FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER

EDITH EGRI AND IOAN A. RUS

Dedicated to Professor D. D. Stancu on his $80^{\text {th }}$ birthday

$$
\begin{aligned}
& \text { Abstract. We consider the following first order iterative functional- } \\
& \text { differential equation with parameter } \\
& \qquad \begin{aligned}
x^{\prime}(t) & =f(t, x(t), x(x(t)))+\lambda, \quad t \in[a, b] ; \\
x(t) & =\varphi(t), \quad a_{1} \leq t \leq a \\
x(t) & =\psi(t), \quad b \leq t \leq b_{1} .
\end{aligned}
\end{aligned}
$$

Using the Schauder's fixed point theorem we first establish an existence theorem, then by means of the contraction principle state an existence and uniqueness theorem, and after that a data dependence result. Finally, we give some examples which illustrate our results.

1. Introduction

Although many works on functional-differential equation exist (see for example J. K. Hale and S. Verduyn Lunel [9], V. Kalmanovskii and A. Myshkis [10] and T. A. Burton [3] and the references therein), there are a few on iterative functionaldifferential equations ([2], [4], [5], [8], [12], [13], [16], [17], [19]).

In this paper we consider the following problem:

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), x(x(t)))+\lambda, \quad t \in[a, b] ; \tag{1.1}\\
\left.x\right|_{\left[a_{1}, a\right]}=\varphi,\left.\quad x\right|_{\left[b, b_{1}\right]}=\psi . \tag{1.2}
\end{gather*}
$$

Received by the editors: 01.03.2007.
2000 Mathematics Subject Classification. 47H10, 34K10, 34K20.
Key words and phrases. iterative functional-differential equations, boundary value problem, contraction principle, Schauder fixed point theorem, data dependence

EDITH EGRI AND IOAN A. RUS

where
$\left(\mathrm{C}_{1}\right) a, b, a_{1}, b_{1} \in \mathbb{R}, a_{1} \leq a<b \leq b_{1} ;$
$\left(\mathrm{C}_{2}\right) f \in C\left([a, b] \times\left[a_{1}, b_{1}\right]^{2}, \mathbb{R}\right)$;
$\left(\mathrm{C}_{3}\right) \varphi \in C\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right)$ and $\psi \in C\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$;
The problem is to determine the pair (x, λ),

$$
x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \cap C^{1}\left([a, b],\left[a_{1}, b_{1}\right]\right), \quad \lambda \in \mathbb{R},
$$

which satisfies (1.1)+(1.2).
In this paper, using the Schauder's fixed point theorem we first establish an existence theorem, then by means of the contraction principle state an existence and uniqueness theorem, and after that a data dependence result. Finally, we take an example to illustrate our results.

2. Existence

We begin our considerations with some remarks.
Let (x, λ) be a solution of the problem (1.1) $+(1.2)$. Then this problem is equivalent with the following fixed point equation

$$
x(t)=\left\{\begin{array}{l}
\varphi(t), \quad t \in\left[a_{1}, a\right] \tag{2.3}\\
\varphi(a)+\int_{a}^{t} f(s, x(s), x(x(s))) \mathrm{d} s+\lambda(t-a), \quad t \in[a, b], \\
\psi(t), \quad t \in\left[b, b_{1}\right] .
\end{array}\right.
$$

From the condition of continuity of x in $t=b$, we have that

$$
\begin{equation*}
\lambda=\frac{\psi(b)-\varphi(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) \mathrm{d} s \tag{2.4}
\end{equation*}
$$

Now we consider the operator

$$
A: C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right),
$$

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER where

$$
A(x)(t):=\left\{\begin{align*}
& \varphi(t), \quad t \in\left[a_{1}, a\right], \tag{2.5}\\
& \varphi(a)+\frac{t-a}{b-a}(\psi(b)-\varphi(a))-\frac{t-a}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) \mathrm{d} s+ \\
&+\int_{a}^{t} f(s, x(s), x(x(s))) \mathrm{d} s, \quad t \in[a, b] \\
& \psi(t), \quad t \in\left[b, b_{1}\right] .
\end{align*}\right.
$$

It is clear that (x, λ) is a solution of the problem (1.1)+(1.2) iff x is a fixed point of the operator A and λ is given by (2.4).

