ON BERNSTEIN-STANCU TYPE OPERATORS

I. GAVREA

Dedicated to Professor D. D. Stancu on his $80^{\text {th }}$ birthday

Abstract

D.D. Stancu defined in [5] a class of approximation operators depending of two non-negative parameters α and $\beta, 0 \leq \alpha \leq \beta$. We consider here another class of Bernstein-Stancu type operators.

1. Introduction

Let f be a continuous functions, $f:[0,1] \rightarrow \mathbb{R}$. For every natural number n we denote by $B_{n} f$ Bernstein's polynomial of degree n,

$$
\left(B_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right),
$$

where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, \quad k=0,1, \ldots n .
$$

In 1968 D.D. Stancu introduced in [5] a linear positive operator depending on two non-negative parameters α and β satisfying the condition $0 \leq \alpha \leq \beta$.

For every continuous function f and for every $n \in \mathbb{N}$ the polynomial $P_{n}^{(\alpha, \beta)} f$ defined in [5] is given by

$$
\left(P_{n}^{(\alpha, \beta)} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k+\alpha}{n+\beta}\right) .
$$

Note that for $\alpha=\beta=0$ the Bernstein-Stancu operators become the classical Bernstein operators B_{n}. In [2] were introduced the following linear operators A_{n} :
$C[0,1] \rightarrow \Pi_{n}$, defined as

$$
\begin{equation*}
A_{n}(f)(x)=\sum_{k=0}^{n} p_{n, k}(x) T_{n, k} f \tag{1.1}
\end{equation*}
$$

where $T_{n, k}: C[0,1] \rightarrow \mathbb{R}$ are positive linear functionals with the property that $T_{n, k} e_{0}=1$ for $k=0,1, \ldots, n$ and $e_{i}(t)=t^{i}, i \in \mathbb{N}$.

So, for $T_{n, k} f=f\left(\frac{k}{n}\right)$ we obtain Bernstein's polynomial of degree n and for

$$
T_{n, k} f=f\left(\frac{k+\alpha}{n+\beta}\right)
$$

where $0 \leq \alpha \leq \beta$ the operator A_{n} becomes Bernstein-Stancu operator $P_{n}^{(\alpha, \beta)}$.
In [4] C. Mortici and I. Oancea defined a new class of operators of BernsteinStancu type operators. They considered the non-nonegative real numbers $\alpha_{n, k}, \beta_{n, k}$ so that

$$
\alpha_{n, k} \leq \beta_{n, k}
$$

They define an approximation operator denoted by

$$
P_{n}^{(A, B)}: C[0,1] \rightarrow C[0,1]
$$

with the formula

$$
\left(P_{n}^{(A, B)} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k+\alpha_{n, k}}{m+\beta_{n, k}}\right) .
$$

In [4] the following theorem was proved:
Theorem 1.1. Given the infinite dimensional lower triangular matrices

$$
A=\left(\begin{array}{ccccc}
\alpha_{00} & 0 & \ldots & & \\
\alpha_{10} & \alpha_{11} & 0 & \ldots & \\
\alpha_{20} & \alpha_{21} & \alpha_{22} & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

and

$$
B=\left(\begin{array}{ccccc}
\beta_{00} & 0 & \ldots & & \\
\beta_{10} & \beta_{11} & 0 & \ldots & \\
\beta_{20} & \beta_{21} & \beta_{22} & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

with the following properties:
a) $0 \leq \alpha_{n, k} \leq \beta_{n, k}$ for every non-negative integers n and $k \leq n$
b) $\alpha_{n, k} \in[a, b], \beta_{n, k} \in[c, d]$ for every non-negative integers n and $k, k \leq n$ and for some non-negative real numbers $0 \leq a<b$ and $0 \leq c<d$. Then for every continuous function $f \in C[0,1]$, we have

$$
\lim _{m \rightarrow \infty} P_{n}^{(\alpha, \beta)} f=f, \text { uniformly on }[0,1] .
$$

In the following, by the definition, an operator of the form (1.1), where

$$
T_{n, k} f=f\left(x_{k, n}\right), \quad k \leq n, \quad k, n \in \mathbb{N}
$$

is an operator of the Bernstein-Stancu type.

