
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 3, September 2006

TWO EXISTENCE RESULTS FOR VARIATIONAL INEQUALITIES
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Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. In this paper we prove the existence of solutions for some varia-

tional inequalities, governed by two-variables set-valued mappings, in both

stationary and evolution cases.

1. Introduction

Operators with two variables, having monotonicity properties with respect

to one of the variables and continuity properties with respect to the other one, have

been studied since more than 40 years (see [6], [13]). Such kind of operators appear

in the theory of nonlinear elliptic operators in divergence form, which are monotone

only in the highest order terms, and satisfy a compactness condition for the lower

order terms (see [14]).

Existence results for variational inequalities governed by such operators were

established in papers like [3], [5].

In this paper we continue some ideas from [5] for a more general class of

variational problems, which includes, as a particular case, hemivariational inequalities.

The mathematical theory of hemivariational inequalities was introduced by

P.D. Panagiatopoulos (see [11]) and studied by many authors (see for instance [9],

[10]).

The main result of this paper is stated in Section 2 (Theorem 5). It gives

sufficient conditions for the existence of solutions for a variational inequality governed
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by set-valued mappings of two variables, using the classical Ky Fan intersection the-

orem. Then, in Section 3, we use this result to study a class of evolution variational

inequalities.

The same method that we applied can be used, when Φ = 0, to prove a similar

result, where (H1) is replaced by a condition of Karamardian pseudomontonicity (see

[5]).

If A is a mapping of one variable, Brézis pseudomonotone, similar results on

evolution hemivariational inequalities were established in [7] and [8].

2. An existence result for a stationary variational inequality

In what follows, V is a real Banach space, V ∗ is its dual and 〈·, ·〉 is the usual

duality pairing.

Let C ⊂ V be a nonempty, closed, convex set and let A : C × C → 2V ∗
be a

set-valued mapping. Let Φ : C × V → R∪ {+∞} be a weakly upper semi-continuous

function, sublinear in the second variable. We suppose that for each u ∈ C and for

each v ∈ TC(u)+u we have (u, v−u) ∈ D(Φ), where by TC(u) we denote the tangent

cone of C at u.

Consider the following variational problem:

(V I) Find u ∈ C such that sup
f∈A(u,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C.

In what follows the set-valued mapping A will have the following properties:

(H1) sup
f∈A(v,v)

〈u− v, f〉+ Φ(v, u− v) ≥ 0 implies that

sup
f∈A(u,v)

〈u− v, f〉+ Φ(v, u− v) ≥ 0, for each u, v ∈ C,

(H2) For each v ∈ C, A(·, v) : C → 2V ∗
is upper semi-continuous from the line

segments of C to V ∗,

(H3) For each u ∈ C, A(u, ·) : C → 2V ∗
is weakly upper semi-continuous (from V

with the weak topology, to V ∗ with the norm topology),

(H4) A(u, v) is compact, for each u, v ∈ C.

Remark 1. The hypothesis (H1) is true, for example, when it takes place
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(H1’) sup
f∈A(u,v)

〈u− v, f〉 ≥ sup
f∈A(v,v)

〈u− v, f〉, for each u, v ∈ C,

in particular, when A is monotone with respect to the first variable, as it was consid-

ered in [3].

Remark 2. Several particular cases of (VI) are:

I) Suppose V is a reflexive Banach space, densely and compactly embedded

into a separable Hilbert space H (then V ⊂ H ⊂ V ∗ is an evolution triple). Let

J : H → R be a locally Lipschitz function, and by J0(u; v) denote the generalized

Clarke derivative of J , at the point u, in the direction v:

J0(u; v) = lim sup
w→u, ε→0+

J(w + εv)− J(w)
ε

.

It is well known (see [4]) that J0(·; ·) is sublinear in the second variable and globally

upper semi-continuous. This means we can take Φ = J |0V .

II) Consider the same evolution triple as above. Let Ω be a bounded and open

subset of RN , let T : H → L2(Ω, Rk) be a linear and continuous operator, and let

j : Ω×Rk → R be a Caratheodory function, locally Lipschitz with respect to the second

variable. Denote by j0(x, y)(h) the partial generalized Clarke derivative,

j0(x, y)(h) = lim sup
y′→y,t→0+

j(x, y′ + th)− j(x, y′)
t

.

Suppose that there exist h1 ∈ L2(Ω) and h2 ∈ L∞(Ω) such that

‖z‖ ≤ h1(x) + h2(x)‖y‖ , a.e. x ∈ Ω, for all y ∈ Rk, z ∈ ∂j(x, y), where

∂j(x, y) = {z ∈ Rk, 〈z, h〉 ≤ j0(x, y)(h), ∀h ∈ Rk}.