So, the problem is to study the fixed point equation

$$
x=A(x) .
$$

We have
Theorem 2.1. We suppose that
(i) the conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{3}\right)$ are satisfied;
(ii) $m_{f} \in \mathbb{R}$ and $M_{f} \in \mathbb{R}$ are such that $m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[a, b], u_{i} \in$ $\left[a_{1}, b_{1}\right], i=1,2$, and we have:

$$
a_{1} \leq \min (\varphi(a), \psi(b))-\max \left(0, M_{f}(b-a)\right)+\min \left(0, m_{f}(b-a)\right)
$$

and

$$
\max (\varphi(a), \psi(b))-\min \left(0, m_{f}(b-a)\right)+\max \left(0, M_{f}(b-a)\right) \leq b_{1} .
$$

Then the problem $(1.1)+(1.2)$ has in $C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ at least a solution.

Proof. In what follow we consider on $C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right)$ the Chebyshev norm, $\|\cdot\|_{C}$.
Condition (ii) assures that the set $C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ is an invariant subset for the operator A, that is, we have

$$
A\left(C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)\right) \subset C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) .
$$

EDITH EGRI AND IOAN A. RUS

Indeed, for $t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right]$, we have $A(x)(t) \in\left[a_{1}, b_{1}\right]$. Furthermore, we we obtain

$$
a_{1} \leq A(x)(t) \leq b_{1}, \forall t \in[a, b],
$$

if and only if

$$
\begin{equation*}
a_{1} \leq \min _{t \in[a, b]} A(x)(t) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{t \in[a, b]} A(x)(t) \leq b_{1} \tag{2.7}
\end{equation*}
$$

hold. Since

$$
\min _{t \in[a, b]} A(x)(t)=\min (\varphi(a), \psi(b))-\max \left(0, M_{f}(b-a)\right)+\min \left(0, m_{f}(b-a)\right),
$$

respectively

$$
\max _{t \in[a, b]} A(x)(t)=\max (\varphi(a), \psi(b))-\min \left(0, m_{f}(b-a)\right)+\max \left(0, M_{f}(b-a)\right),
$$

the requirements (2.6) and (2.7) are equivalent with the conditions appearing in (ii).
So, in the above conditions we have a selfmapping operator

$$
A: C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)
$$

It is clear that A is completely continuous and the set $C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \subseteq$ $C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right)$ is a bounded convex closed subset of the Banach space $\left(C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right),\|\cdot\|_{C}\right)$. By Schauder's fixed point theorem the operator A has at least a fixed point.

3. Existence and uniqueness

Let $L>0$, and introduce the following notation:

$$
\begin{aligned}
C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right):=\{ & x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)\left|\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right| \leq L\right| t_{1}-t_{2} \mid, \\
& \left.\forall t_{1}, t_{2} \in\left[a_{1}, b_{1}\right]\right\} .
\end{aligned}
$$

Remark that $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \subset\left(C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right),\|\cdot\|_{C}\right)$ is a complete metric space.

We have
Theorem 3.1. We suppose that

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER
(i) the conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{3}\right)$ are satisfied;
(ii) there exists $L_{f}>0$ such that:

$$
\left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq L_{f}\left(\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|\right),
$$

for all $t \in[a, b], u_{i}, v_{i} \in\left[a_{1}, b_{1}\right], i=1,2$;
(iii) $\varphi \in C_{L}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right), \psi \in C_{L}\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$;
(iv) $m_{f}, M_{f} \in \mathbb{R}$ are such that $m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[a, b], u_{i} \in$ $\left[a_{1}, b_{1}\right], i=1,2$, and we have:
$a_{1} \leq \min (\varphi(a), \psi(b))-\max \left(0, M_{f}(b-a)\right)+\min \left(0, m_{f}(b-a)\right)$,
and
$\max (\varphi(a), \psi(b))-\min \left(0, m_{f}(b-a)\right)+\max \left(0, M_{f}(b-a)\right) \leq b_{1} ;$
(v) $2 \max \left\{\left|m_{f}\right|,\left|M_{f}\right|\right\}+\left|\frac{\psi(b)-\varphi(a)}{b-a}\right| \leq L$;
(vi) $2 L_{f}(L+2)(b-a)<1$.

