REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES

DORIN ANDRICA AND DANIEL VĂCĂREŢU

Dedicated to Professor Gheorghe Coman at his $70^{\text {th }}$ anniversary

Abstract

We define the almost unimodal sequences and we show that under some conditions the polynomial $P\left(X^{k}+n\right)$ is almost unimodal (Theorem 1.7). A nontrivial example of almost unimodality shows that the sequence $A_{k}^{(1)}(n), k=-\frac{n(n+1)}{2}, \ldots,-1,0,1, \ldots, \frac{n(n+1)}{2}$ is symmetric and almost unimodal (Theorem 3.1). This result is connected to some representation properties of integers.

1. Almost unimodal sequences and polynomials

A finite sequence of real numbers $\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ is said to be unimodal if there exists an index $0 \leq m^{*} \leq m$, called the mode of the sequence, such that d_{j} increases up to $j=m^{*}$ and decreases from then on, that is, $d_{0} \leq d_{1} \leq \cdots \leq d_{m^{*}}$ and $d_{m^{*}} \geq d_{m^{*}+1} \geq \cdots \geq d_{m}$. A polynomial is said to be unimodal if its sequence of coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra. The reader is referred to [BoMo] and [AlAmBoKaMoRo] for surveys of the diverse techniques employed to prove that specific families of polynomials are unimodal.

We recall few basic results concerning the unimodality.
Theorem 1.1. If P is a polynomial with positive nondecreasing coefficients, then $P(X+1)$ is unimodal.

[^0]2000 Mathematics Subject Classification. Primary 11B99, 11K31, Secondary 40A99, 40C10.
Key words and phrases. Unimodal sequence, unimodal polynomial, almost unimodality, Erdös-Surányi
sequence, complete sequence of integers.

Theorem 1.2. Let $b_{k}>0$ be a nondecreasing sequence. Then the sequence

$$
\begin{equation*}
c_{j}=\sum_{k=j}^{m} b_{k}\binom{k}{j}, \quad 0 \leq j \leq m \tag{1.1}
\end{equation*}
$$

is unimodal with mode $m^{*}=\left\lfloor\frac{m-1}{2}\right\rfloor$.
Theorem 1.3. Let $0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{m}$ be a sequence of real numbers and $n \in \mathbb{N}$, and consider the polynomial

$$
\begin{equation*}
P=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{m} X^{m} \tag{1.2}
\end{equation*}
$$

Then the polynomial $P(X+n)$ is unimodal with mode $m^{*}=\left\lfloor\frac{m}{n+1}\right\rfloor$.
We can reformulate Theorem 1.3 in terms of the coefficients of polynomial P.
Theorem 1.4. Let $0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{m}$ be a sequence of real numbers and $n \in \mathbb{N}$. Then the sequence

$$
\begin{equation*}
q_{j}=q_{j}(m, n)=\sum_{k=j}^{m} a_{k}\binom{k}{j} n^{k-j}, \quad 0 \leq j \leq m \tag{1.3}
\end{equation*}
$$

is unimodal with mode $m^{*}=\left\lfloor\frac{m}{n+1}\right\rfloor$.
In order to introduce the almost unimodality of a sequence we need the following notion.

Definition 1.5. A finite sequence of real numbers $\left\{c_{0}, c_{1}, \ldots, c_{n}\right\}$ is called almost nondecreasing if it is nondecreasing excepting a subsequence which is zero.

It is clear that, if the sequence $\left\{c_{0}, c_{1}, \ldots, c_{n}\right\}$ is nondecreasing, then it is almost nondecreasing. The converse is not true, as we can see from the following example. The sequence $\{0,1,0,2,0,3, \ldots, 0, m\}$ is almost nondecreasing but it is not nondecreasing.

Definition 1.6. A finite sequence of real numbers $\left\{d_{0}, d_{1}, \ldots, d_{m}\right\}$ is called almost unimodal if there exists an index $0 \leq m^{*} \leq m$, such that d_{j} almost increases up to $j=m^{*}$ and d_{j} almost decreases from then on.

As in the situation of unimodality, the index m^{*} is called the mode of the sequence. Also, a polynomial is said to be almost unimodal, if its sequence of coefficients is almost unimodal.

For instance, the polynomial

$$
\left(X^{k}+1\right)^{m}=\binom{m}{0}+\binom{m}{1} X^{k}+\binom{m}{2} X^{2 k}+\cdots+\binom{m}{m} X^{m k}
$$

is almost unimodal for $k \geq 2$, but it is not unimodal.
The following result is useful in the study of almost unimodality.
Theorem 1.7. Let $0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{m}$ be a sequence of real numbers, let n be a positive integer and consider the polynomial

$$
P=a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{m} X^{m}
$$

Then for any integer $k \geq 2$, the polynomial $P\left(X^{k}+n\right)$ is almost unimodal.

