STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume ${\bf LI},$ Number 4, December 2006

REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES

DORIN ANDRICA AND DANIEL VĂCĂREŢU

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We define the almost unimodal sequences and we show that under some conditions the polynomial $P(X^k + n)$ is almost unimodal (Theorem 1.7). A nontrivial example of almost unimodality shows that the sequence $A_k^{(1)}(n)$, $k = -\frac{n(n+1)}{2}$,..., $-1, 0, 1, \ldots, \frac{n(n+1)}{2}$ is symmetric and almost unimodal (Theorem 3.1). This result is connected to some representation properties of integers.

1. Almost unimodal sequences and polynomials

A finite sequence of real numbers $\{d_0, d_1, \ldots, d_m\}$ is said to be unimodal if there exists an index $0 \le m^* \le m$, called the mode of the sequence, such that d_j increases up to $j = m^*$ and decreases from then on, that is, $d_0 \le d_1 \le \cdots \le d_{m^*}$ and $d_{m^*} \ge d_{m^*+1} \ge \cdots \ge d_m$. A polynomial is said to be unimodal if its sequence of coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra. The reader is referred to [BoMo] and [AlAmBoKaMoRo] for surveys of the diverse techniques employed to prove that specific families of polynomials are unimodal.

We recall few basic results concerning the unimodality.

Theorem 1.1. If P is a polynomial with positive nondecreasing coefficients, then P(X + 1) is unimodal.

Received by the editors: 15.05.2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11B99, 11K31, Secondary 40A99, 40C10.

Key words and phrases. Unimodal sequence, unimodal polynomial, almost unimodality, Erdös-Surányi sequence, complete sequence of integers.

Theorem 1.2. Let $b_k > 0$ be a nondecreasing sequence. Then the sequence

$$c_j = \sum_{k=j}^m b_k \binom{k}{j}, \quad 0 \le j \le m \tag{1.1}$$

is unimodal with mode $m^* = \left\lfloor \frac{m-1}{2} \right\rfloor$.

Theorem 1.3. Let $0 \le a_0 \le a_1 \le \cdots \le a_m$ be a sequence of real numbers and $n \in \mathbb{N}$, and consider the polynomial

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m.$$
(1.2)

Then the polynomial P(X+n) is unimodal with mode $m^* = \left\lfloor \frac{m}{n+1} \right\rfloor$.

We can reformulate Theorem 1.3 in terms of the coefficients of polynomial P. **Theorem 1.4.** Let $0 \le a_0 \le a_1 \le \cdots \le a_m$ be a sequence of real numbers and $n \in \mathbb{N}$. Then the sequence

$$q_j = q_j(m,n) = \sum_{k=j}^m a_k \binom{k}{j} n^{k-j}, \quad 0 \le j \le m$$
 (1.3)

is unimodal with mode $m^* = \left\lfloor \frac{m}{n+1} \right\rfloor$.

In order to introduce the almost unimodality of a sequence we need the following notion.

Definition 1.5. A finite sequence of real numbers $\{c_0, c_1, \ldots, c_n\}$ is called **almost** nondecreasing if it is nondecreasing excepting a subsequence which is zero.

It is clear that, if the sequence $\{c_0, c_1, \ldots, c_n\}$ is nondecreasing, then it is almost nondecreasing. The converse is not true, as we can see from the following example. The sequence $\{0, 1, 0, 2, 0, 3, \ldots, 0, m\}$ is almost nondecreasing but it is not nondecreasing.

Definition 1.6. A finite sequence of real numbers $\{d_0, d_1, \ldots, d_m\}$ is called **almost** unimodal if there exists an index $0 \le m^* \le m$, such that d_j almost increases up to $j = m^*$ and d_j almost decreases from then on. REPRESENTATION THEOREMS AND ALMOST UNIMODAL SEQUENCES

As in the situation of unimodality, the index m^* is called the mode of the sequence. Also, a polynomial is said to be almost unimodal, if its sequence of coefficients is almost unimodal.