2. Main results

First we characterize the Bernstein-Stancu operators which transform the polynomial of degree one into the polynomials of degree one.

Theorem 2.1. Let $A_{n}: C[0,1] \rightarrow C[0,1]$ an operator of the BernsteinStancu type.

Then

$$
x_{k, n}=\alpha_{n} \frac{k}{n}+\beta_{n}, \quad k \leq n
$$

where α_{n}, β_{n} are positive numbers such that

$$
\alpha_{n}+\beta_{n} \leq 1
$$

> I. GAVREA

Proof. By the definition of the operator A_{n} of the Bernstein-Stancu type we have

$$
A_{n}\left(e_{0}\right)(x)=\sum_{k=0}^{n} p_{n, k}(x)=1
$$

Let us suppose that

$$
A_{n}\left(e_{1}\right)(x)=\alpha_{n} x+\beta_{n}
$$

From the equality

$$
\sum_{k=0}^{n} p_{n, k}(x) \frac{k}{n}=x
$$

we get

$$
\begin{equation*}
\sum_{k=0}^{n} p_{n, k}(x) x_{k, n}=\sum_{k=0}^{n} p_{n, k}(x)\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right) . \tag{2.1}
\end{equation*}
$$

Because the set $\left\{p_{n, k}\right\}_{k \in\{0,1, \ldots, n\}}$ forms a basis in Π_{n} we get

$$
x_{k, n}=\alpha_{n} \frac{k}{n}+\beta_{n} .
$$

By the condition $x_{k, n} \in[0,1], 0 \leq k \leq n, k, n \in \mathbb{N}$ we obtain

$$
\alpha_{n}, \beta_{n} \geq 0 \text { and } \alpha_{n}+\beta_{n} \leq 1
$$

Remark. There exist operators of the Bernstein-Stancu type which don't transform polynomials of degree one into the polynomials of the same degree.

An interesting operator of Bernstein-Stancu type, which maps e_{2} into e_{2} is the following:

$$
\begin{equation*}
B_{n}^{*}(f)(x)=\sum_{k=0}^{n} p_{n, k} f\left(\sqrt{\frac{k(k-1)}{n(n-1)}}\right), \quad n \in \mathbb{N}, n>1 . \tag{2.2}
\end{equation*}
$$

For the operator B_{n}^{*} verifies the following relations:

$$
\begin{aligned}
B_{n}^{*}\left(e_{0}\right) & =e_{0} \\
B_{n}^{*}\left(e_{2}\right) & =e_{2} \\
\frac{n x-1}{n-1}-\frac{1}{n} p_{n, 1}(x) & \leq B_{n}\left(e_{1}\right)(x) \leq x .
\end{aligned}
$$

The following result describes the fact that $\left(A_{n}\right)_{n \in \mathbb{N}}$ given by (1.1) is a positive linear approximation process.

Theorem 2.2. Let $\left(A_{n}\right)_{n \in \mathbb{N}}$ be defined as in (1.1) and $f \in C[0,1]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f-A_{n} f\right\|_{\infty}=0 \tag{2.3}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\Delta_{n}\right\|_{\infty}=0 \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{n}(x):=\sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(\cdot-\frac{k}{n}\right)^{2} . \tag{2.5}
\end{equation*}
$$

Proof. (\Rightarrow) : For the validity of (2.4) it is sufficient to verify the assumption of Popoviciu-Bohman-Korovkin theorem. We first notice that

$$
\begin{equation*}
\left|\Delta_{n}(x)\right|=\left|\sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(e_{2}\right)-2 \sum_{k=0}^{n} p_{n, k}(x) \frac{k}{n} T_{n, k}\left(e_{1}\right)+x^{2}+\frac{x(1-x)}{n}\right| \tag{2.6}
\end{equation*}
$$