Proof. We note that if Q is a unimodal polynomial, then for any $k \geq 2$ the polynomial $Q\left(X^{k}\right)$ is almost unimodal. Applying Theorem 1.3 we get that $P(X+n)$ is unimodal and now using the remark above it follows that $P\left(X^{k}+n\right)$ is almost unimodal with mode $m^{*}=k\left\lfloor\frac{m}{n+1}\right\rfloor$.

Remark 1.8. If $n \geq m$, then $m^{*}=0$, hence the sequence of coefficients of $P\left(X^{k}+n\right)$ is almost nonincreasing. For example, the sequence of coefficients of $\left(X^{k}+3\right)^{3}$ is

$$
27, \underbrace{0, \ldots, 0}_{k-1}, 27, \underbrace{0, \ldots, 0}_{k-1}, 9, \underbrace{0, \ldots, 0}_{k-1}, 1 .
$$

2. Some representation results for integers

In 1960, P. Erdös and J. Surányi ([ErSu], Problem 5, pp.200) have proved the following result: Any integer k can be written in infinitely many ways in the form

$$
\begin{equation*}
k= \pm 1^{2} \pm 2^{2} \pm \cdots \pm n^{2} \tag{2.1}
\end{equation*}
$$

for some positive integer n and for some choices of signs + and - .

In 1979, J. Mitek [Mi] has extended the above result as follows: For any fixed positive integer $s \geq 2$ the result in (2.1) holds in the form

$$
\begin{equation*}
k= \pm 1^{s} \pm 2^{s} \pm \cdots \pm n^{s} \tag{2.2}
\end{equation*}
$$

The following notion has been introduced in [Dr] by M.O. Drimbe:
Definition 2.1. A sequence $\left(a_{n}\right)_{n \geq 1}$ of positive integers is an Erdös-Surányi sequence if any integer k can be represented in infinitely many ways in the form

$$
\begin{equation*}
k= \pm a_{1} \pm a_{2} \pm \cdots \pm a_{n} \tag{2.3}
\end{equation*}
$$

for some positive integer n and for some choices of signs + and - .
The main result in $[\mathrm{Dr}]$ is contained in
Theorem 2.2. Any sequence $\left(a_{n}\right)_{n \geq 1}$ of positive integers satisfying:
i) $a_{1}=1$,
ii) $a_{n+1} \leq 1+a_{1}+\cdots+a_{n}$, for any positive integer n,
iii) $\left(a_{n}\right)_{n \geq 1}$ contains infinitely many odd integers,
is an Erdös-Suranyi sequence.
As direct consequences of Theorem 2.1, in the paper [Dr], the following examples of Erdös-Suranyi sequences are pointed out:

1) The Fibonacci's sequence $\left(F_{n}\right)_{n \geq 0}$, where $F_{0}=1, F_{1}=1$ and $F_{n+1}=$ $F_{n}+F_{n-1}$, for $n \geq 1 ;$
2) The sequence of primes $\left(p_{n}\right)_{n \geq 1}$.

We can see that the sequence $\left(n^{s}\right)_{n \geq 1}$ does not satisfy condition ii) in Theorem 2.2 but it is an Erdös Suranyi sequences, according to the result of J. Mitek [Mi] contained in (2.2). Following the paper [Ba] one can extend Theorem 2.2 in such way to include sequences $\left(n^{s}\right)_{n \geq 1}$. The following notion has been introduced in [Kl] by T. Klove:

Definition 2.3. A sequence $\left(a_{n}\right)_{n \geq 1}$ of positive integers is complete if any sufficiently great integer can be expressed as a sum of distinct terms of $\left(a_{n}\right)_{n \geq 1}$.

REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES
The above property is equivalent to the fact that for any sufficient great integer k there exists a positive integer $t=t(k)$ such that

$$
\begin{equation*}
k=u_{1} a_{1}+u_{2} a_{2}+\cdots+u_{t} a_{t}, \tag{2.4}
\end{equation*}
$$

where $u_{i} \in\{0,1\}, i=1,2, \ldots, t$.
The main result in [Ba] is contained in
Theorem 2.4. Any complete sequence $\left(a_{n}\right)_{n \geq 1}$ of positive integers, containing infinitely many odd integers, is an Erdös-Surányi sequence.

