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Abstract. In this paper we propose to give detailed proofs for different

generalizations of the Leibnitz formula for the calculation of the derivative

of the order n, with n ∈ N, of the functions’ product. We will consider the

Fréchet derivative of certain composed functions with the help of certain

multilinear mappings.

1. Introduction

The idea of this paper has its origin the well-known Leibniz’s formula con-

cerning the calculation of the derivative of the product of two real functions with real

variables.

So, given the number n ∈ N, the interval I ⊆ R and the functions f, g : I → R

that have the derivative of the order n, then the product function fg : I → R admits

the derivative of the order n as well, and:

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k), where

(
n

k

)
=

n!
k! (n− k)!

,

for any function h : I → R, h(i) : I → R represents the derivative of the order i of the

considered mapping.

A first generalization of this formula appears by considering the case of m

functions with m ∈ N, f1, . . . , fm : I → R. In this way, if these functions have
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derivatives of the order n, the same fact is true for the product function f1 . . . fm :

I → R and:

(f1 . . . fm)(n) =
∑

α1+···+αm=n

n!
α1! . . . αm!

f
(α1)
1 . . . f (αm)

m .

We can raise the issue of extending these formulas to the case of using func-

tions defined between linear normed spaces.

Of course in this case it is necessary to find a ”substitute” for the notion of

product, but it will be necessary to specify the definition used for the extension of

the notion of derivative.

To begin with, we have:

Remark 1.1. For the linear normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) let us denote by

(X, Y )∗ the set of the linear and continuous mappings T : X → Y. The set (X, Y )∗ can

be organized as a linear normed space with the usual operations that are the mappings’

addition and multiplication with a real number, and the norm that for T ∈ (X, Y )∗ is

defined through:

‖T‖ = sup
h∈X,‖h‖X=1

‖T (h)‖Y .

It is easy to show that if (Y, ‖·‖Y ) is a Banach space, then the space(
(X, Y )∗ , ‖·‖

)
is a Banach space as well.

Let us recall the following definition.

Definition 1.2. Let be given the linear normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) , the

set D ⊆ X, the function f : D → Y and the point x ∈ int (D) .

The considered function is differentiable in the point x in the Fréchet meaning that

there exists a linear and continuous mapping Tx ∈ (X, Y )∗ and a mapping Rx : X →

Y with:

lim
h→θX

‖Rx (h)‖Y = 0

so that for every h ∈ X the equality:

f (x + h)− f (x) = Tx (h) + ‖h‖X Rx (h)

is true.
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ON CERTAIN PROPERTIES OF THE FRÉCHET DIFFERENTIAL OF HIGHER ORDER

Now we have:

Remark 1.3. For the linear normed spaces (X, ‖·‖X) , (Y, ‖·‖Y ) and a fixed element

x ∈ X let be the set:

Dx (X, Y ) = {f/∃D D ⊆ X, x ∈ int (D) , f : D → Y, f differentiable at x} .

We can easily prove that if f ∈ Dx (X, Y ) the mapping Tx ∈ (X, Y )∗ exists with a

unique determination. We will denote:

f ′ (x) := Tx

and this mapping will be called a Fréchet differential of the mapping f in the point x.

Starting from the definition 1.2 and using the successive differentiation and

mathematical induction, we can introduce differentials of an order n, where n ∈ N.

In order to clarify these questions, for m ∈ N we denote by
(
X(m), Y

)∗
the

set of the m−linear and continuous mappings which are defined from Xm to Y, where

Xm = X × · · · ×X︸ ︷︷ ︸
m times

.

We have:

Remark 1.4. For any m ∈ N, the set
(
X(m), Y

)∗
can also be organized as a linear

normed space using the mapping’s addition and multiplication with a number. The

norm in
(
X(m), Y

)∗
for T ∈

(
X(m), Y

)∗
is defined through:

‖T‖ = sup
h1,...,hn∈X,‖h1‖X=···=‖hn‖X=1

‖T (h1, . . . , hn)‖Y ,

in addition, if (Y, ‖·‖Y ) is a Banach space,
(
X(m), Y

)∗
is a Banach space as well.

Therefore we have:

Definition 1.5. In addition to the facts from the definition 1.2 let us consider a

number n ∈ N, n ≥ 2. If:

a): there exists a neighbourhood V of the points x, so that for every y ∈ V ∩D

it exists the differential of the order n− 1 of the function f at the point y

and f (n−1) (y) ∈
(
X(n−1), Y

)∗
,
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b): the function f (n−1) : V ∩D →
(
X(n−1), Y

)∗
is also differentiable at the

point x,

then
(
f (n−1)

)′
(x) ∈

(
X(n), Y

)∗
, mapping which we will denote by f (n) (x) is

called the differential of the order n of the function f at the point x.

It is necessary to remind one more case. Let us consider the linear normed

spaces: (
X1, ‖·‖X1

)
, . . . ,

(
Xm, ‖·‖Xm

)
, (Y, ‖·‖Y )

and a mapping T : X1 × . . . × Xm → Y. We can say that this mapping is an

m−linear and continuous mapping, if this mapping is linear and continuous after

every argument.

We denote by (X1, . . . , Xm;Y )∗ the set of all mappings that verify the afore-

mentioned properties.

