STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LII, Number 4, December 2007

FIRST ORDER ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATION WITH PARAMETER

EDITH EGRI AND IOAN A. RUS

Dedicated to Professor D. D. Stancu on his 80th birthday

Abstract. We consider the following first order iterative functionaldifferential equation with parameter

$$\begin{aligned} x'(t) &= f(t, x(t), x(x(t))) + \lambda, \quad t \in [a, b]; \\ x(t) &= \varphi(t), \quad a_1 \le t \le a, \\ x(t) &= \psi(t), \quad b \le t \le b_1. \end{aligned}$$

Using the Schauder's fixed point theorem we first establish an existence theorem, then by means of the contraction principle state an existence and uniqueness theorem, and after that a data dependence result. Finally, we give some examples which illustrate our results.

1. Introduction

Although many works on functional-differential equation exist (see for example J. K. Hale and S. Verduyn Lunel [9], V. Kalmanovskii and A. Myshkis [10] and T. A. Burton [3] and the references therein), there are a few on iterative functional-differential equations ([2], [4], [5], [8], [12], [13], [16], [17], [19]).

In this paper we consider the following problem:

$$x'(t) = f(t, x(t), x(x(t))) + \lambda, \quad t \in [a, b];$$
(1.1)

$$x|_{[a_1,a]} = \varphi, \qquad x|_{[b,b_1]} = \psi.$$
 (1.2)

Received by the editors: 01.03.2007.

2000 Mathematics Subject Classification. 47H10, 34K10, 34K20.

Key words and phrases. iterative functional-differential equations, boundary value problem, contraction principle, Schauder fixed point theorem, data dependence.

where

$$\begin{split} &(\mathcal{C}_1) \ a,b,a_1,b_1 \in \mathbb{R}, \, a_1 \leq a < b \leq b_1; \\ &(\mathcal{C}_2) \ f \in C([a,b] \times [a_1,b_1]^2,\mathbb{R}); \\ &(\mathcal{C}_3) \ \varphi \in C([a_1,a],[a_1,b_1]) \text{ and } \psi \in C([b,b_1],[a_1,b_1]); \end{split}$$

The problem is to determine the pair (x, λ) ,

$$x \in C([a_1, b_1], [a_1, b_1]) \cap C^1([a, b], [a_1, b_1]), \quad \lambda \in \mathbb{R},$$

which satisfies (1.1)+(1.2).

In this paper, using the Schauder's fixed point theorem we first establish an existence theorem, then by means of the contraction principle state an existence and uniqueness theorem, and after that a data dependence result. Finally, we take an example to illustrate our results.

2. Existence

We begin our considerations with some remarks.

Let (x, λ) be a solution of the problem (1.1)+(1.2). Then this problem is equivalent with the following fixed point equation

$$x(t) = \begin{cases} \varphi(t), & t \in [a_1, a], \\ \varphi(a) + \int_a^t f(s, x(s), x(x(s))) \, \mathrm{d}s + \lambda(t - a), & t \in [a, b], \\ \psi(t), & t \in [b, b_1]. \end{cases}$$
(2.3)

From the condition of continuity of x in t = b, we have that

$$\lambda = \frac{\psi(b) - \varphi(a)}{b - a} - \frac{1}{b - a} \int_a^b f(s, x(s), x(x(s))) \,\mathrm{d}s. \tag{2.4}$$

Now we consider the operator

$$A: C([a_1, b_1], [a_1, b_1]) \to C([a_1, b_1], \mathbb{R}),$$

where

$$A(x)(t) := \begin{cases} \varphi(t), & t \in [a_1, a], \\ \varphi(a) + \frac{t - a}{b - a}(\psi(b) - \varphi(a)) - \frac{t - a}{b - a}\int_a^b f(s, x(s), x(x(s))) \, \mathrm{d}s + \\ & + \int_a^t f(s, x(s), x(x(s))) \, \mathrm{d}s, \quad t \in [a, b], \\ \psi(t), \quad t \in [b, b_1]. \end{cases}$$

$$(2.5)$$

It is clear that (x, λ) is a solution of the problem (1.1)+(1.2) iff x is a fixed point of the operator A and λ is given by (2.4).