For instance, the polynomial

$$(X^{k}+1)^{m} = \binom{m}{0} + \binom{m}{1}X^{k} + \binom{m}{2}X^{2k} + \dots + \binom{m}{m}X^{mk}$$

is almost unimodal for $k \ge 2$, but it is not unimodal.

The following result is useful in the study of almost unimodality.

Theorem 1.7. Let $0 \le a_0 \le a_1 \le \cdots \le a_m$ be a sequence of real numbers, let n be a positive integer and consider the polynomial

$$P = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m.$$

Then for any integer $k \geq 2$, the polynomial $P(X^k + n)$ is almost unimodal.

Proof. We note that if Q is a unimodal polynomial, then for any $k \ge 2$ the polynomial $Q(X^k)$ is almost unimodal. Applying Theorem 1.3 we get that P(X+n) is unimodal and now using the remark above it follows that $P(X^k + n)$ is almost unimodal with mode $m^* = k \lfloor \frac{m}{n+1} \rfloor$.

Remark 1.8. If $n \ge m$, then $m^* = 0$, hence the sequence of coefficients of $P(X^k + n)$ is almost nonincreasing. For example, the sequence of coefficients of $(X^k + 3)^3$ is

$$27, \underbrace{0, \ldots, 0}_{k-1}, 27, \underbrace{0, \ldots, 0}_{k-1}, 9, \underbrace{0, \ldots, 0}_{k-1}, 1.$$

2. Some representation results for integers

In 1960, P. Erdös and J. Surányi ([ErSu], Problem 5, pp.200) have proved the following result: Any integer k can be written in infinitely many ways in the form

$$k = \pm 1^2 \pm 2^2 \pm \dots \pm n^2 \tag{2.1}$$

for some positive integer n and for some choices of signs + and -.

In 1979, J. Mitek [Mi] has extended the above result as follows: For any fixed positive integer $s \ge 2$ the result in (2.1) holds in the form

$$k = \pm 1^s \pm 2^s \pm \dots \pm n^s \tag{2.2}$$

The following notion has been introduced in [Dr] by M.O. Drimbe:

Definition 2.1. A sequence $(a_n)_{n\geq 1}$ of positive integers is an **Erdös-Surányi se**quence if any integer k can be represented in infinitely many ways in the form

$$k = \pm a_1 \pm a_2 \pm \dots \pm a_n \tag{2.3}$$

for some positive integer n and for some choices of signs + and -.

The main result in [Dr] is contained in

Theorem 2.2. Any sequence $(a_n)_{n\geq 1}$ of positive integers satisfying:

i) a₁ = 1,
ii) a_{n+1} ≤ 1 + a₁ + · · · + a_n, for any positive integer n,
iii) (a_n)_{n≥1} contains infinitely many odd integers,

is an Erdös-Suranyi sequence.

As direct consequences of Theorem 2.1, in the paper [Dr], the following examples of Erdös-Suranyi sequences are pointed out:

1) The Fibonacci's sequence $(F_n)_{n\geq 0}$, where $F_0 = 1$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$, for $n \geq 1$;

2) The sequence of primes $(p_n)_{n\geq 1}$.

We can see that the sequence $(n^s)_{n\geq 1}$ does not satisfy condition ii) in Theorem 2.2 but it is an Erdös Suranyi sequences, according to the result of J. Mitek [Mi] contained in (2.2). Following the paper [Ba] one can extend Theorem 2.2 in such way to include sequences $(n^s)_{n\geq 1}$. The following notion has been introduced in [Kl] by T. Klove:

Definition 2.3. A sequence $(a_n)_{n\geq 1}$ of positive integers is **complete** if any sufficiently great integer can be expressed as a sum of distinct terms of $(a_n)_{n\geq 1}$. 26 The above property is equivalent to the fact that for any sufficient great integer k there exists a positive integer t = t(k) such that

$$k = u_1 a_1 + u_2 a_2 + \dots + u_t a_t, \tag{2.4}$$

where $u_i \in \{0, 1\}, i = 1, 2, \dots, t$.

The main result in [Ba] is contained in

Theorem 2.4. Any complete sequence $(a_n)_{n\geq 1}$ of positive integers, containing infinitely many odd integers, is an Erdös-Surányi sequence.