Then the problem $(1.1)+(1.2)$ has in $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ a unique solution. Moreover, if we denote by $\left(x^{*}, \lambda^{*}\right)$ the unique solution of the Cauchy problem, then it can be determined by

$$
x^{*}=\lim _{n \rightarrow \infty} A^{n}(x), \text { for all } x \in X,
$$

and

$$
\lambda^{*}=\frac{\psi(b)-\varphi(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f\left(s, x^{*}(s), x^{*}\left(x^{*}(s)\right)\right) d s .
$$

Proof. Consider the operator $A: C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right)$ given by (2.5).
Conditions (iii) and (iv) imply that $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ is an invariant subset for A. Indeed, from the Theorem 2.1 we have

$$
a_{1} \leq A(x)(t) \leq b_{1}, x(t) \in\left[a_{1}, b_{1}\right]
$$

for all $t \in\left[a_{1}, b_{1}\right]$.
Now, consider $t_{1}, t_{2} \in\left[a_{1}, a\right]$. Then,

$$
\left|A(x)\left(t_{1}\right)-A(x)\left(t_{2}\right)\right|=\left|\varphi\left(t_{1}\right)-\varphi\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|,
$$

EDITH EGRI AND IOAN A. RUS

as $\varphi \in C_{L}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right)$, due to (iii).
Similarly, for $t_{1}, t_{2} \in\left[b, b_{1}\right]$

$$
\left|A(x)\left(t_{1}\right)-A(x)\left(t_{2}\right)\right|=\left|\psi\left(t_{1}\right)-\psi\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|,
$$

that follows from (iii), too.
On the other hand, if $t_{1}, t_{2} \in[a, b]$, we have,

$$
\begin{aligned}
& \left|A(x)\left(t_{1}\right)-A(x)\left(t_{2}\right)\right|= \\
& =\left\lvert\, \varphi(a)+\frac{t_{1}-a}{b-a}(\psi(b)-\varphi(a))-\frac{t_{1}-a}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) \mathrm{d} s\right. \\
& +\int_{a}^{t_{1}} f(s, x(s), x(x(s))) \mathrm{d} s-\varphi(a)-\frac{t_{2}-a}{b-a}(\psi(b)-\varphi(a)) \\
& \left.+\frac{t_{2}-a}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) \mathrm{d} s-\int_{a}^{t_{2}} f(s, x(s), x(x(s))) \mathrm{d} s \right\rvert\, \\
& =\left|\frac{t_{1}-t_{2}}{b-a}[\psi(b)-\varphi(a)]-\frac{t_{1}-t_{2}}{b-a} \int_{a}^{b} f(s, x(s), x(x(s))) \mathrm{d} s-\int_{t_{1}}^{t_{2}} f(s, x(s), x(x(s))) \mathrm{d} s\right| \\
& \leq\left|t_{1}-t_{2}\right|\left[\left|\frac{\psi(b)-\varphi(a)}{b-a}\right|+2 \max \left\{\left|m_{f}\right|,\left|M_{f}\right|\right\}\right] \leq L\left|t_{1}-t_{2}\right| .
\end{aligned}
$$

Therefore, due to (v), the operator A is L-Lipschitz and, consequently, it is an invariant operator on the space $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$.

From the condition (v) it follows that A is an L_{A}-contraction with

$$
L_{A}:=2 L_{f}(L+2)(b-a) .
$$

Indeed, for all $t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right]$, we have $\left|A\left(x_{1}\right)(t)-A\left(x_{2}\right)(t)\right|=0$.