So, the problem is to study the fixed point equation

$$x = A(x).$$

We have

Theorem 2.1. We suppose that

(i) the conditions $(C_1) - (C_3)$ are satisfied;

(ii) $m_f \in \mathbb{R}$ and $M_f \in \mathbb{R}$ are such that $m_f \leq f(t, u_1, u_2) \leq M_f$, $\forall t \in [a, b]$, $u_i \in [a_1, b_1]$, i = 1, 2, and we have:

$$a_1 \le \min(\varphi(a), \psi(b)) - \max(0, M_f(b-a)) + \min(0, m_f(b-a)),$$

and

$$\max(\varphi(a), \psi(b)) - \min(0, m_f(b-a)) + \max(0, M_f(b-a)) \le b_1$$

Then the problem (1.1) + (1.2) has in $C([a_1, b_1], [a_1, b_1])$ at least a solution.

Proof. In what follow we consider on $C([a_1, b_1], \mathbb{R})$ the Chebyshev norm, $|| \cdot ||_C$.

Condition (*ii*) assures that the set $C([a_1, b_1], [a_1, b_1])$ is an invariant subset for the operator A, that is, we have

$$A(C([a_1, b_1], [a_1, b_1])) \subset C([a_1, b_1], [a_1, b_1]).$$

Indeed, for $t \in [a_1, a] \cup [b, b_1]$, we have $A(x)(t) \in [a_1, b_1]$. Furthermore, we we obtain

$$a_1 \le A(x)(t) \le b_1, \,\forall t \in [a, b],$$

if and only if

$$a_1 \le \min_{t \in [a,b]} A(x)(t) \tag{2.6}$$

and

$$\max_{t \in [a,b]} A(x)(t) \le b_1 \tag{2.7}$$

hold. Since

$$\min_{t \in [a,b]} A(x)(t) = \min \left(\varphi(a), \psi(b)\right) - \max \left(0, M_f(b-a)\right) + \min \left(0, m_f(b-a)\right),$$

respectively

$$\max_{t \in [a,b]} A(x)(t) = \max\left(\varphi(a), \psi(b)\right) - \min\left(0, m_f(b-a)\right) + \max\left(0, M_f(b-a)\right),$$

the requirements (2.6) and (2.7) are equivalent with the conditions appearing in (ii).

So, in the above conditions we have a selfmapping operator

$$A: C([a_1, b_1], [a_1, b_1]) \to C([a_1, b_1], [a_1, b_1]).$$

It is clear that A is completely continuous and the set $C([a_1, b_1], [a_1, b_1]) \subseteq C([a_1, b_1], \mathbb{R})$ is a bounded convex closed subset of the Banach space $(C([a_1, b_1], \mathbb{R}), \| \cdot \|_C)$. By Schauder's fixed point theorem the operator A has at least a fixed point.

3. Existence and uniqueness

Let L > 0, and introduce the following notation:

$$C_L([a_1, b_1], [a_1, b_1]) := \{ x \in C([a_1, b_1], [a_1, b_1]) | |x(t_1) - x(t_2)| \le L |t_1 - t_2|, \\ \forall t_1, t_2 \in [a_1, b_1] \}.$$

Remark that $C_L([a_1, b_1], [a_1, b_1]) \subset (C([a_1, b_1], \mathbb{R}), \|\cdot\|_C)$ is a complete metric space.

We have

Theorem 3.1. We suppose that

- (i) the conditions $(C_1) (C_3)$ are satisfied;
- (ii) there exists $L_f > 0$ such that:

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le L_f \left(|u_1 - v_1| + |u_2 - v_2| \right),$$

for all $t \in [a, b]$, $u_i, v_i \in [a_1, b_1]$, i = 1, 2;

- (iii) $\varphi \in C_L([a_1, a], [a_1, b_1]), \psi \in C_L([b, b_1], [a_1, b_1]);$
- (iv) $m_f, M_f \in \mathbb{R}$ are such that $m_f \leq f(t, u_1, u_2) \leq M_f, \forall t \in [a, b], u_i \in [a_1, b_1], i = 1, 2, and we have:$

$$a_1 \leq \min(\varphi(a), \psi(b)) - \max(0, M_f(b-a)) + \min(0, m_f(b-a)),$$

and

$$\max(\varphi(a), \psi(b)) - \min(0, m_f(b-a)) + \max(0, M_f(b-a)) \le b_1;$$

(v)
$$2 \max\{|m_f|, |M_f|\} + \left|\frac{\psi(b) - \varphi(a)}{b - a}\right| \le L;$$