For h = (h1, . . . , hm) ∈ X1 × . . . ×Xm we can define:

‖h‖ = max
{
‖h1‖X1

, . . . , ‖hm‖Xm

}
and so

(
(X1, . . . Xm;Y )∗ , ‖·‖

)
is a linear normed space. In the case if (Y, ‖·‖Y ) is a

Banach space, then
(
(X1, . . . Xm;Y )∗ , ‖·‖

)
is a Banach space as well.

2. A generalization of Leibnitz’s formula of derivation

Let us consider the linear normed spaces:

(X, ‖·‖X) ,
(
Y1, ‖·‖Y1

)
, . . . ,

(
Ym, ‖·‖Ym

)
, (Z, ‖·‖Z) ,

the set D ⊆ X, the nonlinear mappings fi : D → Yi; i = 1,m and the m− linear

mapping L ∈ (Y1, . . . , Ym;Z)∗ .

With the help of these elements we build the function:

F : D → Z, F (x) = L (f1 (x) , . . . , fm (x)) . (1)

Our goal is to conclude, in the hypothesis of the differentiability of the func-

tions fi : D → Yi; i = 1,m, on the differentiability of the function (1) establishing

connections between the differentials.
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To start with, we have the following:

Lemma 2.1. If the non-linear mappings fi : D → Yi; i = 1,m, are differentiable at

the point x ∈ int (D) , then the function (1) is also differentiable at the same point x

and for any h ∈ X we have the relation:

F ′ (x)h =

=
m∑

k=1

L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x)) .
(2)

Proof. From the differentiability of the functions fi : D → Yi; i = 1,m at

the point x ∈ int (D) we deduce the existence, for any i ∈ {1, 2, . . . ,m} , of the linear

mappings f ′i (x) ∈ (X, Yi)
∗ and of the non-linear mappings R

(i)
x : X → Yi, so that for

any h ∈ X we have:

fi (x + h) = fi (x) + f ′i (x) h + ‖h‖X R(i)
x (h) , lim

h→θX

∥∥∥R(i)
x (h)

∥∥∥
Yi

= 0.

So it is clear that:

F (x + h) = L (f1 (x + h) , . . . ., fm (x + h))

is in fact the value of the mapping L ∈ (Y1, . . . , Ym;Z)∗ on the arguments:

f1 (x) + f ′1 (x) h + ‖h‖X R(1)
x (h) , . . . , fm (x) + f ′m (x) h + ‖h‖X R(m)

x (h) .

In this way:

F (x + h) = L (f1 (x) , . . . , fm (x))+

+
m∑

k=1

L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x))+

+ ‖h‖X

m∑
k=1

L
(
f1 (x) , . . . , fk−1 (x) , R

(k)
x (h) , fk+1 (x) , . . . , fm (x)

)
+

+
m∑

k=2

∑
1≤i1<···<ik≤m

E
(k)
i1,...,ik

(f ;x, h) ,
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where E
(k)
i1,...,ik

(f ;x, h) ∈ Z represents the value of the mapping L ∈ (Y1, . . . , Ym;Z)∗

on the arguments f1 (x) , . . . , fm (x) , with the exception of the positions i1, . . . , ik ∈

{1, 2, . . . ,m} for which we have the arguments:

f ′ij
(x) h + ‖h‖X R(ij)

x (h) , j = 1, k; k = 2,m.

It is clear that if we define F ′ (x) ∈ (X, Z)∗ , through the equality (2) , and

the mapping Rx : X → Z through:

Rx (h) =


θZ for h = θX ,

P (x, h) +
1

‖h‖X

Q (x, h) for h 6= θX ,

where we have denoted:

P (x, h) =
m∑

k=1

L
(
f1 (x) , . . . , fk−1 (x) , R(k)

x (h) , fk+1 (x) , . . . , fm (x)
)
∈ Z

and:

Q (x, h) =
m∑

k=2

∑
1≤i1<···<ik≤m

E
(k)
i1,...,ik

(f ;x, h) ∈ Z,

we will have:

F (x + h)− F (x) = F ′ (x)h + ‖h‖X Rx (h) . (3)

It is clear that:

‖P (x, h)‖Z ≤ ‖L‖
m∑

k=1

∥∥∥R(k)
x (h)

∥∥∥
Yk

·
∏

j=1,m;j 6=k

‖fj (x)‖Yj


and from lim

h→θX

∥∥∥R
(k)
x (h)

∥∥∥
Yk

= 0 we deduce:

lim
h→θX

‖P (x, h)‖Z = 0. (4)

Concerning the expression of Q (x, h) we deduce:

‖Q (x, h)‖Z ≤
m∑

k=2

∑
1≤i1<···<ik≤m

∥∥∥E
(k)
i1,...,ik

(f ;x, h)
∥∥∥

Z
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and for any k ∈ {2, 3, . . . ,m} and i1, . . . , ik ∈ {1, 2, . . . ,m} with 1 ≤ i1 < · · · < ik ≤ m

we have: ∥∥∥E
(k)
i1,...,ik

(f ;x, h)
∥∥∥

Z
≤

≤ ‖L‖ ·
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

∥∥∥f ′ij
(x) h + ‖h‖X R

(ij)
x (h)

∥∥∥
Yij

≤

≤ ‖L‖ · ‖h‖k
X ·C(k)

i1,...,ik
(x, h) ,

where:

C(k)
i1,...,ik

(x, h) =
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

(∥∥∥f ′ij
(x)