and if for all $f \in C[0,1]$

$$
\lim _{n \rightarrow \infty}\left\|f-A_{n} f\right\|_{\infty}=0
$$

we get

$$
\lim _{n \rightarrow \infty} \sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(e_{2}\right)=\lim _{n \rightarrow \infty} A_{n}\left(e_{2}\right)(x)=x^{2}
$$

and

$$
\lim _{n \rightarrow \infty}\left\{\sum_{k=0}^{n} p_{n, k}(x) \frac{k}{n} T_{n, k}\left(e_{1}\right)-x^{2}\right\}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} p_{n, k}(x) \frac{k}{n}\left\{T_{n, k}\left(e_{1}\right)-x\right\} .
$$

Now, we can estimate

$$
\left|\sum_{k=0}^{n} p_{n, k}(x) \frac{k}{n}\left\{T_{n, k}\left(e_{1}\right)-x\right\}\right| \leq \sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(\left|e_{1}-x\right|\right) \leq \sqrt{A_{n}(\cdot-x)^{2}(x)} .
$$

From this and (2.6) it follows that

$$
\left|\Delta_{n}(x)\right| \leq\left|A_{n}\left(e_{2}\right)(x)-x^{2}\right|+2 \sqrt{A_{n}(1-x)^{2}(x)}+\frac{x(1-x)}{n}
$$

and therefore one obtains

$$
\lim _{n \rightarrow \infty}\left\|\Delta_{n}\right\|_{\infty}=0
$$

(\Leftarrow) : Suppose now that (2.4) holds with the following two estimates

$$
\left|A_{n}\left(e_{1}\right)(x)-x\right| \leq \sqrt{\Delta_{n}(x)}
$$

and

$$
\begin{aligned}
\left|A_{n}\left(e_{2}\right)(x)-x^{2}\right| & =\left|\sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(\cdot-\frac{k}{n}\right)\left(\cdot+\frac{k}{n}\right)+\frac{x(1-x)}{n}\right| \\
& \leq 2 \sum_{k=0}^{n} p_{n, k}(x) T_{n, k}\left(\left|\cdot-\frac{k}{n}\right|\right)+\frac{x(1-x)}{n} \\
& \leq 2 \sqrt{\Delta_{n}(x)}+\frac{x(1-x)}{n}
\end{aligned}
$$

and finishes the proof of this theorem.
Remarks. 1. Theorem 2.2 can be find in [2].
2. Theorem 1.1 ([4]) follows from the following estimate:

$$
\begin{aligned}
\Delta_{n}(x) & =\sum_{k=0}^{n} p_{n, k}(x)\left(\frac{k+\alpha_{n, k}}{n+\beta_{n, k}}-\frac{k}{n}\right)^{2} \\
& =\sum_{k=0}^{n} p_{n, k}(x) \frac{\left(n \alpha_{n, k}-k \beta_{n, k}\right)^{2}}{n^{2}\left(n+\beta_{n, k}\right)^{2}} \\
& \leq \sum_{k=0}^{n} p_{n, k}(x) \frac{(b+d)^{2}}{(n+a)^{2}}=\frac{(b+d)^{2}}{(n+a)^{2}}
\end{aligned}
$$

Theorem 2.3. Let A_{n} be an operator of the form (1.1) such that

$$
A_{n} e_{1}=\alpha_{n} e_{1}+\beta_{n}
$$

We denote by L_{n} the operator of Bernstein-Stancu type given by

$$
\left(L_{n} f\right)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right)
$$

Then, for all $x \in[0,1]$ and for all convex functions f we have

$$
f\left(\alpha_{n} x+\beta_{n}\right) \leq\left(L_{n} f\right)(x) \leq A_{n}(f)(x)
$$

Moreover, if f is a strict convex function and $L_{n}(f)\left(x_{0}\right)=A_{n}\left(f\left(x_{0}\right)\right)$ for some $x_{0} \in(0,1)$, if and only if $L_{n}=A_{n}$.