Proof. Let q can be represented as in (2.4). Let $S_n = a_1 + \cdots + a_n$, $n \ge 1$. The sequence $(S_n)_{n\ge 1}$ is increasing and it contains infinitely many odd integers but also infinitely many even integers. Let k be a fixed positive integer. One can find infinitely many integers S_p , having the same parity as k, such that $S_p > k + 2q$. Consider S_n a such integer and let $m = \frac{1}{2}(S_n - k)$. Because q < m, it follows that m can be represented as in (2.4). Taking into account that $m < S_n$, we have $m = u_1a_1 + \cdots + u_na_n$, where $u_i \in \{0, 1\}, i = 1, 2, \ldots, n$. Then, we have

$$k = S_n - 2m = (1 - 2u_1)a_1 + \dots + (1 - 2u_n)a_n.$$

From $u_i \in \{0, 1\}$ we get $1 - 2u_i \in \{-1, 1\}, i = 1, 2, \dots, n.$

Remark 2.5. The result of J. Mitek [Mi] follows from Theorem 2.4 and from the property that the sequence $(n^s)_{n\geq 1}$ is complete, for any positive integer s. The completeness of $(n^s)_{n\geq 1}$ is a result of P. Erdös (see [Si], pp.395).

3. Integral formulae and almost unimodality

Consider an Erdös-Surányi sequence $(a_m)_{m\geq 1}$. If we fix n, then there are 2^n integers of the form $\pm a_1 \pm \cdots \pm a_n$. In this section we explore the number of ways to express an integer k in the form (2.3). Denote $A_k(n)$ to be this value. Using the method in [AnTo] let us consider the function

$$f_n(z) = \left(z^{a_1} + \frac{1}{z^{a_1}}\right) \left(z^{a_2} + \frac{1}{z^{a_2}}\right) \dots \left(z^{a_n} + \frac{1}{z^{a_n}}\right)$$
(3.1)

It is clear that this is the generating function for the sequence $A_k(n)$, i.e. we may write

$$f_n(z) = \sum_{j=-S_n}^{S_n} A_j(n) z^j,$$
(3.2)

where $S_n = a_1 + \cdots + a_n$. It is interesting to note the symmetry of the coefficients in (3.2), i.e. $A_j(n) = A_{-j}(n)$. If we write $z = \cos t + i \sin t$, then by using DeMoivre's formula we may rewrite (3.1) as

$$f_n(z) = 2^n \cos a_1 t \cdot \cos a_2 t \dots \cos a_n t \tag{3.3}$$

By noting that $A_k(n)$ is the constant term in the expansion $z^{-k}f_n(z)$, we obtain

$$z^{-k} f_n(z) = 2^n (\cos kt - i \sin kt) \cos a_1 t \dots \cos a_n t$$

= $A_k(n) + \sum_{j \neq k} A_j(n) (\cos(j-k)t + i \sin(j-k)t)$ (3.4)

Finally, making use of the fact that $\int_0^{2\pi} \cos mt dt = \int_0^{2\pi} \sin mt dt = 0$, we integrate (3.4) on the interval $[0, 2\pi]$ to find an elegant integral formula for $A_k(n)$:

$$A_k(n) = \frac{2^n}{2\pi} \int_0^{2\pi} \cos a_1 t \dots \cos a_n t \cos kt dt$$
 (3.5)

After integrating, we find that the imaginary part of $A_k(n)$ is 0, which implies the relation

$$\int_0^{2\pi} \cos a_1 t \dots \cos a_n t \sin kt dt = 0 \tag{3.6}$$

for each k between $-S_n$ and S_n .

Applying formula (3.5) for Erdös-Surányi sequence $(m^s)_{m\geq 1}$, we get

$$A_k^{(s)}(n) = \frac{2^n}{2\pi} \int_0^{2\pi} \cos 1^s t \cos 2^s t \dots \cos n^s t \cos kt dt,$$

where $A_k^{(s)}(n)$ denote the integer $A_k(n)$ for this sequence.

The following result gives a nontrivial example of almost unimodality.

