STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume LI, Number 3, September 2006

ON CERTAIN PROPERTIES OF THE FRÉCHET DIFFERENTIAL OF HIGHER ORDER

ADRIAN DIACONU

Dedicated to Professor Ştefan Cobzaş at his 60^{th} anniversary

Abstract. In this paper we propose to give detailed proofs for different generalizations of the Leibnitz formula for the calculation of the derivative of the order n, with $n \in \mathbb{N}$, of the functions' product. We will consider the Fréchet derivative of certain composed functions with the help of certain multilinear mappings.

1. Introduction

The idea of this paper has its origin the well-known Leibniz's formula concerning the calculation of the derivative of the product of two real functions with real variables.

So, given the number $n \in \mathbb{N}$, the interval $\mathbb{I} \subseteq \mathbb{R}$ and the functions $f, g : \mathbb{I} \to \mathbb{R}$ that have the derivative of the order n, then the product function $fg : \mathbb{I} \to \mathbb{R}$ admits the derivative of the order n as well, and:

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}, \text{ where } \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

for any function $h : \mathbb{I} \to \mathbb{R}, h^{(i)} : \mathbb{I} \to \mathbb{R}$ represents the derivative of the order *i* of the considered mapping.

A first generalization of this formula appears by considering the case of mfunctions with $m \in \mathbb{N}, f_1, \ldots, f_m : \mathbb{I} \to \mathbb{R}$. In this way, if these functions have

Received by the editors: 20.03.2006.

²⁰⁰⁰ Mathematics Subject Classification. 37D06.

Key words and phrases. Fréchet differential, multilinear mapping.

derivatives of the order n, the same fact is true for the product function $f_1 \dots f_m$: $\mathbb{I} \to \mathbb{R}$ and:

$$(f_1 \dots f_m)^{(n)} = \sum_{\alpha_1 + \dots + \alpha_m = n} \frac{n!}{\alpha_1! \dots \alpha_m!} f_1^{(\alpha_1)} \dots f_m^{(\alpha_m)}.$$

We can raise the issue of extending these formulas to the case of using functions defined between linear normed spaces.

Of course in this case it is necessary to find a "substitute" for the notion of product, but it will be necessary to specify the definition used for the extension of the notion of derivative.

To begin with, we have:

Remark 1.1. For the linear normed spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ let us denote by $(X, Y)^*$ the set of the linear and continuous mappings $T : X \to Y$. The set $(X, Y)^*$ can be organized as a linear normed space with the usual operations that are the mappings' addition and multiplication with a real number, and the norm that for $T \in (X, Y)^*$ is defined through:

$$||T|| = \sup_{h \in X, ||h||_X = 1} ||T(h)||_Y.$$

It is easy to show that if $(Y, \|\cdot\|_Y)$ is a Banach space, then the space $((X, Y)^*, \|\cdot\|)$ is a Banach space as well.

Let us recall the following definition.

Definition 1.2. Let be given the linear normed spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$, the set $D \subseteq X$, the function $f: D \to Y$ and the point $x \in int(D)$.

The considered function is differentiable in the point x in the Fréchet meaning that there exists a linear and continuous mapping $T_x \in (X, Y)^*$ and a mapping $R_x : X \to Y$ with:

$$\lim_{h \to \theta_X} \|R_x(h)\|_Y = 0$$

so that for every $h \in X$ the equality:

$$f(x+h) - f(x) = T_x(h) + ||h||_X R_x(h)$$

 $is \ true.$

Now we have:

Remark 1.3. For the linear normed spaces $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and a fixed element $x \in X$ let be the set:

$$\mathcal{D}_{x}(X,Y) = \{ f \mid \exists_{D} \ D \subseteq X, x \in int(D), f : D \to Y, f \ differentiable \ at \ x \}$$

We can easily prove that if $f \in \mathcal{D}_x(X,Y)$ the mapping $T_x \in (X,Y)^*$ exists with a unique determination. We will denote:

$$f'(x) := T_x$$

and this mapping will be called a Fréchet differential of the mapping f in the point x.

Starting from the **definition 1.2** and using the successive differentiation and mathematical induction, we can introduce differentials of an order n, where $n \in \mathbb{N}$.

In order to clarify these questions, for $m \in \mathbb{N}$ we denote by $(X^{(m)}, Y)^*$ the set of the *m*-linear and continuous mappings which are defined from X^m to *Y*, where $X^m = \underbrace{X \times \cdots \times X}_{\substack{m \text{ times} \\ \text{We have:}}}$.