Proof. Because $\left(p_{n, k}\right)_{k=0, n}$ is a basis in Π_{n} by the condition

$$
A_{n} e_{1}=\alpha_{n} e_{1}+\beta_{n}
$$

we obtain that

$$
T_{n, k} e_{1}=\alpha_{n} \frac{k}{n}+\beta_{n}
$$

Let f be a convex function. From Jensen's inequality we have

$$
\begin{equation*}
T_{n, k}(f) \geq f\left(T_{n, k}\left(e_{1}\right)\right)=f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right) \tag{2.7}
\end{equation*}
$$

By (2.7) we get

$$
\sum_{k=0}^{n} p_{n, k}(x) T_{n, k}(f) \geq \sum_{k=0}^{n} p_{n, k}(x) f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right) \geq f\left(\alpha_{n} x+\beta_{n}\right)
$$

or

$$
A_{n}(f)(x) \geq\left(L_{n} f\right)(x) \geq f\left(\alpha_{n} x+\beta_{n}\right)
$$

Let us suppose that

$$
\begin{equation*}
L_{n}(f)\left(x_{0}\right)=A_{n}(f)\left(x_{0}\right) . \tag{2.8}
\end{equation*}
$$

The equality (2.8) can be written as:

$$
\sum_{k=0}^{n} p_{n, k}\left(x_{0}\right)\left(T_{n, k}(f)-f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right)\right)=0
$$

Because

$$
p_{n, k}\left(x_{0}\right) \geq 0, \quad k=0,1, \ldots, n
$$

follows that

$$
\begin{equation*}
T_{n, k}(f)-f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right)=0, \quad k=0,1, \ldots, n \tag{2.9}
\end{equation*}
$$

It is known the following result [3]:
Let A be a linear positive functional, $A: C[0,1] \rightarrow \mathbb{R}$. Then, there exists the distinct points $\xi_{1}, \xi_{2} \in[0,1]$ such that

$$
\begin{equation*}
A(f)-f\left(a_{1}\right)=\left[a_{2}^{2}-a_{1}^{2}\right]\left[\xi_{1}, \frac{\xi-1+\xi_{2}}{2}, \xi_{2} ; f\right] \tag{2.10}
\end{equation*}
$$

where $a_{i}=A\left(e_{i}\right), i \in \mathbb{N}$.
By (2.9) and (2.10) we obtain

$$
\begin{equation*}
\left(T_{n, k}\left(e_{2}\right)\right)-T_{n, k}^{2}\left(e_{1}\right)=0, \quad k=0,1, \ldots, n . \tag{2.11}
\end{equation*}
$$

From (2.11) we get

$$
T_{n, k}(f)=f\left(T_{n, k}\left(e_{1}\right)\right)=f\left(\alpha_{n} \frac{k}{n}+\beta_{n}\right), \quad k=0,1, \ldots, n
$$

for every continuous function f.
This finished the proof.
Remark. This extremal relation for the Bernstein-Stancu operators was considered in [1] in particular case when $f=e_{2}$.

References

[1] Bustamate, I., Quesda, I.M. On an extremal relation of Bernstein operators, J. Approx. Theory, 141(2006), 214-215.
[2] Gavrea, I., Mache, D.H., Generalization of Bernstein-type Approximation Methods, Approximation Theory, Proceedings of the International Dortmund Meeting, IDOMAT95 (edited by M.W. Müller, M. Felten, D.H. Mache), 115-126.
[3] Lupaş, A., Teoreme de medie pentru transformări liniare şi pozitive, Revista de Analiză Numerică şi Teoria Aproximaţiei, 3(2)(1974), 121-140.
[4] Mortici, C., Oancea, I., A nonsmooth extension for the Bernstein-Stancu operators and an application, Studia Univ. Babes-Bolyai, Mathematica, 51(2)(2006), 69-81.
[5] Stancu, D.D., Approximation of function by a new class of polynomial operators, Rev. Roum. Math. Pures et Appl., 13(8)(1968), 1173-1194.

Technical University of Cluj-Napoca
Department of Mathematics
Str. C. Daicoviciu 15, Cluj-Napoca, Romania
E-mail address: ioan.gavrea@math.utcluj.ro