∥∥∥ +
∥∥∥R(ij)

x (h)
∥∥∥

Yij

)
From the differentiability of the functions f1, . . . , fm we deduce clearly that:

lim
h→θX

C(k)
i1,...,ik

(x, h) =
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

∥∥∥f ′ij
(x)

∥∥∥ . (5)

We have:

‖Q (x, h)‖Z ≤ ‖L‖ · ‖h‖X

m∑
k=2

‖h‖k−1
X

∑
1≤i1<···<ik≤m

C(k)
i1,...,ik

(x, h)

and from this relation we deduce for any h 6= θX the inequalities:

0 ≤ ‖Rx (h)‖Z ≤

≤ ‖P (x, h)‖Z + ‖L‖ · ‖h‖X

m∑
k=2

‖h‖k−1
X

∑
1≤i1<···<ik≤m

C(k)
i1,...,ik

(x, h)
(6)

From the relations (4)− (6) we deduce that:

lim
h→θX

‖Rx (h)‖Z = 0. (7)

The relations (3) and (7) indicate that the function (1) has a differential at

the point x ∈ int (D) and its value is given through the formula (2) .

The lemma is proved. �

In order to pass to the expression of the differential of an order n ∈ N it is

necessary to make certain specifications and to adopt certain notations.
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To begin with, let be the set:

Am,n = {α/ α = (α1, . . . , αm) ∈ (N∪{0})m
, α1 + · · ·+ αm = n} .

In certain cases we can use the notation |α| for α1 + · · ·+ αm.

Considering a finite set K ⊆ N, for a number p ∈ N we can consider the set:

Cp (K) = { i/ i = (i1, . . . , ip) ∈ Kp, i1 < · · · < ip} ,

evidently Cp (K) represents the set of all subsets with p elements of the set K.

Evidently in the case in which the set K has q elements and p ≤ q, then the

set Cp (K) has
(

q
p

)
= q!

p!(q−p)! elements, and if p > q the set Cp (K) is a void set.

In the special case in which K = {1, 2, . . . , n} , we will use the notation Cn,k

for Ck (K) , with k ≤ n and evidently this set has
(
n
k

)
= n!

k!(n−k)! elements.

Let us consider now the finite set K ⊆ N having n elements and we will build

the sets J0, J1, . . . , Jm ⊆ K considering J0 = K. Let us also consider for m ∈ N a

system α = (α1, . . . , αm) ∈ Am,n.

Starting from these elements let us make the following construction.

To start with, we choose a system
(
i
(1)
1 , . . . , i

(1)
α1

)
∈ Cα1 (J0) .

Let be now the set J1 = J0�
{

i
(1)
1 , . . . , i

(1)
α1

}
that has n − α1 elements. We

choose a new system: (
i
(2)
1 , . . . , i(2)α2

)
∈ Cα2 (J1) .

So there exist
(
n−α1

α2

)
= (n−α1)!

α2!(n−α1−α2)!
possibilities for the choice of this new

system.

Further on, for the systems
(
i
(1)
1 , . . . , i

(1)
α1

)
and

(
i
(2)
1 , . . . , i

(2)
α2

)
that are chosen

above and are fixed we consider the set J2 = J1�
{

i
(2)
1 , . . . , i

(2)
α2

}
with n − α1 − α2

elements, then we choose a new system:(
i
(3)
1 , . . . , i(3)α3

)
∈ Cα3 (J2) ,

existing
(
n−α1−α2

α3

)
= (n−α−α2)!

α3!(n−α1−α2−α3)!
possibilities for the choice of this new system.

We continue in this manner using mathematical induction.
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Thus for the systems
(
i
(1)
1 , . . . , i

(1)
α1

)
, . . . ,

(
i
(k−1)
1 , . . . , i

(k−1)
αk−1

)
already cho-

sen and fixed, we consider the set:

Jk−1 = Jk−2�
{

i
(k−1)
1 , . . . , i

(k−1)
αk−1

}
=

= {1, 2, . . . , n}�
{

i
(1)
1 , . . . , i

(1)
α1 , . . . , i

(k−1)
1 , . . . , i

(k−1)
αk−1

}
,

that has n−α1−· · ·−αk−1 elements and we choose the new system
{

i
(k)
1 , . . . , i

(k)
αk

}
∈

Cαk
(Jk−1) existing

(
n−α1−···−αk−1

αk

)
= (n−α1−···−αk−1)!

αk!(n−α1−···−αk−1−αk)! possibilities for the

choice of the new system.

At the end of this process we have already chosen and fixed the systems:(
i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m−1)
1 , . . . , i(m−1)

αm−1

)
we consider the set:

Jm−1 = Jm−2�
{

i
(m−1)
1 , . . . , i

(m−1)
αm−1

}
=

= {1, 2, . . . , n}�
{

i
(1)
1 , . . . , i

(1)
α1 , . . . , i

(m−1)
1 , . . . , i

(m−1)
αm−1

}
,

and we choose the new system
(
i
(m)
1 , . . . , i

(m)
αm

)
∈ Cαm

(Jm−1) existing

(
n−α1−···−αm−1

αm

)
=

(n− α1 − · · · − αm−1)!
αm! (n− α1 − · · · − αm−1 − αm)!

possibilities for the choice of the new system.

If we consider:

Jm = Jm−1�
{

i
(m)
1 , . . . , i(m)

αm

}
this set has n − α1 − · · · − αm−1 − αm = 0 elements, therefore Jm = ∅ and so the

process is finished.

We denote by

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
a system composed of systems obtained through the process already presented.