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER

Moreover, for $t \in[a, b]$ we get

$$
\begin{aligned}
& \quad\left|A\left(x_{1}\right)(t)-A\left(x_{2}\right)(t)\right| \leq \\
& \leq\left|\frac{t-a}{b-a} \int_{a}^{b}\left[f\left(s, x_{1}(s), x_{1}\left(x_{1}(s)\right)\right)-f\left(s, x_{2}(s), x_{2}\left(x_{2}(s)\right)\right)\right] \mathrm{ds}\right|+ \\
& +\left|\int_{a}^{t}\left[f\left(s, x_{1}(s), x_{1}\left(x_{1}(s)\right)\right)-f\left(s, x_{2}(s), x_{2}\left(x_{2}(s)\right)\right)\right] \mathrm{ds}\right| \leq \\
& \leq \max _{t \in[a, b]}\left|\frac{t-a}{b-a}\right| \cdot L_{f} \int_{a}^{b}\left(\left|x_{1}(s)-x_{2}(s)\right|+\left|x_{1}\left(x_{1}(s)\right)-x_{2}\left(x_{2}(s)\right)\right|\right) \mathrm{ds}+ \\
& + \\
& +L_{f} \int_{a}^{t}\left(\left|x_{1}(s)-x_{2}(s)\right|+\left|x_{1}\left(x_{1}(s)\right)-x_{2}\left(x_{2}(s)\right)\right|\right) \mathrm{ds} \leq \\
& \leq L_{f}\left[(b-a)| | x_{1}-x_{2} \|_{C}+\int_{a}^{b}\left|x_{1}\left(x_{1}(s)\right)-x_{1}\left(x_{2}(s)\right)+x_{1}\left(x_{2}(s)\right)-x_{2}\left(x_{2}(s)\right)\right| \mathrm{ds}\right]+ \\
& + \\
& +L_{f}\left[(t-a)\left\|x_{1}-x_{2}\right\|_{C}+\int_{a}^{t}\left|x_{1}\left(x_{1}(s)\right)-x_{1}\left(x_{2}(s)\right)+x_{1}\left(x_{2}(s)\right)-x_{2}\left(x_{2}(s)\right)\right| \mathrm{ds}\right] \leq \\
& \leq \\
& \leq \\
& = \\
& = \\
& \hline L_{f}(b-a)\left(\left\|L_{f}(L+2)(b-a)| | x_{1}-x_{2}\right\|_{C}+L| | x_{1}-x_{C}\left\|_{C}+\right\| x_{1}-x_{2} \|_{C}\right)=
\end{aligned}
$$

By the contraction principle the operator A has a unique fixed point, that is the problem $(1.1)+(1.2)$ has in $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ a unique solution $\left(x^{*}, \lambda^{*}\right)$.

Obviously, x^{*} can be determined by

$$
x^{*}=\lim _{n \rightarrow \infty} A^{n}(x), \text { for all } x \in X,
$$

and, from (2.4) we get

$$
\lambda^{*}=\frac{\psi(b)-\varphi(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f\left(s, x^{*}(s), x^{*}\left(x^{*}(s)\right)\right) \mathrm{d} s .
$$

EDITH EGRI AND IOAN A. RUS

4. Data dependence

Consider the following two problems

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f_{1}(t, x(t), x(x(t)))+\lambda_{1}, \quad t \in[a, b] \tag{4.8}\\
x(t)=\varphi_{1}(t), \quad t \in\left[a_{1}, a\right] \\
x(t)=\psi_{1}(t), \quad t \in\left[b, b_{1}\right]
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f_{2}(t, x(t), x(x(t)))+\lambda_{2}, \quad t \in[a, b] \tag{4.9}\\
x(t)=\varphi_{2}(t), \quad t \in\left[a_{1}, a\right] \\
x(t)=\psi_{2}(t), \quad t \in\left[b, b_{1}\right]
\end{array}\right.
$$

Let f_{i}, φ_{i} and $\psi_{i}, i=1,2$ be as in the Theorem 3.1.
Consider the operators $A_{1}, A_{2}: C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ given by

$$
A_{i}(x)(t):=\left\{\begin{align*}
& \varphi_{i}(t), t \in\left[a_{1}, a\right], \tag{4.10}\\
& \varphi_{i}(a)+ t-a \\
& b-a\left(\psi_{i}(b)-\varphi_{i}(a)\right)-\frac{t-a}{b-a} \int_{a}^{b} f_{i}(s, x(s), x(x(s))) \mathrm{d} s+ \\
&+\int_{a}^{t} f_{i}(s, x(s), x(x(s))) \mathrm{d} s, \quad t \in[a, b], \\
& \psi_{i}(t), \quad t \in\left[b, b_{1}\right],
\end{align*}\right.
$$

$i=1,2$.
Thus, these operators are contractions. Denote by x_{1}^{*}, x_{2}^{*} their unique fixed points.