(vi) $2L_f(L+2)(b-a) < 1.$

Then the problem (1.1)+(1.2) has in $C_L([a_1, b_1], [a_1, b_1])$ a unique solution. Moreover, if we denote by (x^*, λ^*) the unique solution of the Cauchy problem, then it can be determined by

$$x^* = \lim_{n \to \infty} A^n(x), \text{ for all } x \in X,$$

and

$$\lambda^* = \frac{\psi(b) - \varphi(a)}{b - a} - \frac{1}{b - a} \int_a^b f(s, x^*(s), x^*(x^*(s))) \, ds.$$

Proof. Consider the operator $A: C_L([a_1, b_1], [a_1, b_1]) \to C([a_1, b_1], \mathbb{R})$ given by (2.5).

Conditions (iii) and (iv) imply that $C_L([a_1, b_1], [a_1, b_1])$ is an invariant subset for A. Indeed, from the Theorem 2.1 we have

$$a_1 \le A(x)(t) \le b_1, \ x(t) \in [a_1, b_1]$$

for all $t \in [a_1, b_1]$.

Now, consider $t_1, t_2 \in [a_1, a]$. Then,

$$|A(x)(t_1) - A(x)(t_2)| = |\varphi(t_1) - \varphi(t_2)| \le L|t_1 - t_2|,$$

as $\varphi \in C_L([a_1, a], [a_1, b_1])$, due to (iii). Similarly, for $t_1, t_2 \in [b, b_1]$

$$|A(x)(t_1) - A(x)(t_2)| = |\psi(t_1) - \psi(t_2)| \le L|t_1 - t_2|,$$

that follows from (iii), too.

On the other hand, if $t_1, t_2 \in [a, b]$, we have,

$$\begin{split} |A(x)(t_{1}) - A(x)(t_{2})| &= \\ &= \left| \varphi(a) + \frac{t_{1} - a}{b - a} (\psi(b) - \varphi(a)) - \frac{t_{1} - a}{b - a} \int_{a}^{b} f(s, x(s), x(x(s))) \, \mathrm{d}s \right. \\ &+ \int_{a}^{t_{1}} f(s, x(s), x(x(s))) \, \mathrm{d}s - \varphi(a) - \frac{t_{2} - a}{b - a} (\psi(b) - \varphi(a)) \\ &+ \frac{t_{2} - a}{b - a} \int_{a}^{b} f(s, x(s), x(x(s))) \, \mathrm{d}s - \int_{a}^{t_{2}} f(s, x(s), x(x(s))) \, \mathrm{d}s \right| \\ &= \left| \frac{t_{1} - t_{2}}{b - a} [\psi(b) - \varphi(a)] - \frac{t_{1} - t_{2}}{b - a} \int_{a}^{b} f(s, x(s), x(x(s))) \, \mathrm{d}s - \int_{t_{1}}^{t_{2}} f(s, x(s), x(x(s))) \, \mathrm{d}s \right| \\ &\leq |t_{1} - t_{2}| \left[\left| \frac{\psi(b) - \varphi(a)}{b - a} \right| + 2 \max\{|m_{f}|, |M_{f}|\} \right] \leq L|t_{1} - t_{2}|. \end{split}$$

Therefore, due to (v), the operator A is L-Lipschitz and, consequently, it is an invariant operator on the space $C_L([a_1, b_1], [a_1, b_1])$.

From the condition (v) it follows that A is an L_A -contraction with

$$L_A := 2L_f(L+2)(b-a).$$

Indeed, for all $t \in [a_1, a] \cup [b, b_1]$, we have $|A(x_1)(t) - A(x_2)(t)| = 0$.