It is proved in [12], that the mapping

(u, w) ∈ V × V 7→
∫

Ω

j0(x, Tu(x))(Tw(x))dx is weakly upper semi-continuous.

Then we can take Φ(u, w) =
∫

Ω

j0(x, Tu(x))(Tw(x))dx.

III) An example of a single-valued mapping that satisfies (H1’), (H2)-(H4) is

the following (see [14]): A : H1
0 (Ω) → (H1

0 (Ω))∗, defined by

〈A(u, v), w〉 =
∫

Ω

G(x, v(x),∇u(x))∇w(x)dx +
∫

Ω

g0(x, v(x),∇v(x))w(x)dx,
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where Ω is a bounded domain in RN and the functions gj : Ω × R × RN → R,

G = (g1, . . . , gN ) have the properties:

(P1) gj(x, η, ξ) is measurable in x ∈ Ω and continuous in (η, ξ) ∈ R × RN , for

j = 0, . . . , N ,

(P2) |gj(x, η, ξ)| ≤ c(k(x) + |η|+ ‖ξ‖), with k ∈ L2(Ω), a.e. x ∈ Ω, for every η ∈ R,

ξ ∈ RN ,

(P3)
N∑

j=1

(gj(x, η, ξ)−gj(x, η, ξ̃))(ξj−ξ̃j) > 0, a.e. x ∈ Ω, for every η ∈ R, ξ 6= ξ̃ ∈ RN .

We formulate also a coercivity condition:

(H5) There exists K ⊂ C, weakly compact, and u0 ∈ C such that

sup
f∈A(u,u)

〈u0 − u, f〉+ Φ(u, u0 − u) < 0,

for each u ∈ C \K.

In the study of existence of a solution for the problem (V I), the following

lemmas will be needed.

Lemma 3. (marginal function lemma)[1] Let X and Y be two topological spaces,

G : X → 2Y a set-valued mapping and g : X × Y → R. Denote h : X → R,

h(x) = sup
y∈G(x)

g(x, y) the marginal function. If the following conditions

(a) g is u.s.c. on X × Y ,

(b) G(x0) is compact for some x0 ∈ X,

(c) G is u.s.c. at x0,

are satisfied, then h is u.s.c. at x0.

Lemma 4. [KyFan](see [2]) Let X be a topological vector space, H a subset of X and

F : H → 2X a set-valued mapping with F (x) closed for every x ∈ H, such that:

(a) F (x0) is compact for some x0 ∈ H,

(b) for every x1, x2, . . . , xn ∈ H, co{x1, x2, . . . , xn} ⊂
n⋃

i=1

F (xi).

Then
⋂

x∈X

F (x) 6= ∅.

Theorem 5. In the hypotheses (H1)-(H5), the problem (V I) has at least one solution.

Proof. Following the idea from [5], we divide the proof in several steps:
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a) For each w ∈ C we denote:

A1(w) = {u ∈ C | sup
f∈A(u,u)

〈w − u, f〉+ Φ(u, w − u) ≥ 0}

It is obvious that
⋂

w∈C

A1(w) is the set of solutions of the problem (V I).

We verify the conditions of Ky Fan’s Lemma for F (w) = w-clA1(w) (the

weak closure). Consider u0 ∈ C, the element from the coercivity condition (H5). This

condition implies that A1(u0) ⊂ K. But K is weakly compact and so w-clA1(u0) is

also weakly compact.

b) Let w1, . . . , wn ∈ C.

We want to prove that co{w1, . . . , wn} ⊂
n⋃

i=1

A1(wi) ⊂
n⋃

i=1

w-clA1(wi).

Suppose that this is not true, that is there exist λ1, . . . , λn ≥ 0, with∑n
j=1 λj = 1 such that w̄ =

n∑
j=1

λjwj /∈ A1(wi), for every i = 1, n, which implies

〈wi − w̄, f〉+ Φ(w̄, wi − w̄) < 0,

for each f ∈ A(w̄, w̄) and i = 1, n.

For a fixed f ∈ A(w̄, w̄), we have, using the previous inequality and the

sublinearity of Φ,

0 ≤〈w̄ − w̄, f〉+ Φ(w̄, w̄ − w̄)

= 〈
n∑

j=1

λjwj −
n∑

j=1

λjw̄, f〉+ Φ(w̄,

n∑
j=1

λjwj −
n∑

j=1

λjw̄)

≤
n∑

j=1

(λj〈wj − w̄, f〉+ λjΦ(w̄, wj − w̄) < 0,

which is a contradiction. This gives us that co{w1, . . . , wn} ⊂
n⋃

i=1

w-clA1(wi). We

obtain, by Lemma 4, ⋂
w∈C

w-clA1(w) 6= ∅. (1)

c) Denote, for w ∈ C

A2(w) = {u ∈ K | sup
f∈A(w,u)