We have
Theorem 4.1. Suppose we are in the conditions of the Theorem 3.1, and, moreover
(i) there exists η_{1} such that

$$
\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in\left[a_{1}, a\right]
$$

and

$$
\left|\psi_{1}(t)-\psi_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in\left[b, b_{1}\right] ;
$$

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER
(ii) there exists $\eta_{2}>0$ such that

$$
\left|f_{1}\left(t, u_{1}, u_{2}\right)-f_{2}\left(t, u_{1}, u_{2}\right)\right| \leq \eta_{2}, \forall t \in[a, b], \forall u_{i} \in\left[a_{1}, b_{1}\right], i=1,2 .
$$

Then

$$
\left\|x_{1}^{*}-x_{2}^{*}\right\|_{C} \leq \frac{3 \eta_{1}+2(b-a) \eta_{2}}{1-2 L_{f}(L+2)(b-a)}
$$

and

$$
\left|\lambda_{1}^{*}-\lambda_{2}^{*}\right| \leq \frac{2 \eta_{1}}{b-a}+\eta_{2}
$$

where $L_{f}=\max \left(L_{f_{1}}, L_{f_{2}}\right)$, and $\left(x_{i}^{*}, \lambda_{i}^{*}\right), i=1,2$ are the solutions of the corresponding problems (4.8), (4.9).

Proof. It is easy to see that for $t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right]$ we have

$$
\left\|A_{1}(x)-A_{2}(x)\right\|_{C} \leq \eta_{1} .
$$

On the other hand, for $t \in[a, b]$, we obtain

$$
\begin{aligned}
& \left|A_{1}(x)(t)-A_{2}(x)(t)\right|=\left\lvert\, \varphi_{1}(a)-\varphi_{2}(a)+\frac{t-a}{b-a}\left[\psi_{1}(b)-\psi_{2}(b)-\left(\varphi_{1}(a)-\varphi_{2}(a)\right)\right]-\right. \\
& \quad-\frac{t-a}{b-a} \int_{a}^{b}\left[f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right] \mathrm{d} s+ \\
& \quad+\int_{a}^{t}\left[f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right] \mathrm{d} s \mid \leq \\
& \quad \leq\left|\varphi_{1}(a)-\varphi_{2}(a)\right|+\frac{t-a}{b-a}\left[\left|\psi_{1}(b)-\psi_{2}(b)\right|+\left|\varphi_{1}(a)-\varphi_{2}(a)\right|\right]+ \\
& \quad+\frac{t-a}{b-a} \int_{a}^{b}\left|f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right| \mathrm{d} s+ \\
& \quad+\int_{a}^{t}\left|f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right| \mathrm{d} s \leq \\
& \quad \leq \eta_{1}+\max _{t \in[a, b]} \frac{t-a}{b-a} \cdot\left[2 \eta_{1}+\eta_{2}(b-a)\right]+\eta_{2} \cdot \max _{t \in[a, b]}(t-a)= \\
& \quad=3 \eta_{1}+2(b-a) \eta_{2}
\end{aligned}
$$

So, we have

$$
\left\|A_{1}(x)-A_{2}(x)\right\|_{C} \leq 3 \eta_{1}+2(b-a) \eta_{2}, \forall x \in C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)
$$

EDITH EGRI AND IOAN A. RUS

Consequently, from the data dependence theorem we obtain

$$
\left\|x_{1}^{*}-x_{2}^{*}\right\|_{C} \leq \frac{3 \eta_{1}+2(b-a) \eta_{2}}{1-2 L_{f}(L+2)(b-a)}
$$

Moreover, we get

$$
\begin{aligned}
& \left|\lambda_{1}^{*}-\lambda_{2}^{*}\right|= \\
& =\left\lvert\, \frac{\psi_{1}(b)-\varphi_{1}(a)}{b-a}-\frac{1}{b-a} \int_{a}^{b} f_{1}(s, x(s), x(x(s))) \mathrm{d} s-\frac{\psi_{2}(b)-\varphi_{2}(a)}{b-a}+\right. \\
& \left.+\frac{1}{b-a} \int_{a}^{b} f_{2}(s, x(s), x(x(s))) \mathrm{d} s \right\rvert\, \leq \\
& \leq \frac{1}{b-a}\left[\left|\psi_{1}(b)-\psi_{2}(b)\right|+\left|\varphi_{1}(a)-\varphi_{2}(a)\right|+\right. \\
& \left.+\int_{a}^{b}\left|f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right| \mathrm{d} s\right] \leq \\
& \leq \frac{1}{b-a}\left[\eta_{1}+\eta_{1}+\eta_{2}(b-a)\right]=\frac{2 \eta_{1}}{b-a}+\eta_{2},
\end{aligned}
$$

and the proof is complete.