Moreover, for $t \in [a, b]$ we get

$$\begin{split} |A(x_1)(t) - A(x_2)(t)| &\leq \\ &\leq \left| \frac{t-a}{b-a} \int_a^b \left[f(s, x_1(s), x_1(x_1(s))) - f(s, x_2(s), x_2(x_2(s))) \right] \mathrm{ds} \right| + \\ &+ \left| \int_a^t \left[f(s, x_1(s), x_1(x_1(s))) - f(s, x_2(s), x_2(x_2(s))) \right] \mathrm{ds} \right| \leq \\ &\leq \max_{t \in [a,b]} \left| \frac{t-a}{b-a} \right| \cdot L_f \int_a^b \left(|x_1(s) - x_2(s)| + |x_1(x_1(s)) - x_2(x_2(s))| \right) \mathrm{ds} + \\ &+ L_f \int_a^t \left(|x_1(s) - x_2(s)| + |x_1(x_1(s)) - x_2(x_2(s))| \right) \mathrm{ds} \leq \\ &\leq L_f \left[(b-a) ||x_1 - x_2||_C + \int_a^b |x_1(x_1(s)) - x_1(x_2(s)) + x_1(x_2(s)) - x_2(x_2(s))| \mathrm{ds} \right] + \\ &+ L_f \left[(t-a) ||x_1 - x_2||_C + \int_a^t |x_1(x_1(s)) - x_1(x_2(s)) + x_1(x_2(s)) - x_2(x_2(s))| \mathrm{ds} \right] \leq \\ &\leq 2L_f \left[(b-a) (||x_1 - x_2||_C + \int_a^t |x_1(x_1(s)) - x_1(x_2(s)) + x_1(x_2(s)) - x_2(x_2(s))| \mathrm{ds} \right] \leq \\ &\leq 2L_f (b-a) (||x_1 - x_2||_C + L||x_1 - x_2||_C + ||x_1 - x_2||_C) = \\ &= 2L_f (L+2) (b-a) ||x_1 - x_2||_C. \end{split}$$

By the contraction principle the operator A has a unique fixed point, that is the problem (1.1) + (1.2) has in $C_L([a_1, b_1], [a_1, b_1])$ a unique solution (x^*, λ^*) .

Obviously, x^* can be determined by

$$x^* = \lim_{n \to \infty} A^n(x)$$
, for all $x \in X$,

and, from (2.4) we get

$$\lambda^* = \frac{\psi(b) - \varphi(a)}{b - a} - \frac{1}{b - a} \int_a^b f(s, x^*(s), x^*(x^*(s))) \, \mathrm{d}s.$$

I		
ĩ		

4. Data dependence

Consider the following two problems

$$\begin{cases} x'(t) = f_1(t, x(t), x(x(t))) + \lambda_1, & t \in [a, b] \\ x(t) = \varphi_1(t), & t \in [a_1, a] \\ x(t) = \psi_1(t), & t \in [b, b_1] \end{cases}$$
(4.8)

and

$$\begin{cases} x'(t) = f_2(t, x(t), x(x(t))) + \lambda_2, & t \in [a, b] \\ x(t) = \varphi_2(t), & t \in [a_1, a] \\ x(t) = \psi_2(t), & t \in [b, b_1] \end{cases}$$
(4.9)

Let f_i, φ_i and $\psi_i, i = 1, 2$ be as in the Theorem 3.1.

Consider the operators $A_1, A_2 : C_L([a_1, b_1], [a_1, b_1]) \to C_L([a_1, b_1], [a_1, b_1])$ given by

$$A_{i}(x)(t) := \begin{cases} \varphi_{i}(t), & t \in [a_{1}, a], \\ \varphi_{i}(a) + \frac{t-a}{b-a}(\psi_{i}(b) - \varphi_{i}(a)) - \frac{t-a}{b-a}\int_{a}^{b}f_{i}(s, x(s), x(x(s))) \,\mathrm{d}s + \\ & + \int_{a}^{t}f_{i}(s, x(s), x(x(s))) \,\mathrm{d}s, \quad t \in [a, b], \\ \psi_{i}(t), & t \in [b, b_{1}], \end{cases}$$

$$(4.10)$$

i = 1, 2.

Thus, these operators are contractions. Denote by x_1^*, x_2^* their unique fixed points.