〈w − u, f〉+ Φ(u;w − u) ≥ 0}
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We will prove that ⋂
w∈C

A2(w) ⊂
⋂

w∈C

A1(w). (2)

Let u ∈ C, u ∈ A2(w), for every w ∈ C. Fix v ∈ C and consider vt = tv+(1−t)u ∈ C,

for each t ∈ [0, 1]. From u ∈ A2(vt) we get:

sup
f∈A(vt,u)

〈vt − u, f〉+ Φ(u, vt − u) ≥ 0, ∀t ∈ [0, 1]

and further, using the fact that Φ(u, ·) is positively homogeneous and dividing by t

sup
f∈A(vt,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀t ∈ (0, 1]. (3)

Define G : [0, 1] → 2V ∗
, G(t) = A(vt, u). According to (H2), this is upper semi-

continuous and according to (H4), G(0) = A(u, u) is compact. The mapping (f, v) ∈

V ∗ × V 7→ 〈v − u, f〉 is continuous for V with the weak topology and V ∗ with the

norm topology. Applying Lemma 3 we have that h(t) = sup
f∈G(t)

〈v − u, f〉 is upper

semi-continuous at 0, that is

lim sup
t→0

sup
f∈A(vt,u)

〈v − u, f〉 ≤ sup
f∈A(u,u)

〈v − u, f〉.

From this and from (3) it follows that u is a solution for (V I), that is

u ∈
⋂

w∈C

A1(w).

d) At the final step we prove that⋂
w∈C

w-clA1(w) ⊂
⋂

w∈C

A2(w). (4)

From step (a) we have that
⋂

w∈C

w-clA1(w) ⊂ K.

Let u ∈ C, arbitrarily fixed and let v ∈ w-clA1(u). We will prove that

v ∈ A2(u). From v ∈ w-clA1(u), there exists a net {vj} in A1(u) such that vj ⇀ v.

The fact that vj ∈ A1(u) means that

sup
f∈A(vj ,vj)

〈u− vj , f〉+ Φ(vj , u− vj) ≥ 0, ∀ j ∈ I,
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and using hypothesis (H1),

sup
f∈A(u,vj)

〈u− vj , f〉+ Φ(vj , u− vj) ≥ 0, ∀ j ∈ I,

In order to use Lemma 3 we notice that the mapping (f, z) ∈ V ∗ × V 7→ 〈u− z, f〉 is

continuous, A(u, ·) is weakly upper semi-continuous and A(u, v) is compact. It follows

that h(z) = sup
f∈A(u,z)

〈u− z, f〉 is weakly upper semi-continuous at v, that implies

lim sup
vj⇀v

sup
f∈A(u,vj)

〈u− vj , f〉 ≤ sup
f∈A(u,v)

〈u− v, f〉.

On the other side, lim sup
vj⇀v

Φ(vj , u− vj) ≤ Φ(v, u− v). Further on, we have

0 ≤ lim sup
vj⇀v

{ sup
f∈A(u,vj)

〈u− vj , f〉+ Φ(vj , u− vj)}

≤ lim sup
vj⇀v

sup
f∈A(u,vj)

〈u− vj , f〉+ lim sup
vj⇀v

Φ(vj , u− vj)

≤ sup
f∈A(u,v)

〈u− v, f〉+ Φ(v, u− v),

which means that v ∈ A2(u), for every u ∈ C. This proves (4). From (2), (1) and (4)

we get
⋂

w∈C

A1(w) 6= ∅, which concludes the proof.

Remark 6. (see [5]) If in addition to the previous hypotheses, A(u, u) is a convex

set, then u is also a solution of the following problem:

Find u ∈ C and f ∈ A(u, u) such that 〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C.

Remark 7. From step (d) of the proof, it is clear that hypothesis (H1) can be re-

placed with the supposition that the ”diagonal” mapping A(·, ·) is weakly upper semi-

continuous (from V with the weak topology to V ∗ with the norm topology).

Remark 8. A similar result can be obtained, for variational inequalities, by consid-

ering C ⊂ V ∗, A : C × C → V , where V ∗ is equipped with the weak* topology and V

with the norm topology (see [5]).
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3. An evolution variational inequality

Consider the following evolution variational inequality:

(EV I) u ∈ C 〈v − u, Lu〉+ sup
f∈A(u,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C,

where C ⊂ V is nonempty, convex, closed,

A : V × V → 2V ∗
satisfies the hypotheses (H1’), (H2)-(H4) and L : D(L) ⊂

V → V ∗ is a closed densely linear maximal monotone operator.

It is known that, in these conditions, W = D(L), endowed with the graph

norm ‖u‖W = ‖u‖V + ‖Lu‖V ∗ , is a reflexive Banach space. Denote C̃ = C ∩D(L); it

is a convex, closed, nonempty set.