For the numbers m,n ∈ N and α ∈ Am,n fixed, let us denote through

A[α]
m,n (K) the set of all systems built in the manner already indicated.

It is clear that the number of elements of the set A[α]
m,n (K) is n!

α1! ... αm! .
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In the case in which K = {1, 2, . . . , n} , we will use the notation A[α]
m,n for

A[α]
m,n ({1, 2, . . . , n}) .

We can now enunciate the following:

Remark 2.2. With the hypotheses of the lemma 2.1 the relation concerning the

value of F ′ (x) h can be written under the form:

F ′ (x) h =
∑

α∈Am,1

∑
I∈A[α]

m,1

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f (αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)

with h1 = h.

Indeed, the fact that α ∈ Am,1 means that α ∈ (α1, . . . , αm) ∈ (N∪{0})m (

therefore αi ∈ N∪{0} for any i = 1,m) with |α| = α1 + · · · + αm = 1, so we deduce

that there exists a number k ∈ {1, 2, . . . ,m} , so that:

αi =


0 for i 6= k,

1 for i = k,

so the only possibility for the choice of

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
=

(
i
(k)
1 , . . . , i(k)

αk

)
= i

(k)
1 ∈ A[α]

m,1

is i
(k)
1 )1 and because h1 = h, it is clear that:

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
=

= L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x)) ,

which justifies the proposition from this remark.

Taking into account the remark 2.2 as well, we are now able to establish

the theorem concerning the values of the differential of the order n of the non-linear

mapping (1) .

Thus we have:

Theorem 2.3. If for n ∈ N the non-linear mappings fi : D → Yi, i = 1,m admit a

differential of the order n at the point x ∈ int (D) , then the non-linear mapping (1)
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also admits a differential of the order n at the same point x and:

F (n) (x) h1 . . . hn =

=
∑

α∈Am,n

∑
I∈A[α]

m,n

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
.

Proof. We will proceed through mathematical induction after n ∈ N.

For n = 1 the proposition is true on account of the lemma 2.1 and of the

remark 2.2.

We suppose therefore that the property in discussion is true for a number

n ∈ N. We will prove that this property is true for n substituted by n + 1.

Therefore we consider that the non-linear mappings fi : D → Yi, i = 1,m

admit at the point x ∈ int (D) differentials with the order n + 1. On the basis of

the definition there exists a neighbourhood V of the point x, so that the functions

fi : D → Yi, i = 1,m admit differentials of the order n at every point u ∈ V ∩D.

On the basis of the hypothesis of the induction we deduce that the function

F : D → Z defined through (1) also admits a differential of the order n at the point

u ∈ V ∩ D and the equality in the conclusion of the theorem takes place with x

replaced by u.

Choosing therefore h1 ∈ X so that x + h1 ∈ V ∩ D and arbitrarily

h2, . . . , hn, hn+1 ∈ X the equality in the conclusion of the theorem will be true

for h1, . . . , hn replaced by h2, . . . , hn+1 and A[α]
m,n by A[α]

m,n ({2, . . . , n + 1}) and there

will be another similar equality but with x replaced by x + h1.

Subtracting these equalities member by member we obtain:

[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

L(I)
α (x;h1, h2, . . . , hn+1) ,

71



ADRIAN DIACONU

where:

L(I)
α (x;h1, h2, . . . , hn+1) =

= L
(
f

(α1)
1 (x + h1) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x + h1) h

i
(m)
1

. . . h
i
(m)
αm

)
−

−L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
,

in the last expression α = (α1, . . . , αm) ∈ Am,n and:

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
∈ A[α]

m,n ({2, . . . , n + 1}) . (8)

Let be the number i ∈ {1, 2, . . . ,m} . From the existence of the Fréchet dif-

ferential of the order n + 1 of the function fi : D → Yi at the point x ∈ int (D) we

deduce the existence of these differentials for every k ≤ n + 1.

From this fact we deduce that for any k ≤ n and h1 ∈ X there exists R
(k,i)
x :

X →
(
X(k), Yi

)∗
with lim

h1→θX

∥∥∥R
(k,i)
x (h1)

∥∥∥ = 0 so that:

f
(k)
i (x + h1) = f

(k)
i (x) + f

(k+1)
i (x)h1 + ‖h1‖X R(k,i)

x (h1) . (9)

From α ∈ Am,n we deduce that α = (α1, . . . , αm) ∈ (N∪{0})m and |α| =

α1 + · · ·+ αm = n, therefore αi ∈ {0, 1, . . . , n} . So the relation (9) is true for k = αi.

Using a similar process with that from the lemma 2.1 and taking into ac-

count the remark 2.2, we obtain for α ∈ Am,n and I ∈ A[α]
m,n the equality:

L(I)
α (x;h1, h2, . . . , hn+1) =

=
∑

β∈Am,1

∑
J∈A[β]

m,1

L
(
T

(α,β;I,J)
1 , . . . , T

(α,β;I,J)
m

)
+

+ ‖h1‖X R(I)
α (x;h1, h2, . . . , hn+1) ,

(10)

with β ∈ Am,1 (therefore β = (β1, . . . , βm) ∈ (N∪{0})m and |β| = β1 + · · ·+βm = 1),

while:

J =
((

j
(1)
1 , . . . , j

(1)
β1

)
, . . . ,

(
j
(m)
1 , . . . , j

(m)
βm

))
∈ A[β]

m,1 = A[β]
m,1 ({1}) , (11)
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where for k = 1,m we have denoted:

T
(α,β;I,J)
k =

(
f

(αk)
k

)(βk)

(x) h
j
(k)
1

. . . h
j
(k)
βk

h
i
(k)
1

. . . h
i
(k)
αk

=

= f
(αk+βk)
k (x) h

j
(k)
1

. . . h
j
(k)
βk

h
i
(k)
1

. . . h
i
(k)
αk

.