5. Examples

Consider the following problem:

$$
\begin{align*}
& x^{\prime}(t)=\mu x(x(t))+\lambda ; \quad t \in[0,1], \quad \mu \in \mathbb{R}_{+}^{*}, \quad \lambda \in \mathbb{R} \tag{5.11}\\
& \left.x\right|_{[-h, 0]}=0 ;\left.\quad x\right|_{[1,1+h]}=1, \quad h \in \mathbb{R}_{+}^{*} \tag{5.12}
\end{align*}
$$

with $x \in C([-h, 1+h],[-h, 1+h]) \cap C^{1}([0,1],[-h, 1+h])$.
We have
Proposition 5.1. We suppose that

$$
\mu \leq \frac{h}{1+2 h}
$$

Then the problem (5.11) has in $C([-h, 1+h],[-h, 1+h])$ at least a solution.
Proof. First of all notice that accordingly to the Theorem 2.1 we have $a=0, b=1$, $\psi(b)=1, \varphi(a)=0$ and $f\left(t, u_{1}, u_{2}\right)=\mu u_{2}$. Moreover, $a_{1}=-h$ and $b_{1}=1+h$ can be

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER
taken. Therefore, from the relation

$$
m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[0,1], \forall u_{1}, u_{2} \in[-h, 1+h],
$$

we can choose $m_{f}=-h \mu$ and $M_{f}=(1+h) \mu$.
For these data it can be easily verified that the conditions (ii) from the Theorem 2.1 are equivalent with the relation

$$
\mu \leq \frac{h}{1+2 h},
$$

consequently we have the proof

Let $L>0$ and consider the complete metric space $C_{L}([-h, h+1],[-h, h+1])$ with the Chebyshev norm $\|\cdot\|_{C}$.

Another result reads as follows.
Proposition 5.2. Consider the problem (5.11). We suppose that
(i) $\mu \leq \frac{h}{1+2 h}$;
(ii) $2(1+h) \mu+1 \leq L$
(iii) $2 \mu(L+2)<1$

Then the problem (5.11) has in $C_{L}([-h, h+1],[-h, h+1])$ a unique solution.

Proof. Observe that the Lipschitz constant for the function $f\left(t, u_{1}, u_{2}\right)=\mu u_{2}$ is $L_{f}=\mu$.

By a common check in the conditions of Theorem 3.1 we can make sure that

$$
2 \max \left\{\left|m_{f}\right|,\left|M_{f}\right|\right\}+\left|\frac{\psi(b)-\varphi(a)}{b-a}\right| \leq L \Longleftrightarrow 2(1+h) \mu+1 \leq L,
$$

and

$$
2 L_{f}(L+2)(b-a)<1 \Longleftrightarrow 2 \mu(L+2)<1 .
$$

Therefore, by Theorem 3.1 we have the proof.

Now take the following problems

$$
\begin{align*}
& x^{\prime}(t)=\mu_{1} x(x(t))+\lambda ; \quad t \in[0,1], \quad \mu_{1} \in \mathbb{R}_{+}^{*}, \quad \lambda \in \mathbb{R} \tag{5.13}\\
& \left.x\right|_{[-h, 0]}=\varphi_{1} ;\left.\quad x\right|_{[1,1+h]}=\psi_{1}, \quad h \in \mathbb{R}_{+}^{*} \tag{5.14}
\end{align*}
$$

EDITH EGRI AND IOAN A. RUS

$$
\begin{align*}
& x^{\prime}(t)=\mu_{2} x(x(t))+\lambda ; \quad t \in[0,1], \quad \mu_{2} \in \mathbb{R}_{+}^{*}, \quad \lambda \in \mathbb{R} \tag{5.15}\\
& \left.x\right|_{[-h, 0]}=\varphi_{2} ;\left.\quad x\right|_{[1,1+h]}=\psi_{2}, \quad h \in \mathbb{R}_{+}^{*} . \tag{5.16}
\end{align*}
$$

Suppose that we have satisfied the following assumptions
$\left(\mathrm{H}_{1}\right) \varphi_{i} \in C_{L}([-h, 0],[-h, 1+h]), \psi_{i} \in C_{L}([1,1+h],[-h, 1+h])$, such that $\varphi_{i}(0)=0, \psi_{i}(1)=1, i=1,2 ;$
$\left(\mathrm{H}_{2}\right)$ we are in the conditions of Proposition 5.2 for both of the problems (5.13) and (5.15).