Remark 1.4. For any $m \in \mathbb{N}$, the set $(X^{(m)}, Y)^*$ can also be organized as a linear normed space using the mapping's addition and multiplication with a number. The norm in $(X^{(m)}, Y)^*$ for $T \in (X^{(m)}, Y)^*$ is defined through:

$$||T|| = \sup_{h_1,\dots,h_n \in X, ||h_1||_X = \dots = ||h_n||_X = 1} ||T(h_1,\dots,h_n)||_Y,$$

in addition, if $(Y, \|\cdot\|_Y)$ is a Banach space, $(X^{(m)}, Y)^*$ is a Banach space as well.

Therefore we have:

Definition 1.5. In addition to the facts from the **definition 1.2** let us consider a number $n \in \mathbb{N}$, $n \geq 2$. If:

a): there exists a neighbourhood V of the points x, so that for every $y \in V \cap D$ it exists the differential of the order n-1 of the function f at the point y and $f^{(n-1)}(y) \in (X^{(n-1)}, Y)^*$,

b): the function $f^{(n-1)}: V \cap D \to (X^{(n-1)}, Y)^*$ is also differentiable at the point x,

then $(f^{(n-1)})'(x) \in (X^{(n)}, Y)^*$, mapping which we will denote by $f^{(n)}(x)$ is called the differential of the order n of the function f at the point x.

It is necessary to remind one more case. Let us consider the linear normed spaces:

$$(X_1, \|\cdot\|_{X_1}), \ldots, (X_m, \|\cdot\|_{X_m}), (Y, \|\cdot\|_Y)$$

and a mapping $T : X_1 \times \ldots \times X_m \to Y$. We can say that this mapping is an m-linear and continuous mapping, if this mapping is linear and continuous after every argument.

We denote by $(X_1, \ldots, X_m; Y)^*$ the set of all mappings that verify the aforementioned properties.

For
$$h = (h_1, ..., h_m) \in X_1 \times ... \times X_m$$
 we can define:
 $\|h\| = \max \{ \|h_1\|_{X_1}, ..., \|h_m\|_{X_m} \}$

and so $((X_1, \ldots X_m; Y)^*, \|\cdot\|)$ is a linear normed space. In the case if $(Y, \|\cdot\|_Y)$ is a Banach space, then $((X_1, \ldots X_m; Y)^*, \|\cdot\|)$ is a Banach space as well.

2. A generalization of Leibnitz's formula of derivation

Let us consider the linear normed spaces:

$$(X, \|\cdot\|_X), (Y_1, \|\cdot\|_{Y_1}), \dots, (Y_m, \|\cdot\|_{Y_m}), (Z, \|\cdot\|_Z),$$

the set $D \subseteq X$, the nonlinear mappings $f_i : D \to Y_i$; $i = \overline{1, m}$ and the m-linear mapping $L \in (Y_1, \ldots, Y_m; Z)^*$.

With the help of these elements we build the function:

$$F: D \to Z, \ F(x) = L(f_1(x), \dots, f_m(x)).$$
 (1)

Our goal is to conclude, in the hypothesis of the differentiability of the functions $f_i : D \to Y_i$; $i = \overline{1, m}$, on the differentiability of the function (1) establishing connections between the differentials.

To start with, we have the following:

Lemma 2.1. If the non-linear mappings $f_i : D \to Y_i$; $i = \overline{1, m}$, are differentiable at the point $x \in int(D)$, then the function (1) is also differentiable at the same point x and for any $h \in X$ we have the relation:

$$F'(x) h =$$

$$= \sum_{k=1}^{m} L(f_1(x), \dots, f_{k-1}(x), f'_k(x) h, f_{k+1}(x), \dots, f_m(x)).$$
(2)

Proof. From the differentiability of the functions $f_i : D \to Y_i$; $i = \overline{1, m}$ at the point $x \in int(D)$ we deduce the existence, for any $i \in \{1, 2, ..., m\}$, of the linear mappings $f'_i(x) \in (X, Y_i)^*$ and of the non-linear mappings $R_x^{(i)} : X \to Y_i$, so that for any $h \in X$ we have:

$$f_i(x+h) = f_i(x) + f'_i(x)h + ||h||_X R_x^{(i)}(h), \lim_{h \to \theta_X} \left\| R_x^{(i)}(h) \right\|_{Y_i} = 0.$$

So it is clear that:

$$F(x+h) = L(f_1(x+h), \dots, f_m(x+h))$$

is in fact the value of the mapping $L \in (Y_1, \ldots, Y_m; