M =

[
m

(
θ

1 + θ

)β
]

,

where PM is the best approximation polynomial of f ∈ Lp
Uγ

. Since (5)

‖f(1−∆m,θ)Uγ‖p ≤ EM (f)Uγ ,p + Ce−C2m‖PMUγ‖p

≤ C1(EM (f)Uγ ,p + e−C2m‖fUγ‖p),

i.e. the Proposition is proved. �

In the sequel we need some inequalities about the polynomials pm(Wα).

In [3, Th. 1.8, p. 16] the authors proved

|pm(Wα, x)|
√

Wα(x) ≤ C
√

am
4

√∣∣∣1− |x|
am

∣∣∣ + m− 2
3

,
am

m
≤ |x| ≤ am.

from which, for a fixed θ, with 0 < θ < 1, we can deduce

|pm(wα, x)|
√

wα(x) ≤ C 1
√

am
,

am

m
≤ |x| ≤ θam. (29)

Denote by xd a zero of pm(Wα) closest to x, by lm,d the d−th fundamental Lagrange

polynomial based on the zeros of pm(Wα), and recall the following Erdös-Turán esti-

mate [4]
l2m,d(x)Wα(x)

Wα(xd)
+

l2m,d+1(x)Wα(x)
Wα(xd)

> 1. (30)
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Denoted by λm(Wα, x) the m-th Christoffel function m = 1, 2, . . . ,

λm(Wα;x) =

[
m−1∑
k=0

p2
k(Wα;x)

]−1

,

in [3] the authors proved

1
C

ϕm(x) ≤ λm(Wα, x)(
|x|+ am

m

)α
e−|x|β

≤ Cϕm(x), (31)

where

ϕm(x) =
am

m

1√∣∣∣1− |x|
am

∣∣∣ + m− 1
3

, |x| ≤ am.

Combining (30) and (31) we deduce

l2m,d(x)Wα(x)
Wα(xd)

∼ 1. (32)

Since from [3, p.16-17], for |xd| ≤ θam,

Wα(xd)p′m
2(Wα, xd) ∼

1
∆2xd

, |∆xd| = |xd±1 − xd|,

we deduce

|pm(wα, x)|
√

Wα(x)
√

am ∼
∣∣∣∣ x− xd

xd − xd±1

∣∣∣∣ ,
am

m
≤ |x| ≤ θam. � (33)

The following proposition will be useful in the sequel.

Proposition 4.1. Let be Wα(x) = vα(x)e−|x|
β

, vα(x) = |x|α and Uρ(x) =

vρ(x)e−
|x|β

2 , vρ(x) = |x|ρ. For a fixed 0 < θ < 1, 1 ≤ p < ∞ and ρ − α
2 > − 1

p ,

we have

‖pm(Wα)Uρ‖Lp[−θam,θam] ≥
C

√
am

∥∥∥∥ vρ

√
vα

∥∥∥∥
Lp(−1,1)

, (34)

where C is independent of m.

Proof. Let δ > 0 be ”small”. Define δk = δ
4∆xk = δ

4 (xk+1 − xk), and Im =⋃
1≤k≤m

([xk − δk, xk + δk]). To prove (34), set CIm = [−1, 1]\Im. By (33) we get

|pm(Wα, x)|Uρ(x) ≥ C
|x|ρ−α

2

√
am

, x ∈ CIm,
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and consequently

‖pm(Wα)σ‖Lp[−amθ,amθ] ≥
C

√
am

∥∥∥∥ vρ

√
vα

∥∥∥∥
Lp(CIm)

.

Since the measure of Im is bounded by δ, for a suitable δ, we conclude

‖pm(Wα)Uρ‖Lp[−amθ,amθ] ≥
C

√
am

∥∥∥∥ vρ

√
vα

∥∥∥∥
Lp([−1,1])

. �

In order to prove next theorem, we recall the following expression for Sm(Wα, f)

Sm(Wα, f, x) =
γm−1(Wα)
γm(Wα)

{pm(Wα, x)H(f∆m,θpm−1(Wα)Wα;x) (35)

+ pm−1(Wα, x)H(f∆m,θpm(Wα)Wα;x)} ,

where

H(g, t) =
∫
IR

g(x)
x− t

dx

is the Hilbert transform of g in IR, and [3]

γm−1(Wα)
γm(Wα)

∼ am(Wα). (36)

4.2. Proof of Theorem 3.1. By (6) we have

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖p ≤ C‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖Lp(Cm),

Cm = {x : C am

m
≤ |x| ≤ θam},

Taking into account (35) and (36)

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖p

≤ am

(∫
Cm

|pm(Wα, t)H(pm−1(Wα)Wαf∆m,θ; t)Uγ(t)|p dt

) 1
p

+am

(∫
Cm

|pm−1(Wα, t)H(pm(Wα)Wαf∆m,θ; t)Uγ(t)|p dt

) 1
p

= B1 + B2 (37)

Using (29)

B1 ≤ C
√

am

(∫
Cm

|t|γ−α
2

∣∣∣∣∫
Cm

pm−1(Wα, x)f(x)∆m,θ(x)Wα(x)
x− t

dx

∣∣∣∣p dt

) 1
p

By the changes of variables x = amy, t = amz, we get

B1 ≤ Ca
1
2+γ−α

2 + 1
p

m

(∫
C̃m

|z|γ−α
2

∣∣∣∣∫
C̃m

(pm−1(Wα)f∆m,θWα)(amy)
y − z

dy

∣∣∣∣p dz

) 1
p
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where

C̃m = [−1, 1]\
[
− C

m
,
C
m

]
Under the assumptions (12), |z|γ−α

2 is an Ap weight and therefore, recalling a result in

[13] (see also [11, p.57 and 313-314]) about the boundedness of the Hilbert transform

in [−1, 1], we have

B1 ≤ Ca
1
2+γ−α

2 + 1
p

m

(∫ 1

−1

|z|γ−α
2 |(pm−1(Wα)f∆m,θWα)(amz)|p dz

) 1
p

.

So, by the change of variable amz = x, we have

B1 ≤ Ca
1
2
m

(∫ am

−am

|x|γ−α
2 |(pm−1(Wα, x)f(x)∆m,θ(x)Wα(x)|p dx

) 1
p

and using again (29)

B1 ≤ C
(∫

IR
|f(x)∆m,θ(x)Uγ(x)|p dx

) 1
p

. (38)

By similar arguments used to bound B1, we get

B2 ≤ C
(∫

IR
|f(x)∆m,θ(x)Uγ(x)|p dx

) 1
p

. (39)

Combining (38),(39) with (37), (11) follows.

Now we prove (11) implies (12). Let be

Cm =
{

x : C am

m
≤ |x| ≤ θam

}
, Cm−1 =

{
x : C am−1

m
≤ |x| ≤ θam−1

}
,

and let ∆m,θ, ∆m−1,θ the corresponding characteristic functions. Setting f̃ =

f∆m−1,θ, we have

‖[Sm(Wα, f̃∆m,θ)− Sm−1(Wα, f̃∆m,θ)]Uγ∆m,θ‖p

=
∣∣∣∣∫IR

f̃(x)∆m,θ(x)pm(Wα, x)Wα(x)dx

∣∣∣∣ ‖∆m,θpm(Wα)Uγ‖p.

In view of (11) for 1 < p < ∞∣∣∣∣∫IR
f̃(x)∆m,θ(x)pm(Wα, x)Wα(x)dx

∣∣∣∣ ‖∆m,θpm(Wα)Uγ‖p ≤ 2‖fUγ‖p.

Then

‖∆m,θpm(Wα)Uγ‖p sup
||h||q=1

∣∣∣∣∫IR
h̃(x)∆m,θ(x)pm(Wα, x)

Wα(x)
Uγ(x)

dx

∣∣∣∣ ≤ 2C
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and also

‖∆m,θpm(Wα)Uγ‖p · ‖∆m,θpm(Wα)
Wα

Uγ
‖q ≤ 2C.

Using then Proposition 4.1

1
am

(∫ 1

−1

|x|(γ−α
2 )pdx

) 1
p

(∫ 1

−1

|x|( α
2−γ)qdx

) 1
q

≤ 2C,

by which conditions in (12) follow.

Now we prove (13). Let P ∈ PM , with M =
[
m

(
θ

1+θ

)β
]
, the polynomial of best

approximation of f in Lp
Uγ

. By

‖[f −∆m,θSm(Wα, f∆m,θ)]Uγ‖p

≤ ‖(1−∆m,θ)fUγ‖p + ‖[f − Sm(Wα, f∆m,θ)]Uγ∆m,θ‖p

≤ ‖(1−∆m,θ)fUγ‖p + ‖(f − P )∆m,θUγ‖p (40)

+‖Sm(Wα, (f − P )∆m,θ)∆m,θUγ‖p

+‖Sm(Wα, P (1−∆m,θ)∆m,θUγ‖p

=: I1 + I2 + I3 + I4. (41)

Using Proposition 2.1,

I1 + I2 ≤ C1

(
EM (f)Uγ ,p + e−C2m‖fUγ‖p

)
and by (11)

I3 ≤ C‖(f − P )∆m,θUγ‖p ≤ CEM (f)Uγ ,p.

To estimate I4 we use (19)

I4 ≤ Cm
1
3 |P (1−∆m,θ)Uγ‖p,

and by (5), we have

I4 ≤ Cm
1
3 e−C1m‖P∆m,θUγ‖p.