Let $\left(x_{1}^{*}, \lambda_{1}^{*}\right)$ be the unique solution of the problem (5.13) and $\left(x_{2}^{*}, \lambda_{2}^{*}\right)$ the unique solution of the problem (5.15). We are looking for an estimation for $\left\|x_{1}^{*}-x_{2}^{*}\right\|_{C}$.

Then, build upon Theorem 4.1, by a common substitution one can make sure that we have

Proposition 5.3. Consider the problems (5.13), (5.15) and suppose the requirements $\mathrm{H}_{1}-\mathrm{H}_{2}$ hold. Additionally,
(i) there exists η_{1} such that

$$
\begin{gathered}
\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in[-h, 0] \\
\left|\psi_{1}(t)-\psi_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in[1,1+h]
\end{gathered}
$$

(ii) there exists $\eta_{2}>0$ such that

$$
\left|\mu_{1}-\mu_{2}\right| \cdot\left|u_{2}\right| \leq \eta_{2}, \forall t \in[0,1], \forall u_{2} \in[-h, 1+h] .
$$

Then

$$
\left\|x_{1}^{*}-x_{2}^{*}\right\|_{C} \leq \frac{3 \eta_{1}+2 \eta_{2}}{1-2(L+2) \cdot \max \left\{\mu_{1}, \mu_{2}\right\}}
$$

and

$$
\left|\lambda_{1}^{*}-\lambda_{2}^{*}\right| \leq 2 \eta_{1}+\eta_{2} .
$$

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER

References

[1] Buică, A., On the Chauchy problem for a functional-differential equation, Seminar on Fixed Point Theory, Cluj-Napoca, 1993, 17-18.
[2] Buică, A., Existence and continuous dependence of solutions of some functionaldifferential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
[3] Burton, T.A., Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Mineola, New York, 2006
[4] Coman, Gh., Pavel, G., Rus, I., Rus, I.A., Introducere în teoria ecuatiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
[5] Devasahayam, M.P., Existence of monoton solutions for functional differential equations, J. Math. Anal. Appl., 118(1986), No.2, 487-495.
[6] Dunkel, G.M., Functional-differential equations: Examples and problems, Lecture Notes in Mathematics, No.144(1970), 49-63.
[7] Granas, A., Dugundji, J., Fixed Point Theory, Springer, 2003.
[8] Grimm, L.J., Schmitt, K., Boundary value problems for differential equations with deviating arguments, Aequationes Math., 4(1970), 176-190.
[9] Hale, J.K., Verduyn Lunel, S., Introduction to functional-differential equations, Springer, 1993.
[10] Kalmanovskii, V., Myshkis, A., Applied Theory of Functional-Differential Equations, Kluwer, 1992.
[11] Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Kluwer, London, 1994.
[12] Oberg, R.J., On the local existence of solutions of certain functional-differential equations, Proc. AMS, 20(1969), 295-302.
[13] Petuhov, V.R., On a boundary value problem, Trud. Sem. Teorii Diff. Unov. Otklon. Arg., 3(1965), 252-255 (in Russian).
[14] Rus, I.A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
[15] Rus, I.A., Picard operators and applications, Scientiae Math. Japonicae, 58(2003), No.1, 191-219.
[16] Rus, I.A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar on fixed point theory, Cluj-Napoca, 2002, 335-345.
[17] Rzepecki, B., On some functional-differential equations, Glasnik Mat., 19(1984), 73-82.
[18] Si, J.-G., Li, W.-R., Cheng, S.S., Analytic solution of on iterative functional-differential equation, Comput. Math. Appl., 33(1997), No.6, 47-51.

EDITH EGRI AND IOAN A. RUS

[19] Stanek, S., Global properties of decreasing solutions of equation $x^{\prime}(t)=x(x(t))+x(t)$, Funct. Diff. Eq., 4(1997), No.1-2, 191-213.

Babeş-Bolyai University,
Department of Computer Science, Information Technology, 530164 Miercurea-Ciuc, Str. Topliţa, nr.20, jud. Harghita, Romania
E-mail address: egriedit@yahoo.com

Babeş-Bolyai University, Department of Applied Mathematics, Str. M. Kogălniceanu Nr.1, 400084 Cluj-Napoca, Romania
E-mail address: iarus@math.ubbcluj.ro