The element R(I)
α (x;h1, h2, . . . , hn+1) ∈ Z has the value θZ in the case in

which h1 = θX and the value that is deductible from (10) for h1 6= θX .

So: [
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 =

= E (x;h1, h2, . . . , hn, hn+1) + ‖h1‖X R (x;h1, h2, . . . , hn, hn+1) ,

(12)

where:

E (x;h1, h2, . . . , hn, hn+1) =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

∑
β∈Am,1

∑
J∈A[β]

m,1

L
(
T

(α,β;I,J)
1 , . . . , T

(α,β;I,J)
m

)
,

(13)

while:

R (x;h1, h2, . . . , hn, hn+1) =

=


θZ , for h1 = θX ,[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 − E (x;h1, . . . , hn+1)
‖h1‖X

for h1 6= θX .

It is clear that for h1 6= θX we have:

R (x;h1, h2, . . . , hn, hn+1) =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

R(I)
α (x;h1, h2, . . . , hn, hn+1) .

(14)

Now let be:

γ = (γ1, . . . , γm) = α + β = (α1 + β1, . . . , αm + βm) ∈ (N∪{0})m
.

Because |α| = n and |β| = 1 we deduce that:

|γ| = γ1 + · · ·+ γm = (α1 + · · ·+ αm) + (β1 + · · ·+ βm) = |α|+ |β| = n + 1,

73



ADRIAN DIACONU

therefore γ ∈ Am,n+1.

For the system I which verifies (8) and the system J which verifies (11) , let

us introduce:(
s
(k)
1 , . . . , s(k)

γk

)
=

(
j
(k)
1 , . . . , j

(k)
βk

, i
(k)
1 , . . . , i(k)

αk

)
; k = 1,m

and:

S =
((

s
(1)
1 , . . . , s(1)

γ1

)
, . . . ,

(
s
(m)
1 , . . . , s(m)

γm

))
. (15)

Because β ∈ Am,1 we deduce that there exists a number r ∈ {1, . . . ,m} so

that:

βi =

 0 for i 6= r,

1 for i = r,

so the only possibility for the choosing of the index system:

J =
((

j
(1)
1 , . . . , j

(1)
β1

)
, . . . ,

(
j
(m)
1 , . . . , j

(m)
βm

))
=

(
j
(r)
1 , . . . , j

(r)
βr

)
=

=
(
j
(r)
1

)
∈ A[β]

m,1 ({1}) ,

is j
(k)
1 = 1.

Form here we deduce that the systems from S are identical with a system

I ∈ A[α]
m,n ({2, . . . , n + 1}) ( having the form (11)) except the subsystem situated on

the position r. To this subsystem we add the element 1 on its first position. This

indicates that S ∈ A[γ]
m,n+1.

Through the aforementioned process starting with the elements α ∈ Am,n,

β ∈ Am,1, I ∈ A[α]
m,n ({2, . . . , n + 1}) and J ∈ A[β]

m,1 ({1}) we obtain a γ ∈ Am,n+1

together with S ∈ A[γ]
m,n+1.

The inverted process starting from γ ∈ Am,n+1 together with S ∈ A[γ]
m,n+1 ex-

ists with a unique determination, a α ∈ Am,n together with I ∈ A[α]
m,n ({2, . . . , n + 1})

and J ∈ A[β]
m,1 ({1}) , so that we obtain the systems from S through (15) , the systems

I and J having the forms (8) and (11) respectively.

So it is clear that for any k = 1,m we have:

T
(α,β;I,J)
k = f

(γk)
k (x) h

s
(k)
1

. . . h
s
(k)
γk
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and from (13) we deduce that:

E (x;h1, h2, . . . , hn, hn+1) =
∑

γ∈Am,n+1

∑
S∈A[γ]

m,n+1

L(S)
γ , (16)

where:

L(S)
γ = L

(
f

(γ1)
1 (x) h

s
(1)
1

. . . h
s
(1)
γ1

, . . . , f (γm)
m (x) h

s
(m)
1

. . . h
s
(m)
γm

)
. (17)

Let us denote:

Hn,X = {h/ h = (h1, . . . , hn) ∈ Xn, ‖h1‖X = · · · = ‖hn‖X = 1}

and let us now evaluate ‖R (x;h1, h2, . . . , hn, hn+1)‖Z supposing that (h2, . . . , hn+1) ∈

Hn,X which means that ‖h2‖X = · · · = ‖hn+1‖X = 1.

First we notice that for any h1 6= θX , α ∈ Am,n and I ∈ A[α]
m,n we have:

R(I)
α (x;h1, h2, . . . , hn+1) =

=
m∑

j=1

G(I)
j,α (x;h1, h2, . . . , hn+1) +

+
1

‖h1‖X

m∑
k=2

∑
1≤r1<···<rk≤m

E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1) .