Therefore

‖[f −∆m,θSm(Wα, f∆m,θ)]Uγ‖p ≤ C[EM (f)Uγ ,p + e−Am‖fUγ‖p],

that is (13) follows. �

99



G. MASTROIANNI AND D. OCCORSIO

4.3. Proof of Theorem 3.2. Using (6)

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖1 ≤ C‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖L1(Cm),

Cm = {x : C am

m
≤ |x| ≤ θam}, (42)

and setting g = sgn(Sm(Wα, f∆m,θ)),

‖Sm(Wα, f∆m,θ)Uγ∆m,θ‖1 ≤ C
∫

Cm

Sm(Wα, f∆m,θ, x)g(x)Uγ(x)dx. (43)

By (35) and (36)

‖Sm(Wα, f∆m,θ)U∆m,θ‖1

≤ C
[
am

∫
Cm

|pm(Wα, x)H(f∆m,θpm−1(Wα)Wα;x)|Uγ(x)dx

+ am

∫
Cm

|pm−1(Wα, x)H(f∆m,θpm(Wα)Wα;x)|Uγ(x)dx

]
=: A1 + A2. (44)

First we bound A1. By (29)

A1 ≤ C
√

am

∫
Cm

|x|γ−α
2 |H(f∆m,θpm(Wα)Wα;x)| dx ≤ C

∫
IR
|x|γ−α

2 |H(Gm;x)| dx

where Gm =
√

amf∆m,θpm(Wα)Wα. Here we recall the following inequality due to

Muckenhoupt in [12, Lemma 9, p.440]:∫
IR

(
|x|

1 + |x|

)r

(1 + |x|)s

∣∣∣∣∫IR

g(y)
x− y

dy

∣∣∣∣ dx

≤ C + C
∫
IR
|g(x)

(
|x|

1 + |x|

)R

(1 + |x|)S(1 + log+ |g(x)|+ log+ |x|)dx

under the assumptions r > −1, s < 0, R ≤ 0, S ≥ −1, r ≥ R, s ≤ S and f log+ f ∈ L1.

Using previous result with r = R = γ − α
2 = s = S, under the assumption

0 < γ − α
2 < 1 and taking into account |Gm(x)| ≤ C|f(x)|

√
Wα(x), we have

A1 ≤ C + C
∫
IR
|f(x)Uγ(x)|

{
1 + log+ |f(x)|+ log+ |x|

}
dx. (45)

Similarly we obtain

A2 ≤ C + C
∫
IR
|f(x)Uγ(x)|

{
1 + log+ |f(x)|+ log+ |x|

}
dx. (46)

Combining (45), (46) with (44), the Theorem follows. �
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To prove Theorems 3.3 and 3.4 we need some relations between generalized

Freud and generalized Laguerre polynomials and then we apply the previous estimates

about Fourier Sums with respect to generalized Freud weights.

Setting W̃α(x) = |x|2α+1e−|x|
2β

and Ũγ(x) = |x|2γ+ 1
p e−|x|

β

, for the orthogo-

nal polynomials we have

p2m(W̃α, x) = pm(wα, x2) (47)

Moreover, assuming F be an even extension in IR of f defined on (0,∞), the following

relation holds

S2m(W̃α, F, x) = Sm(wα, f, x2). (48)

Denoted by χ̃2m,θ the characteristic function of C̃2m = [−θa2m(W̃α)2, θa2m(W̃α)2],

from (48) easily follows

‖S2m(W̃α, F χ̃2m,θ)∆̃2m,θŨγ‖p = ‖Sm(wα, fχm,θ)uγχm,θ‖p (49)

4.4. Proof of Theorem 3.3. Let F be an even extension in IR of f defined on

(0,∞). Using Theorem 3.1 we have

‖S2m(W̃α, F ∆̃2m,θ)∆̃2m,θŨγ‖p ≤ C‖FŨγ∆̃2m,θ‖p, (50)

if and only if

γ − α

2
+

1
4

<
1
q

and γ − α

2
− 1

4
> −1

p
,

which are equivalent to (21).

By (49), and using ‖FŨγ∆̃2m,θ‖p = ‖fuγ∆m,θ‖p, with am(wα) = a2
2m(W̃α, the first

part of the Theorem follows.

To prove (22), we premit a Proposition which is the equivalent in R+ of the Proposition

2.1.

Proposition 4.2. Let f ∈ Lp
uγ

and 1 ≤ p < ∞. For m sufficiently large (say

m > m0) we have

‖f(1− χm,θ)uγ‖p ≤ C1

(
EM (f)uγ ,p + e−C2m‖fuγ‖p

)
, (51)

where M =
[
m

(
θ

1+θ

)β
]

and the constants C, C1, C2 are independent on m and f .
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Now we prove (22). Let P ∈ PM , with M =
[
m

(
θ

1+θ

)β
]
, the polynomial of

best approximation of f in Lp
uγ

. By

‖[f − χm,θSm(wα, fχm,θ)]uγ‖p ≤ ‖(1− χm,θ)fuγ‖p + ‖[f − Sm(wα, fχm,θ)]uγχm,θ‖p

≤ ‖(1− χm,θ)fuγ‖p + ‖(f − P )χm,θuγ‖p

+ ‖Sm(wα, (f − P )χm,θ)χm,θuγ‖p

+ ‖Sm(wα, P (1− χm,θ)χm,θuγ‖p

=: I ′1 + I ′2 + I ′3 + I ′4.

Estimate (22) follows using Proposition 4.2,(20) and (28).�

We omit the proof of Theorem 3.4 since it follows by arguments similar to those used

in the proof of Theorem 3.3.
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