Proof. Let q can be represented as in (2.4). Let $S_{n}=a_{1}+\cdots+a_{n}, n \geq 1$. The sequence $\left(S_{n}\right)_{n \geq 1}$ is increasing and it contains infinitely many odd integers but also infinitely many even integers. Let k be a fixed positive integer. One can find infinitely many integers S_{p}, having the same parity as k, such that $S_{p}>k+2 q$. Consider S_{n} a such integer and let $m=\frac{1}{2}\left(S_{n}-k\right)$. Because $q<m$, it follows that m can be represented as in (2.4). Taking into account that $m<S_{n}$, we have $m=u_{1} a_{1}+\cdots+u_{n} a_{n}$, where $u_{i} \in\{0,1\}, i=1,2, \ldots, n$. Then, we have

$$
k=S_{n}-2 m=\left(1-2 u_{1}\right) a_{1}+\cdots+\left(1-2 u_{n}\right) a_{n} .
$$

From $u_{i} \in\{0,1\}$ we get $1-2 u_{i} \in\{-1,1\}, i=1,2, \ldots, n$.

Remark 2.5. The result of J. Mitek [Mi] follows from Theorem 2.4 and from the property that the sequence $\left(n^{s}\right)_{n \geq 1}$ is complete, for any positive integer s. The completeness of $\left(n^{s}\right)_{n \geq 1}$ is a result of P. Erdös (see [Si], pp.395).

3. Integral formulae and almost unimodality

Consider an Erdös-Surányi sequence $\left(a_{m}\right)_{m \geq 1}$. If we fix n, then there are 2^{n} integers of the form $\pm a_{1} \pm \cdots \pm a_{n}$. In this section we explore the number of ways to express an integer k in the form (2.3). Denote $A_{k}(n)$ to be this value. Using the method in [AnTo] let us consider the function

$$
\begin{equation*}
f_{n}(z)=\left(z^{a_{1}}+\frac{1}{z^{a_{1}}}\right)\left(z^{a_{2}}+\frac{1}{z^{a_{2}}}\right) \ldots\left(z^{a_{n}}+\frac{1}{z^{a_{n}}}\right) \tag{3.1}
\end{equation*}
$$

It is clear that this is the generating function for the sequence $A_{k}(n)$, i.e. we may write

$$
\begin{equation*}
f_{n}(z)=\sum_{j=-S_{n}}^{S_{n}} A_{j}(n) z^{j} \tag{3.2}
\end{equation*}
$$

where $S_{n}=a_{1}+\cdots+a_{n}$. It is interesting to note the symmetry of the coefficients in (3.2), i.e. $A_{j}(n)=A_{-j}(n)$. If we write $z=\cos t+i \sin t$, then by using DeMoivre's formula we may rewrite (3.1) as

$$
\begin{equation*}
f_{n}(z)=2^{n} \cos a_{1} t \cdot \cos a_{2} t \ldots \cos a_{n} t \tag{3.3}
\end{equation*}
$$

By noting that $A_{k}(n)$ is the constant term in the expansion $z^{-k} f_{n}(z)$, we obtain

$$
\begin{align*}
z^{-k} f_{n}(z) & =2^{n}(\cos k t-i \sin k t) \cos a_{1} t \ldots \cos a_{n} t \\
& =A_{k}(n)+\sum_{j \neq k} A_{j}(n)(\cos (j-k) t+i \sin (j-k) t) \tag{3.4}
\end{align*}
$$

Finally, making use of the fact that $\int_{0}^{2 \pi} \cos m t d t=\int_{0}^{2 \pi} \sin m t d t=0$, we integrate (3.4) on the interval $[0,2 \pi]$ to find an elegant integral formula for $A_{k}(n)$:

$$
\begin{equation*}
A_{k}(n)=\frac{2^{n}}{2 \pi} \int_{0}^{2 \pi} \cos a_{1} t \ldots \cos a_{n} t \cos k t d t \tag{3.5}
\end{equation*}
$$

After integrating, we find that the imaginary part of $A_{k}(n)$ is 0 , which implies the relation

$$
\begin{equation*}
\int_{0}^{2 \pi} \cos a_{1} t \ldots \cos a_{n} t \sin k t d t=0 \tag{3.6}
\end{equation*}
$$

for each k between $-S_{n}$ and S_{n}.
Applying formula (3.5) for Erdös-Surányi sequence $\left(m^{s}\right)_{m \geq 1}$, we get

$$
A_{k}^{(s)}(n)=\frac{2^{n}}{2 \pi} \int_{0}^{2 \pi} \cos 1^{s} t \cos 2^{s} t \ldots \cos n^{s} t \cos k t d t
$$

where $A_{k}^{(s)}(n)$ denote the integer $A_{k}(n)$ for this sequence.
The following result gives a nontrivial example of almost unimodality.