Theorem 3.1. The sequence $A_k^{(1)}(n)$, $k = 0, 1, ..., \frac{n(n-1)}{2}$, is almost nonincreasing and consequently, the sequence $A_j^{(1)}(n)$, $j = -\frac{n(n+1)}{2}$, ..., $-1, 0, 1, ..., \frac{n(n+1)}{2}$ is symmetric and almost unimodal.

Proof. First of all we show that $A_k^{(1)}(n)$ is the number of representations of $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right)$ as $\sum_{i=1}^n \varepsilon_i i$, where $\varepsilon_i \in \{0,1\}$. Indeed, we note that if $\varepsilon \in \{0,1\}$, then $1-2\varepsilon \in \{-1,1\}$ and we have $\sum_{i=1}^n (1-2\varepsilon_i)i = k$ if and only if $\frac{n(n+1)}{2} - 2\sum_{i=1}^n \varepsilon_i i = k$,

hence

$$\sum_{i=1}^{n} \varepsilon_{i} i = \frac{1}{2} \left(\frac{n(n+1)}{2} - k \right).$$
(3.7)

Denote $B_k^{(1)}(n)$ the number of representations of $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right)$ in the form (3.7). It is clear that $B_k^{(1)}(n) = 0$ if and only if k and $\frac{n(n+1)}{2}$ have different parities. Also, we have $\frac{n(n+1)}{4} \leq j \leq \frac{n(n+1)}{2}$ for any integer j of the form $\frac{1}{2}\left(\frac{n(n+1)}{2}-k\right), k=0,1,\ldots,\frac{n(n+1)}{2}$. Assume that we can write j as $\varepsilon_1 \cdot 1 + \varepsilon_2 \cdot 2 + \cdots + \varepsilon_n \cdot n$ and $\varepsilon_1 = 1$. Then, we have $j-1 = \varepsilon_2 \cdot 2 + \cdots + \varepsilon_n \cdot n$, where $\varepsilon_2,\ldots,\varepsilon_n \in \{0,1\}$. If we have in this sum three consecutive terms of the form i-1,0,i+1, we can move 1 at the first position and obtain three consecutive terms of the form i-1,0,s+1, taking into account that a such map is injective it follows that $B_j^{(1)}(n) \leq B_{j-2}^{(1)}(n)$, hence $A_j^{(1)}(n) \leq A_{j-2}^{(1)}(n)$ if both $A_{j-2}^{(1)}(n)$ and $A_j^{(1)}(n)$ are not zero.

Remark 3.2. The conclusion of Theorem 3.1 is not generally true for $A_k^{(s)}(n)$, where $s \ge 2$ (see the values of $A_k^{(2)}(6)$ in the table below).

4. Numerical results

Numerical	values	for $A_k^{(1)}$ for	n up	to 9				
n = 1	n =	5	n =	7	n =	8	n =	9
k A_k	k	A_k	k	A_k	k	A_k	k	A_k
0 0	0	0	0	8	0	14	0	0
1 1	1	3	1	0	1	0	1	23
	2	0	2	8	2	13	2	0
	3	3	3	0	3	0	3	23
	4	0	4	8	4	13	4	0
	5	3	5	0	5	0	5	22
	6	0	6	7	6	13	6	0
n = 2	7	2	7	0	7	0	7	21
$\begin{vmatrix} n = 2 \\ k & A_k \end{vmatrix}$	8	0	8	7	8	12	8	0
$\begin{bmatrix} \kappa & A_k \\ 0 & 0 \end{bmatrix}$	9	2	9	0	9	0	9	21
1 1	10	0	10	6	10	11	10	0
	11	1	11	0	11	0	11	19
3 1	12	0	12	5	12	10	12	0
5 1	13	1	13	0	13	0	13	18
	14	0	14	5	14	9	14	0
	15	1	15	0	15	0	15	17
			16	4	16	8	16	0
			17	0	17	0	17	15
			18	3	18	7	18	0
n = 3			19	0	19	0	19	13
$\begin{pmatrix} k & A_k \\ 0 & 0 \end{pmatrix}$			20	2	20	6	20	0
0 2			21	0	21	0	21	12
$ \begin{array}{cccc} 1 & 0 \\ 2 & 1 \end{array} $	n =	6	22	2	22	5	22	0
$ \begin{array}{ccc} 2 & 1 \\ 3 & 0 \end{array} $	k	A_k	23	0	23	0	23	10
4 1	0	0	24	1	24	4	24	0
5 0	1	5	25	0	25	0	25	9
6 1	2	0	26	1	26	3	26	0
0 1	3	5	27	0	27	0	27	8
	4	0	28	1	28	2	28	0
	5	4			29	0	29	6
	6	0			30	2	30	0
	7	4			31	0	31	5
	8	0			32	1	32	0
n = 4	9	4			33	0	33	4
$\begin{pmatrix} k & A_k \\ 0 & 0 \end{pmatrix}$	10	0			34	1	34	0
0 2	11	3			35	0	35	3
1 0	12	0			36	1	36 37	$\begin{array}{c} 0 \\ 2 \end{array}$
$\begin{vmatrix} 2 & 2 \\ 3 & 0 \end{vmatrix}$	13 14	2 0					37	2 0
		2					39	2
	15	2 0					40	2
6 1	16 17	1					40	1
7 0	18	0					41 42	0
8 1	18	1					43	1
9 0	20	0					43	0
10 1	20	1					45	1
10 1	<u> </u>	-						-