Hypothesis (H5) will be replaced by

(H5’) There exists K ⊂ C̃, weak compact, and u0 ∈ C̃ such that

〈u0 − u, Lu〉+ sup
f∈A(u,u)

〈u0 − u, f〉+ Φ(u, u0 − u) < 0,

for each u ∈ C̃ \K.

Theorem 9. In the hypotheses (H1’), (H2)-(H4) and (H5’), the problem (EV I) has

at least one solution.

Proof. We have that W is densely embedded in V . Denoting i : W → V the

natural embedding of W in V and i∗ : V ∗ → W ∗ its adjoint, we define the operator

B : C̃ × C̃ → 2W∗
by

B(u, v) = L̃(u) + Ã(u, v), ∀ u, v ∈ C̃,

where L̃ : W → W ∗, L̃ = i∗ ◦ L ◦ i, that is

〈v, L̃(u)〉W×W∗ = 〈v, i∗(L(iu))〉W×W∗ = 〈iv, L(iu)〉V×V ∗ , ∀ u, v ∈ W.

The same, f̃ ∈ Ã(u, v) means that f̃ = i∗f , with f ∈ A(iu, iv) ⊂ V ∗, that is

〈w, f̃〉W×W∗ = 〈w, i∗f〉W×W∗ = 〈iw, f〉V×V ∗ .

With these notations, problem (EV I) can be written:

u ∈ C̃ = C ∩D(L) such that sup
g∈B(u,u)

〈v − u, g〉+ Φ|W (u, v − u) ≥ 0, ∀ v ∈ C̃
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We will prove that the operator B defined above satisfies the hypotheses (H1’)-(H4),

in the space W with the weak topology and W ∗ with the norm topology.

(H1’) Let u, v ∈ C̃, fixed. If g ∈ B(u, v) then g = L̃(u) + f , with f ∈ Ã(u, v)

that is f = i∗h, h ∈ A(iu, iv). We have, taking account of the monotonicity of L and

of (H1):

sup
g∈B(u,v)

〈u− v, g〉W×W∗ = 〈iu− iv, L(iu)〉V×V ∗ + sup
h∈A(iu,iv)

〈iu− iv, h〉V×V ∗

≥ 〈iu− iv, L(iv)〉V×V ∗ + sup
h∈A(iv,iv)

〈iu− iv, h〉V×V ∗ = sup
g∈B(v,v)

〈u− v, g〉W×W∗ .

(H2) For each v ∈ W fixed, B(·, v) : C̃ → 2W∗
is upper semi-continuous from

the line segments in C̃ to W ∗.

Indeed, let u1, u2 ∈ C̃ arbitrarily fixed, ut = tu1 + (1− t)u2, for t ∈ [0, 1] and

define G̃ : [0, 1] → W ∗ by G̃(t) = B(ut, v) = L̃(ut) + Ã(ut, v).

The upper semi-continuity of G̃ at t = 0 follows from the upper semi-

continuity of A(·, iv) and from the continuity of L̃ from W to W ∗.

(H3) The weak upper semi-continuity of B(u, ·) : C̃ → 2W∗
, for u ∈ C̃ fixed,

is a consequence of the fact that L̃(u) does not depend on v and of the weak upper

semi-continuity of Ã(u, ·) at an arbitrary point of W .

(H4) We want to prove that, for each u, v ∈ C̃, B(u, v) is compact. Consider

a sequence {fn} in B(u, v) ⊂ W ∗, fn = L̃(u) + gn, with gn = i∗hn, hn ∈ A(iu, iv).

Since A(iu, iv) is compact, there exists a subsequence (denoted in the same way),

hn → h ∈ A(iu, iv), in V ∗. Then fn → L̃(u) + i∗h ∈ B(u, v).

The fact that Φ is weakly upper semi-continuous in the topology of V implies

directly that it is also upper semi-continuous in the topology of W , because uj ⇀ u

in W means uj ⇀ u in V and L(uj) ⇀ L(u) in V ∗.

All the hypotheses (H1’), (H2)-(H4) being satisfied and having also (H5’), we

can apply Theorem 5 and conclude the proof.

Remark 10. The following particular case is frequently used: Let U be a real reflexive

Banach space, densely and compactly imbedded into a separable Hilbert space H, U ⊂

H ⊂ U∗, i.e. an evolution triple. (For example H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω), where Ω
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is a bounded domain in RN , H1
0 (Ω) is the well known Sobolev space and H−1(Ω) is

its dual). Let V = L2(0, τ ;U) and V ∗ = L2(0, τ ;U∗) the dual of V . In this case, L

can be the differentiation operator
d2·
dt2

.
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