We have

Theorem 4.1. Suppose we are in the conditions of the Theorem 3.1, and, moreover

(i) there exists η_1 such that

$$|\varphi_1(t) - \varphi_2(t)| \le \eta_1, \quad \forall t \in [a_1, a],$$

and

$$|\psi_1(t) - \psi_2(t)| \le \eta_1, \quad \forall t \in [b, b_1];$$

(ii) there exists $\eta_2 > 0$ such that

$$|f_1(t, u_1, u_2) - f_2(t, u_1, u_2)| \le \eta_2, \ \forall \ t \in [a, b], \ \forall \ u_i \in [a_1, b_1], \ i = 1, 2.$$

Then

$$||x_1^* - x_2^*||_C \le \frac{3\eta_1 + 2(b-a)\eta_2}{1 - 2L_f(L+2)(b-a)}$$

and

$$|\lambda_1^* - \lambda_2^*| \le \frac{2\eta_1}{b-a} + \eta_2,$$

where $L_f = \max(L_{f_1}, L_{f_2})$, and (x_i^*, λ_i^*) , i = 1, 2 are the solutions of the corresponding problems (4.8), (4.9).

Proof. It is easy to see that for $t \in [a_1, a] \cup [b, b_1]$ we have

$$||A_1(x) - A_2(x)||_C \le \eta_1.$$

On the other hand, for $t \in [a, b]$, we obtain

.

$$\begin{split} |A_1(x)(t) - A_2(x)(t)| &= \left| \varphi_1(a) - \varphi_2(a) + \frac{t-a}{b-a} \left[\psi_1(b) - \psi_2(b) - (\varphi_1(a) - \varphi_2(a)) \right] - \\ &- \frac{t-a}{b-a} \int_a^b [f_1(s, x(s), x(x(s))) - f_2(s, x(s), x(x(s)))] \, \mathrm{d}s + \\ &+ \int_a^t [f_1(s, x(s), x(x(s))) - f_2(s, x(s), x(x(s)))] \, \mathrm{d}s \right| \leq \\ &\leq |\varphi_1(a) - \varphi_2(a)| + \frac{t-a}{b-a} \left[|\psi_1(b) - \psi_2(b)| + |\varphi_1(a) - \varphi_2(a)| \right] + \\ &+ \frac{t-a}{b-a} \int_a^b |f_1(s, x(s), x(x(s))) - f_2(s, x(s), x(x(s)))| \, \mathrm{d}s + \\ &+ \int_a^t |f_1(s, x(s), x(x(s))) - f_2(s, x(s), x(x(s)))| \, \mathrm{d}s \leq \\ &\leq \eta_1 + \max_{t \in [a,b]} \frac{t-a}{b-a} \cdot [2\eta_1 + \eta_2(b-a)] + \eta_2 \cdot \max_{t \in [a,b]} (t-a) = \\ &= 3\eta_1 + 2(b-a)\eta_2 \end{split}$$

So, we have

$$||A_1(x) - A_2(x)||_C \le 3\eta_1 + 2(b-a)\eta_2, \,\forall x \in C_L([a_1, b_1], [a_1, b_1]).$$

Consequently, from the data dependence theorem we obtain

$$\|x_1^* - x_2^*\|_C \le \frac{3\eta_1 + 2(b-a)\eta_2}{1 - 2L_f(L+2)(b-a)}.$$

Moreover, we get

$$\begin{split} |\lambda_1^* - \lambda_2^*| &= \\ &= \left| \frac{\psi_1(b) - \varphi_1(a)}{b - a} - \frac{1}{b - a} \int_a^b f_1(s, x(s), x(x(s))) \, \mathrm{d}s - \frac{\psi_2(b) - \varphi_2(a)}{b - a} + \right. \\ &+ \frac{1}{b - a} \int_a^b f_2(s, x(s), x(x(s))) \, \mathrm{d}s \right| \leq \\ &\leq \frac{1}{b - a} \Big[|\psi_1(b) - \psi_2(b)| + |\varphi_1(a) - \varphi_2(a)| + \\ &+ \int_a^b |f_1(s, x(s), x(x(s))) - f_2(s, x(s), x(x(s)))| \, \mathrm{d}s \Big] \leq \\ &\leq \frac{1}{b - a} [\eta_1 + \eta_1 + \eta_2(b - a)] = \frac{2\eta_1}{b - a} + \eta_2, \end{split}$$

and the proof is complete.