Numerical values for $A_{i}^{(1)}$ for n up to 9

Numerical values for $A_k^{(2)}$ for n up to 6

				1				
		n =	4					
n =	1	k	A_k		n =	5	n =	5
$_{k}$	A_k	0	0		$_{k}$	A_k	$_{k}$	A_k
0	0	1	0		0	0	28	0
1	1	23	1 0		1	0	29	1
		4	1		2	0	30	0
n =	2	5	0		3	2	31	0
$_{k}$	A_k	6	0		4	0	32	0
1	0	7	0		5	2	33	0
2	0	8	0		6	0	34	0
3	1	9	0		7	0	35	1
4	0	10	1		8	0	36	0
5	1	11	0		9	0	37	1
		12	1		10	0	38	0
n =	3	13	0		11	0	39	0
$_{k}$	A_k	14	0		12	0	40	0
0	0	15	0		13	1	41	0
1	0	16	0		14	0	42	0
2	0	17	0		15	1	43	0
3	0	18	0		16	0	44	0
4	1	19	0		17	0	45	1
5	0	20	1		18	0	46	0
6	1	20	0		19	0	47	1
7	0	21 22	1		20	0	48	0
8	0	23	0		21	1	49	0
9	0	23	0		22	0	50	0
10	0	25	0		23	1	51	0
11	0	26	0		24	0	52	0
12	1	20	0		25	0	53	1
13	0	28	1		26	0	54	0
14	1	29	0		27	1	55	1
		30	1					
		_ 50	-	l .				

		n =	6
n =	6	k	A_k
$_{k}$	A_k	45	0
0	0	46	0
1	2	47	0
2	0	48	0
3	0	49	1
4	0	50	0
5	0	51	1
6	0	52	0
7	1	53	0
8	0	54	0
9	2	55	0
10	0	56	0
11	1	57	1
12	0	58	0
13	1	59	1
14	0	60	0
15	1	61	õ
16	0	62	õ
17	1	63	1
18	0	64	0
19	1	65	1
20	0	66	0
20 21	1	67	0
21	0	68	0
23	1	69	0
$\frac{23}{24}$	0	70	0
$\frac{24}{25}$	0	70	1
26 26	0	72	0
20 27	0	73	1
21	0	74	0
28 29	0	74	0
	0	76	0
$30 \\ 31$	2	1	0
32	0	77	0
32 33	2	78 79	0
34	0	80	0
35	0	81	1
36	0	82	0
37	0	83	1
38	0	84	0
39	2	85	0
40	0	86	0
41	2	87	0
42	0	88	0
43	0	89	1
44	0	90	0
		91	1

DORIN ANDRICA AND DANIEL VĂCĂREŢU

Numerical values for $A_0^{(1)}(\boldsymbol{n})$ and $A_0^{(2)}(\boldsymbol{n})$

 $\begin{array}{c} (1) \\ n \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$ A_0 0