(18)

In (18) G(I)
j,α (x;h1, h2, . . . , hn+1) ∈ Z for j ∈ {1, 2, . . . ,m} represents the

value of the mapping L ∈ (Y1, . . . , Ym;Z)∗ with the arguments:

f (αq)
q (x)h

i
(q)
1

. . . h
i
(q)
αq
∈ Yq; q = 1,m,

except the argument of the rank j, this argument being:

R(αj ,j)
x (h1)h

i
(j)
1

. . . h
i
(j)
αj

.

So:∥∥∥G(I)
j,α (x;h1, h2, . . . , hn+1)

∥∥∥
Z
≤ ‖L‖ ·

∥∥∥R(αj ,j)
x (h1)

∥∥∥ ∏
q=1,m q 6=k

∥∥∥f (αq)
q (x)

∥∥∥ ,

here we take into account that I ∈ A[α]
m,n ({2, . . . , n + 1}) , therefore:

m∏
q=1

(∥∥∥h
i
(q)
1

∥∥∥
X

. . .
∥∥∥h

i
(q)
αq

∥∥∥
X

)
= ‖h2‖X . . . ‖hn+1‖X = 1.
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In the same relation (18) for k ∈ {2, . . . , n + 1} and r1, . . . , rk ∈ N with

1 ≤ r1 < · · · < rk ≤ m the expression E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1) is the value

of the mapping L ∈ (Y1, . . . , Ym;Z)∗ with the arguments f
(αq)
q (x) h

i
(q)
1

. . . h
i
(q)
αq

∈

∈ Yq; q = 1,m except the arguments situated in the position r1, . . . , rk where the

arguments:[
f (αp+1)

p (x) h1 + ‖h1‖X R(αp,p)
x (h1)

]
h

i
(p)
1

. . . h
i
(p)
αp

; p ∈ {r1, . . . , rk}

appear.

So: ∥∥∥E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1)

∥∥∥ ≤ ‖h1‖k
X × ‖L‖×

×
k∏

q=1

(∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ +
∥∥∥∥R

(αrq ,rq)
x (h1)

∥∥∥∥)
×

∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f
(αq)
q (x)

∥∥∥ .

Therefore we can write that:∥∥∥R(I)
α (x;h1, h2, . . . , hn+1)

∥∥∥
Z
≤ ‖L‖C(I)

α (x, h1) (19)

where:

C(I)
α (x, h1) =

m∑
k=1

∥∥∥∥R
(αrk

,rk)
x (h1)

∥∥∥∥× ∏
q=1,m q 6=k

∥∥∥f
(αq)
q (x)

∥∥∥
 +

+
m∑

k=2

‖h1‖k−1
X ×

∑
1≤r1<···<rk≤m

D(k,α,I)
r1,...,rk (x, h1) ,

while for k ∈ {2, . . . ,m} and r1, . . . , rk ∈ N with 1 ≤ r1 < · · · < rk ≤ m we have:

D(k,α,I)
r1,...,rk (x, h1) =

=
k∏

q=1

(∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ +
∥∥∥∥R

(αrq ,rq)
x (h1)

∥∥∥∥)
×

∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f
(αq)
q (x)

∥∥∥ .

Thus, it is clear from the hypotheses on account of which for the specified

values of k and of r1, . . . , rk we have:

lim
h1→θX

D(k,α,I)
r1,...,rk

(x, h1) =
k∏

q=1

∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ · ∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f (αq)
q (x)

∥∥∥ ,
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that for any α ∈ Am,n and I ∈ A[α]
m,n we have:

lim
h→θX

C(I)
α (x, h1) = 0

and so, in the same situation as in (19) we deduce that:

lim
h1→θX

sup
(h2,...,hn+1)∈Hn,X

‖R (x;h1, h2, . . . , hn+1)‖Z = 0. (20)

We define the mapping:

F (n+1) (x) ∈
(
X(n+1), Z

)∗
,

F (n+1) (x) h1h2 . . . hn+1 = E (x;h1, h2, . . . , hn+1) ,

(21)

and it is clear that if we define Rx (h1) ∈
(
X(n), Z

)∗
through:

Rx (h1) =


Θn ; h1 = θX

F (n) (x + h1)− F (n) (x)− F (n+1) (x)h1

‖h1‖X

; h1 6= θX

we have in
(
X(n), Z

)∗
the equality:

F (n) (x + h1)− F (n) (x) = F (n+1) (x) h1 + ‖h1‖X Rx (h1) . (22)

In the same time for h1 6= θX we have:

‖Rx (h1) h2 . . . hn+1‖Z ≤

≤
∥∥[

F (n) (x + h1)− F (n) (x)
]
h2 . . . hn+1 − F (n+1) (x) h1h2 . . . hn+1

∥∥
Z

‖h1‖X

=

=

∥∥[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 − E (x;h1, h2, . . . , hn+1)

∥∥
Z

‖h1‖X

=

= ‖R (x;h1, h2, . . . , hn+1)‖Z ,

therefore:

0 ≤ ‖Rx (h1)‖ = sup
(h2,...,hn+1)∈Hn,X

‖Rx (h1) h2 . . . hn+1‖Z ≤

≤ sup
(h2,...,hn+1)∈Hn,X

‖R (x;h1, h2, . . . , hn+1)‖Z .
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From here, also using the relation (20) , we deduce that:

lim
h→θX

‖Rx (h1)‖ = 0. (23)

From the relations (22) and (23) we deduce that the mapping F : D → Z

has a Fréchet differential of the order n + 1 at the point x ∈ int (D) , the expression

of the mapping F (n+1) (x) ∈
(
X(n+1), Z

)∗
being specified through (21) , therefore on

account of the obtained expression (16) for E (x;h1, h2, . . . , hn+1) we have:

F (n+1) (x)h1 . . . hn+1 =

=
∑

γ∈Am,n+1

∑
S∈A[γ]

m,n+1

L
(
f

(γ1)
1 (x) h

s
(1)
1

. . . h
s
(1)
γ1

, . . . , f
(γm)
m (x) h

s
(m)
1

. . . h
s
(m)
γm

)
.