5. Examples

Consider the following problem:

$$x'(t) = \mu x(x(t)) + \lambda; \quad t \in [0, 1], \ \mu \in \mathbb{R}^*_+, \ \lambda \in \mathbb{R}$$

$$(5.11)$$

$$x|_{[-h,0]} = 0; \quad x|_{[1,1+h]} = 1, \quad h \in \mathbb{R}^*_+$$
(5.12)

with $x \in C([-h, 1+h], [-h, 1+h]) \cap C^1([0, 1], [-h, 1+h]).$

We have

Proposition 5.1. We suppose that

$$\mu \le \frac{h}{1+2h}.$$

Then the problem (5.11) has in C([-h, 1+h], [-h, 1+h]) at least a solution.

Proof. First of all notice that accordingly to the Theorem 2.1 we have a = 0, b = 1, $\psi(b) = 1, \varphi(a) = 0$ and $f(t, u_1, u_2) = \mu u_2$. Moreover, $a_1 = -h$ and $b_1 = 1 + h$ can be 76

taken. Therefore, from the relation

$$m_f \leq f(t, u_1, u_2) \leq M_f, \ \forall t \in [0, 1], \forall u_1, u_2 \in [-h, 1+h],$$

we can choose $m_f = -h\mu$ and $M_f = (1+h)\mu$.

For these data it can be easily verified that the conditions (ii) from the Theorem 2.1 are equivalent with the relation

$$\mu \leq \frac{h}{1+2h},$$

consequently we have the proof.

Let L > 0 and consider the complete metric space $C_L([-h, h+1], [-h, h+1])$ with the Chebyshev norm $\|\cdot\|_C$.

Another result reads as follows.

Proposition 5.2. Consider the problem (5.11). We suppose that

(i)
$$\mu \le \frac{h}{1+2h}$$
;
(ii) $2(1+h)\mu + 1 \le L$
(iii) $2\mu(L+2) < 1$

Then the problem (5.11) has in $C_L([-h, h+1], [-h, h+1])$ a unique solution.

Proof. Observe that the Lipschitz constant for the function $f(t, u_1, u_2) = \mu u_2$ is $L_f = \mu$.

By a common check in the conditions of Theorem 3.1 we can make sure that

$$2\max\{|m_f|, |M_f|\} + \left|\frac{\psi(b) - \varphi(a)}{b - a}\right| \le L \iff 2(1+h)\mu + 1 \le L,$$

and

$$2L_f(L+2)(b-a) < 1 \iff 2\mu(L+2) < 1.$$

Therefore, by Theorem 3.1 we have the proof.

Now take the following problems

$$x'(t) = \mu_1 x(x(t)) + \lambda; \quad t \in [0, 1], \ \mu_1 \in \mathbb{R}^*_+, \ \lambda \in \mathbb{R}$$
 (5.13)

$$x|_{[-h,0]} = \varphi_1; \quad x|_{[1,1+h]} = \psi_1, \quad h \in \mathbb{R}^*_+$$
(5.14)

$$x'(t) = \mu_2 x(x(t)) + \lambda; \quad t \in [0, 1], \ \mu_2 \in \mathbb{R}^*_+, \ \lambda \in \mathbb{R}$$
 (5.15)

$$x|_{[-h,0]} = \varphi_2; \quad x|_{[1,1+h]} = \psi_2, \quad h \in \mathbb{R}^*_+.$$
 (5.16)

Suppose that we have satisfied the following assumptions

- (H₁) $\varphi_i \in C_L([-h, 0], [-h, 1+h]), \psi_i \in C_L([1, 1+h], [-h, 1+h])$, such that $\varphi_i(0) = 0, \ \psi_i(1) = 1, \ i = 1, 2;$
- (H₂) we are in the conditions of Proposition 5.2 for both of the problems (5.13) and (5.15).

