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Abstract. The purpose of this paper is to give a possibility of reducing

the execution time involved in evaluating a financial option by means of

an explicite scheme, using a cyclic odd-even reduction technique.

1. Introduction

The concept of arbitrage is largely used in the domain of mathematical fi-

nance. It allows us to establish precise relationships between prices and thence to

determine them. Connected with it, the strategies of an option is very important. In

the literature, the celebrated Black-Scholes differential equation for the price of the

so-called European vanilla option is the best known and used.

Many papers study this equation and indicate different numerical methods

in order to get the approximate solution. E.g., in [3], the finite difference method is

presented. In [4], the method of radial basis is used, to avoid the mesh of discretized

points.

In this paper, considering the idea given by the cyclic odd-even reduction

(see [1]), we start from an explicit scheme obtained by means of finite differences, and

give an alternative of evaluating of the approximate values, using a cyclic odd-even

reduction type technique, which generates a logarithmic time of execution.
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2. Recalling the Black-Scholes equation

As in [3], denoting by:

• V , the value of an option

• S, the current value of the underlying asset

• t, the time

• σ, the volatility of the underlying asset

• T , the expiry

• r, the interest rate

• E, the exercise price,

We get the Black-Scholes equation:

∂V

∂t
+

1
2
σ2 · s2 · ∂2V

∂s2
+ r · s · ∂V

∂s
− r · V = 0 (1)

with the boundary conditions:

C(0, t) = 0

C(S, T ) = max(S − E, 0).

3. The finite difference methods

Finite difference methods (see [2]) are a means of obtaining numerical solu-

tions to partial differential equations (see [2], [3]). They constitute a very powerful

and flexible technique and, if applied correctly, are capable of generating accurate nu-

merical solutions to all of the mathematical finance models, also for the Black-Scholes

equation (1).

So, considering a mesh of equal S-steps of size δS and equal time-steps of size

δt, with (N +1)2 points, central differences for S derivatives and backward differences

for time derivatives, we get the explicit discretization of the Black-Scholes equation:

B0V
m
n + C0V

m
1 = V m

0

AnV m
n−1 + BnV m

n + CnV m
n+1 = V m+1

n , n = 1, 2, . . . , N

(2)
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where m indicates the moment of time,

An = −1
2
(σ2n2 − (r − s0)n)δt

Bn = 1 + (σ2n2 + r)δt

Cn = −1
2
(σ2n2 + (r − s0)n)δt

4. A technique of the cyclic odd-even reduction type

Relation (2) generates a system of equations of the following form:

B0 C0 0 . . . 0

A1 B1 C1 . . . 0

0 A2
. . . . . . 0

...
...

. . . . . . CN
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·



V m
0

V m
1

...

V m
N−1

V m
N


=



V m+1
0

V m+1
1

...

V m+1
N−1

V m+1
N


(3)

which involves a time of execution of O(N2). Then the following theorem holds:

Theorem 1. Using a cyclic odd-even reduction type technique, equation (2)

can be computed in a time O(N [log2 m]) time.

Proof. Rewriting (2),

AnV m
n−1 + BnV m

n + CnV m
n+1 = V m+1

n

for one single value n, and replacing V m
n using the same connection among values, we

get:

AnV m
n−1 + Bn(AnV m−1

n−1 + BnV m−1
n + CnV m−1

n+1 ) + CnV m
n+1 = V m+1

n

or, making some computations:

An(V m
n−1 + BnV m−1

n−1 ) + B2
nV m−1

n + Cn(BnV m−1
n+1 + V m

n+1) = V m+1
n .

So, for n given, value V m+1
n can be computed by means of values from two

previous moments of time. Repeating the same substitution, we finally get:

An(amV m
n−1 + am−1V

m−1
n−1 + · · · + a0V

0
n−1) + Bm

n V 0
n

+Cn(a1
mV m

n−1 + a1
m−1V

m−1
n−1 + · · · + a1

0V
0
n−1) = V m+1

n (4)

67



IOANA CHIOREAN

where we denoted by ai and a1
i , i = 0,m the final coefficients.

Using the double recursive technique (see [1]), in [log2 m] parallel steps, the

values in parenthesis are computed.

Finally, for n = 1, 2, . . . , N , the total execution time is O(N [log2 m]). �
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