The aforementioned assertion together with its corresponding equality indi-

cates that the property expressed through this theorem is true for any n ∈ N replaced

by n + 1.

On account of the principle of mathematical induction this property is true

for any n ∈ N.

The theorem is proved. �

Remark 2.4. In the case of m = 2, case in which L ∈ (L1, L2;Z)∗ , f : D → Y1,

g : D → Y2 where D ⊆ X and x ∈ int (D) , in the hypothesis of the existence of the

differentials with the order n of the considered functions at the point x, it results the

existence of the differential with the order n of the function F : D → Z, F (x) =

L (f (x) , g (x)) together with the equality:

F (n) (x) h1 . . . hn =
n∑

k=0

∑
i∈Cm,k

L
(
f (k) (x) hi1 . . . hik

, g(n−k) (x) hj1 . . . hjn−k

)
(24)

where we have denoted i = (i1, . . . , ik) ∈ Cm,k and:

{j1, . . . , jn−k} ∈ {1, 2, . . . , n}� {i1, . . . , ik}

with j1 < · · · < jn−k.
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Indeed, in this case:

A2,1 =
{

α/ α = (α1, α2) ∈ (N∪{0})2 , α1 + α2 = n
}

=

=
{

(k, n− k)/ k = 0, n
}

and the set A[α]
2,n = A(k,n−k)

2,n is made of a pair of disjunct systems, the first system

has k elements and the second n− k elements. If we put together the elements from

these systems we obtain the set {1, 2, . . . , n} .

If we denote this pair of systems from A(k,n−k)
2,n by:

(i, j) = ((i1, . . . , ik) , (j1, . . . , jn−k))

because 1 ≤ i1 < · · · < ik ≤ n and the system (j1, . . . , jn−k) is obtained in the

aforementioned manner, then i ∈ Cn,k and we also obtain the equality (24) .

Remark 2.5. In the case when h1 = · · · = hn = h ∈ X we have for the equality from

the conclusion of the theorem 2.3 the form:

F (n) (x) hn =
∑

α∈Am,n

n!
α1! . . . αm!

L
(
f

(α1)
1 (x) hα1 , . . . , f (αm)

m (x) hαm

)
(25)

and for the equality (24) we have the form:

F (n) (x)hn =
n∑

k=0

(
n

k

)
L

(
f (k) (x) hk, g(n−k) (x) hn−k

)
. (26)

These relations are evident because the number of elements of the set A[α]
m,n

is n!
α1!...αm! , while the number of elements of the set Cn,k is n!

k!(n−k)! =
(
n
k

)
.

In the aforementioned writings it is clear that f (k) (x) hk means:

f (k) (x) (h, . . . , h︸ ︷︷ ︸
k times

).

3. An application to the differential of certain composed functions

Let us consider the number m ∈ N, the linear normed spaces:

(X, ‖·‖X) ,
(
Y1, ‖·‖Y1

)
, . . . ,

(
Ym, ‖·‖Ym

)
, (Z, ‖·‖Z) ,
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the set D ⊆ X and the mappings:

Ui : D → Yi, i = 1,m; W : D → (Y1, . . . , Ym;Z)∗ .

Using the aforemationed mappings we consider the composed mapping:

G : D → Z, G (x) = [W (x)] (U1 (x) , . . . , Um (x)) . (27)

Concerning the mapping (27) , we have the following proposition:

Proposition 3.1. If for an n ∈ N the mappings W : D → (Y1, . . . , Ym;Z)∗ and

Ui : D → Yi; i = 1,m admit Fréchet differentials with the order n at the point

x ∈ int (D) , then the mapping G : D → Z defined through (27) also admits a Fréchet

differential of the order n at the same point x, and for any h1, . . . , hn ∈ X we have

the equality:

G(n) (x) h1 . . . hn =

=
n∑

k=0

∑
α∈Am,n−k

∑
S∈Cn,k

∑
I∈A[α]

m,n−k(Mn,k(S))

E
(S,I)
k,α (W,U ;x;h1, . . . , hn)

(28)

where U = (U1, . . . , Um) and E
(S,I)
k,α (W,U ;x;h1, . . . , hn) is[

W (k) (x) hs1 . . . hsk

] (
U

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , U (αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
(29)

where for S = (s1, . . . , sk) ∈ Cn,k we have denoted:

Mn,k (S) = {1, . . . , n}� {s1, . . . , sk} .

Proof. We will consider the mapping:

L : (Y1, . . . , Ym;Z)∗ × Y1 × · · · × Ym → Z, L (T ; y1, . . . , ym) = T (y1, . . . , ym)

where yi ∈ Yi with i = 1,m while T ∈ (Y1, . . . , Ym;Z)∗ .