Let (x_1^*, λ_1^*) be the unique solution of the problem (5.13) and (x_2^*, λ_2^*) the unique solution of the problem (5.15). We are looking for an estimation for $||x_1^* - x_2^*||_C$.

Then, build upon Theorem 4.1, by a common substitution one can make sure that we have

Proposition 5.3. Consider the problems (5.13), (5.15) and suppose the requirements $H_1 - H_2$ hold. Additionally,

(i) there exists η_1 such that

$$|\varphi_1(t) - \varphi_2(t)| \le \eta_1, \quad \forall t \in [-h, 0],$$

$$|\psi_1(t) - \psi_2(t)| \le \eta_1, \quad \forall t \in [1, 1+h];$$

(ii) there exists $\eta_2 > 0$ such that

$$|\mu_1 - \mu_2| \cdot |u_2| \le \eta_2, \ \forall \ t \in [0,1], \ \forall \ u_2 \in [-h, 1+h].$$

Then

$$\|x_1^* - x_2^*\|_C \le \frac{3\eta_1 + 2\eta_2}{1 - 2(L+2) \cdot \max\{\mu_1, \mu_2\}},$$

and

$$|\lambda_1^* - \lambda_2^*| \le 2\eta_1 + \eta_2.$$

References

- Buică, A., On the Chauchy problem for a functional-differential equation, Seminar on Fixed Point Theory, Cluj-Napoca, 1993, 17-18.
- [2] Buică, A., Existence and continuous dependence of solutions of some functionaldifferential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
- Burton, T.A., Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Mineola, New York, 2006
- [4] Coman, Gh., Pavel, G., Rus, I., Rus, I.A., Introducere în teoria ecuațiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
- [5] Devasahayam, M.P., Existence of monoton solutions for functional differential equations, J. Math. Anal. Appl., 118(1986), No.2, 487-495.
- [6] Dunkel, G.M., Functional-differential equations: Examples and problems, Lecture Notes in Mathematics, No.144(1970), 49-63.
- [7] Granas, A., Dugundji, J., Fixed Point Theory, Springer, 2003.
- [8] Grimm, L.J., Schmitt, K., Boundary value problems for differential equations with deviating arguments, Aequationes Math., 4(1970), 176-190.
- [9] Hale, J.K., Verduyn Lunel, S., Introduction to functional-differential equations, Springer, 1993.
- [10] Kalmanovskii, V., Myshkis, A., Applied Theory of Functional-Differential Equations, Kluwer, 1992.
- [11] Lakshmikantham, V., Wen, L., Zhang, B., Theory of Differential Equations with Unbounded Delay, Kluwer, London, 1994.
- [12] Oberg, R.J., On the local existence of solutions of certain functional-differential equations, Proc. AMS, 20(1969), 295-302.
- [13] Petuhov, V.R., On a boundary value problem, Trud. Sem. Teorii Diff. Unov. Otklon. Arg., 3(1965), 252-255 (in Russian).
- [14] Rus, I.A., Principii şi aplicații ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
- [15] Rus, I.A., *Picard operators and applications*, Scientiae Math. Japonicae, 58(2003), No.1, 191-219.
- [16] Rus, I.A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar on fixed point theory, Cluj-Napoca, 2002, 335-345.
- [17] Rzepecki, B., On some functional-differential equations, Glasnik Mat., 19(1984), 73-82.
- [18] Si, J.-G., Li, W.-R., Cheng, S.S., Analytic solution of on iterative functional-differential equation, Comput. Math. Appl., 33(1997), No.6, 47-51.

[19] Stanek, S., Global properties of decreasing solutions of equation x'(t) = x(x(t)) + x(t), Funct. Diff. Eq., 4(1997), No.1-2, 191-213.

BABEŞ-BOLYAI UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, INFORMATION TECHNOLOGY, 530164 MIERCUREA-CIUC, STR. TOPLIȚA, NR.20, JUD. HARGHITA, ROMANIA *E-mail address:* egriedit@yahoo.com

BABEŞ-BOLYAI UNIVERSITY, DEPARTMENT OF APPLIED MATHEMATICS, STR. M. KOGĂLNICEANU NR.1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: iarus@math.ubbcluj.ro