Theorem 3.1. The sequence $A_{k}^{(1)}(n), k=0,1, \ldots, \frac{n(n-1)}{2}$, is almost nonincreasing and consequently, the sequence $A_{j}^{(1)}(n), j=-\frac{n(n+1)}{2}, \ldots,-1,0,1, \ldots, \frac{n(n+1)}{2}$ is symmetric and almost unimodal.

Proof. First of all we show that $A_{k}^{(1)}(n)$ is the number of representations of $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right)$ as $\sum_{i=1}^{n} \varepsilon_{i} i$, where $\varepsilon_{i} \in\{0,1\}$. Indeed, we note that if $\varepsilon \in\{0,1\}$, then $1-2 \varepsilon \in\{-1,1\}$ and we have $\sum_{i=1}^{n}\left(1-2 \varepsilon_{i}\right) i=k$ if and only if

$$
\frac{n(n+1)}{2}-2 \sum_{i=1}^{n} \varepsilon_{i} i=k,
$$

hence

$$
\begin{equation*}
\sum_{i=1}^{n} \varepsilon_{i} i=\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right) \tag{3.7}
\end{equation*}
$$

Denote $B_{k}^{(1)}(n)$ the number of representations of $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right)$ in the form (3.7). It is clear that $B_{k}^{(1)}(n)=0$ if and only if k and $\frac{n(n+1)}{2}$ have different parities. Also, we have $\frac{n(n+1)}{4} \leq j \leq \frac{n(n+1)}{2}$ for any integer j of the form $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right), k=0,1, \ldots, \frac{n(n+1)}{2}$. Assume that we can write j as $\varepsilon_{1} \cdot 1+\varepsilon_{2}$. $2+\cdots+\varepsilon_{n} \cdot n$ and $\varepsilon_{1}=1$. Then, we have $j-1=\varepsilon_{2} \cdot 2+\cdots+\varepsilon_{n} \cdot n$, where $\varepsilon_{2}, \ldots, \varepsilon_{n} \in$ $\{0,1\}$. If we have in this sum three consecutive terms of the form $i-1,0, i+1$, we can move 1 at the first position and obtain three consecutive terms of the form $i-1, i, 0$. After another such step for other three consecutive terms $s-1,0, s+1$, taking into account that a such map is injective it follows that $B_{j}^{(1)}(n) \leq B_{j-2}^{(1)}(n)$, hence $A_{j}^{(1)}(n) \leq A_{j-2}^{(1)}(n)$ if both $A_{j-2}^{(1)}(n)$ and $A_{j}^{(1)}(n)$ are not zero.

Remark 3.2. The conclusion of Theorem 3.1 is not generally true for $A_{k}^{(s)}(n)$, where $s \geq 2$ (see the values of $A_{k}^{(2)}(6)$ in the table below).

4. Numerical results

Numerical values for $A_{k}^{(1)}$ for n up to 9

$n=$	5
k	A_{k}
0	0
1	3
2	0
3	3
4	0
5	3
6	0
7	2
8	0
9	2
10	0
11	1
12	0
13	1
14	0
15	1

$n=$	7
k	A_{k}
0	8
1	0
2	8
3	0
4	8
5	0
6	7
7	0
8	7
9	0
10	6
11	0
12	5
13	0
14	5
15	0
16	4
17	0
18	3
19	0
20	2
21	0
22	2
23	0
24	1
25	0
26	1
27	0
28	1

$n=$	8
k	A_{k}
0	14
1	0
2	13
3	0
4	13
5	0
6	13
7	0
8	12
9	0
10	11
11	0
12	10
13	0
14	9
15	0
16	8
17	0
18	7
19	0
20	6
21	0
22	5
23	0
24	4
25	0
26	3
27	0
28	2
29	0
30	2
31	0
32	1
33	0
34	1
35	0
36	1

$n=$	9
k	A_{k}
0	0
1	23
2	0
3	23
4	0
5	22
6	0
7	21
8	0
9	21
10	0
11	19
12	0
13	18
14	0
15	17
16	0
17	15
18	0
19	13
20	0
21	12
22	0
23	10
24	0
25	9
26	0
27	8
28	0
29	6
30	0
31	5
32	0
33	4
34	0
35	3
36	0
37	2
38	0
39	2
40	0
41	1
42	0
43	1
44	0
45	1

REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES

Numerical values for $A_{k}^{(2)}$ for n up to 6

Numerical values for $A_{0}^{(1)}(n)$ and $A_{0}^{(2)}(n)$

(1)				(2)	
n	A_{0}	n	A_{0}	n	A_{0}
1	0	51	8346638665718	1	0
2	0	52	16221323177468	2	0
3	2	53	0	3	0
4	2	54	0	4	0
5	0	55	119447839104366	5	0
6	0	56	232615054822964	6	0
7	8	57	0	7	2
8	14	58	0	8	2
9	0	59	1722663727780132	9	0
10	0	60	3360682669655028	10	0
11	70	61	0	11	2
12	124	62	0	12	10
13	0	63	25011714460877474	13	0
14	0	64	48870013251334676	14	0
15	722	65	0	15	86
16	1314	66	0	16	114
17	0	67	365301750223042066	17	0
18	0	68	714733339229024336	18	0
19	8220	69	0	19	478
20	15272	70	0	20	860
21	0	71	5363288299585278800	21	0
22	0	72	10506331021814142340	22	0
23	99820	73	0	23	5808
24	187692	74	0	24	10838
25	0	75	79110709437891746598	25	0
26	0	76	155141342711178904962	26	0
27	1265204	77	0	27	55626
28	2399784	78	0	28	100426
29	0	79	1171806326862876802144	29	0
30	0	80	2300241216389780443900	30	0
31	16547220	81	0	31	696164
32	31592878	82	0	32	1298600
33	0	83	17422684839627191647442	33	0
34	0	84	34230838910489146400266	34	0
35	221653776	85	0	35	7826992
36	425363952	86	0	36	14574366
37	0	87	259932234752908992679732	37	0
38	0	88	511107966282059114105424	38	0
39	3025553180	89	0	39	100061106
40	5830034720	90	0	40	187392994
41	0	91	3890080539905554395312172	41	0
42	0	92	7654746470466776636508150	42	0
43	41931984034	93	0	43	1223587084
44	81072032060	94	0	44	2322159814
45	0	95	58384150201994432824279356	45	0
46	0	96	114963593898159699687805154	46	0
47	588431482334	97	0	47	16019866270
48	1140994231458	98	0	48	30353305134
49	0	99	878552973096352358805720000	49	0
50	0	100	1731024005948725016633786324	50	0

References

[AlAmBoKaMoRo] Alvarez, J., Amadis, M., Boros, G., Karp, D., Moll, V., Rosales, L., An extension of a criterion for unimodality, Elec. Jour. Comb. 8, \#R10, 2001.
[AnTo] Andrica, D., Tomescu, I., On an integer sequence related to a product of trigonometric functions and its combinatorial relevance, Journal of Integer Sequences, Vol.5(2002).
[Ba] Badea, C., On Erdös-Surányi sequences (Romanian), R.M.T., Nr.1(1987), 10-13.
[BoMo] Boros, G., Moll, V., A criterion for unimodality, Elec. Jour. Comb. 6, \#R10, 1999.
[BoMo] Boros, G., Moll, V., An integral hidden in Gradshteyn and Rhyzik, Jour. Comp. Appl. Math. 237, 272-287, 1999.
[Br] Brown, J.L., Integer representations and complete sequences, Mathematics Magazine, vol.49(1976), no.1, 30-32.
[Dr] Drimbe, M.O., A problem of representation of integers (Romanian), G.M.-B, 1011(1983), 382-383.
[ErSu] Erdös, P., Surányi, J., Selected chapters from number theory, Tankönyvkiadó Vállalat, Budapest, 1960.
[K1] Klove, T., Sums of distinct elements from a fixed set, Mathematics of Computation 29(1975), No.132, 1144-1149.
[Mi] Mitek, J., Generalization of a theorem of Erdös and Surányi, Annales Societatis Mathematical Polonae, Series I, Commentationes Mathematicae, XXI (1979).
[SaAn] Savchev, S., Andreescu, T., Mathematical Miniatures, The Mathematical Association of America, Anelli Lax Mathematical Library, Volume \#43, 2003.
[Si] Sierpinski, W., Elementary theory of numbers, P.W.N., Warszawa, 1964.
[Vă] Văcăreţu, D., Unimodal Polynomials: Methods and Techniques, in "Recent Advances in Geometry and Topology", Proc. of The 6th International Workshop on Differential Geometry and Topology and The 3rd German-Romanian Seminar on Geometry (D. Andrica and P.A. Blaga, Eds.), Cluj University Press, 2004, pp.391395.

Babȩ̧-Bolyai University,
Faculty of Mathematics and Computer Science, Str. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania E-mail address: dorinandrica@yahoo.com

[^0]: Received by the editors: 15.05 .2006 .