50 0

			(2)
A_0	n	A_0	n
0	51	8346638665718	1
0	52	16221323177468	2
2	53	0	3
2	54	0	4
0	55	119447839104366	5
0	56	232615054822964	6
8	57	0	7
14	58	0	8
0	59	1722663727780132	9
0	60	3360682669655028	1
70	61	0	1
124	62	0	1
0	63	25011714460877474	1
0	64	48870013251334676	1
722	65	0	1
1314	66	0	1
0	67	365301750223042066	1
0	68	714733339229024336	1
8220	69	0	1
15272	70	0	2
0	71	5363288299585278800	2
0	72	10506331021814142340	2
99820	73	0	2
187692	74	0	2
0	75	79110709437891746598	2
0	76	155141342711178904962	2
1265204	77	0	2
2399784	78	0	2
0	79	1171806326862876802144	2
0	80	2300241216389780443900	3
16547220	81	0	3
31592878	82	0	3
0	83	17422684839627191647442	3
0	84	34230838910489146400266	3
221653776	85	0	3
425363952	86	0	3
0	87	259932234752908992679732	3
0	88	511107966282059114105424	3
3025553180	89	0	3
5830034720	90	0	4
0	91	3890080539905554395312172	4
0	92	7654746470466776636508150	4
41931984034	93	0	4
81072032060	94	0	4
0	95	58384150201994432824279356	4
0	96	114963593898159699687805154	4
588431482334	97	0	4
1140994231458	98	0	4
0	99	878552973096352358805720000	4
0	100	1731024005948725016633786324	5
	L		Ľ

 A_0

 $\mathbf{2}$

 $\mathbf{2}$

References

[AlAmBoKaMoRo] Alvarez, J., Amadis, M., Boros, G., Karp, D., Moll, V., Rosales, L., An extension of a criterion for unimodality, Elec. Jour. Comb. 8, #R10, 2001.

- [AnTo] Andrica, D., Tomescu, I., On an integer sequence related to a product of trigonometric functions and its combinatorial relevance, Journal of Integer Sequences, Vol.5(2002).
- [Ba] Badea, C., On Erdös-Surányi sequences (Romanian), R.M.T., Nr.1(1987), 10-13.
- [BoMo] Boros, G., Moll, V., A criterion for unimodality, Elec. Jour. Comb. 6, #R10, 1999.
- [BoMo] Boros, G., Moll, V., An integral hidden in Gradshteyn and Rhyzik, Jour. Comp. Appl. Math. 237, 272-287, 1999.
- [Br] Brown, J.L., Integer representations and complete sequences, Mathematics Magazine, vol.49(1976), no.1, 30-32.
- [Dr] Drimbe, M.O., A problem of representation of integers (Romanian), G.M.-B, 10-11(1983), 382-383.
- [ErSu] Erdös, P., Surányi, J., Selected chapters from number theory, Tankönyvkiadó Vállalat, Budapest, 1960.
- [Kl] Klove, T., Sums of distinct elements from a fixed set, Mathematics of Computation 29(1975), No.132, 1144-1149.
- [Mi] Mitek, J., *Generalization of a theorem of Erdös and Surányi*, Annales Societatis Mathematical Polonae, Series I, Commentationes Mathematicae, XXI (1979).
- [SaAn] Savchev, S., Andreescu, T., Mathematical Miniatures, The Mathematical Association of America, Anelli Lax Mathematical Library, Volume #43, 2003.
- [Si] Sierpinski, W., Elementary theory of numbers, P.W.N., Warszawa, 1964.
- [Vă] Văcăreţu, D., Unimodal Polynomials: Methods and Techniques, in "Recent Advances in Geometry and Topology", Proc. of The 6th International Workshop on Differential Geometry and Topology and The 3rd German-Romanian Seminar on Geometry (D. Andrica and P.A. Blaga, Eds.), Cluj University Press, 2004, pp.391-395.

BABEŞ-BOLYAI UNIVERSITY,

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. KOGĂLNICEANU NR. 1, RO-400084 CLUJ-NAPOCA, ROMANIA *E-mail address:* dorinandrica@yahoo.com