From the definition of the operations in the set of mappings we deduce the

linearity of the mapping L after the first argument, while from the linearity of the

mapping T : Y1 × · · · × Ym → Z we deduce the linearity of the mapping L after the

last m arguments.
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ON CERTAIN PROPERTIES OF THE FRÉCHET DIFFERENTIAL OF HIGHER ORDER

It is also clear that:

‖L (T ; y1, . . . , ym)‖Z = ‖T (y1, . . . , ym)‖Z ≤ ‖T‖ · ‖y1‖Y1
· · · · · ‖ym‖Ym

,

therefore:

L ∈
(
(Y1, . . . , Ym;Z)∗ , Y1, . . . , Ym;Z

)∗
and:

G (x) = L (W (x) , U1 (x) , . . . , Um (x))

as well.

In this way for the existence and the calculation of the differential with the

order n of the non-linear mapping defined by (27) it is possible to use the theorem

2.3, therefore as the mappings Ui : D → Yi; i = 1,m and W : D → (Y1, . . . , Ym;Z)∗

have the Fréchet differentials with the order n, at the point x ∈ int (D) , the same

fact can be said about the mapping G : X → Z, and for any h1, . . . , hn ∈ X we have:

G(n) (x) h1 . . . hn =
∑

γ∈Am+1,n

∑
J∈A[γ]

m+1,n

Gγ,J (x;h1, . . . , hn) ,

where Gγ,J (x;h1, . . . , hn) has the value:

L

(
W (γ1) (x) h

j
(1)
1

. . . h
j
(1)
γ1

, U
(γ2)
1 (x) h

j
(2)
1

. . . h
j
(2)
γ2

, . . . , U (γm+1)
m (x) h

j
(m+1)
1

. . . h
j
(m+1)
γm+1

)
for γ = (γ1, γ2, . . . , γm̄+1) ∈ Am+1,n and

J =
((

j
(1)
1 , . . . , j(1)

γ1

)
,
(
j
(2)
1 , . . . , j(2)

γ2

)
, . . . ,

(
j
(m+1)
1 , . . . , j(m+1)

γm+1

))
∈ A[γ]

m+1,n.

The fact that γ ∈ Am+1,n means that γ = (γ1, γ2, . . . , γm+1) ∈ (N∪{0})m+1

with |γ| = γ1 + γ2 + · · ·+ γm+1 = n.

We place:

k = γ1, α1 = γ2, . . . , αm = γm+1

and we deduce that in fact k ∈ {0, 1, . . . , n} and α = (α1, . . . , αm) ∈ (N∪{0})m with

|α| = α1 + · · ·+ αm = n− γ1 = n− k, therefore α ∈ Am,n−k.

We then place:

S = (s1, . . . , sk) =
(
j
(1)
1 , . . . , j

(1)
k

)
=

(
j
(1)
1 , . . . , j(1)

γ1

)
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and:

I =
((

j
(2)
1 , . . . , j(2)

γ2

)
,
(
j
(3)
1 , . . . , j(3)

γ3

)
, . . . ,

(
j
(m+1)
1 , . . . , j(m+1)

γm+1

))
.

Thus it is evident that J = (S, I) ∈ A[k]
m+1,n if and only if S ∈ Cn,k and:

I ∈ A[α]
m,n−k ({1, 2, . . . , n}� {s1, . . . , sk}) = A[α]

m,n−k (Mn,k (S)) ,

this fact results from the manner in which we have obtained the systems J ∈ A[γ]
m+1,n.

Thus the relations (28) and (29) are clear.

The proposition is proved. �

We have the following:

Remark 3.2. In the case where h1 = · · · = hn = h ∈ X in the hypotheses of the

proposition 3.1 we have the equality:

G(n) (x) hn =

=
n∑

k=0

n!
k!

∑
α∈Am,n−k

[
W (k) (x)hk

] (
U

(α1)
1 (x) hα1 , . . . , U

(αm)
m (x) hm

)
α1! . . . αm!

.

(30)

For n = 1 we have:

Remark 3.3. If the mappings W : D → (Y1, . . . , Ym;Z)∗ and Ui : D → Yi; i = 1,m

are Fréchet differentiable at the point x ∈ int (D) , then the mapping G : D → Z

defined through (27) is also differentiable at the same point x, and for any

h1, . . . , hn ∈ X we have the equality:

G′ (x) h = [W ′ (x) h] (U1 (x) , . . . , Um (x))+

+
m∑

j=1

[W (x)]
(
U1 (x) , . . . , Uj−1 (x) , U ′

j (x) h, Uj+1 (x) , . . . , Um (x)
)
.

(31)

For n ∈ N arbitrary and m = 1 we have:

Remark 3.4. If the linear normed spaces (X, ‖·‖X) , (Y, ‖·‖Y ) , (Z, ‖·‖Z) and the

functions f : D → (Y, Z)∗ , g : D → Y, that admit Fréchet differentials with the order

n at a point x ∈ int (D) are given, then the function:

G : D → Z; G (x) = [f (x)] g (x)
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also admits a Fréchet differential with the order n at the same point x, and for any

h1, h2, . . . , hn ∈ X we have:

([f (x)] g (x))(n)
h1 . . . hn =

=
n∑

k=0

∑
i∈Cn,k

[
f (k) (x) hi1 . . . hik

]
g(n−k) (x) hj1 . . . hjn−k

(32)

where i = (i1, . . . , ik) ∈ Cn,k and {j1, . . . , jn−k} = {1, 2, . . . , n}� {i1, . . . , ik} with

j1 < · · · < jn−k.

The remarks 3.2-3.4 are evident.
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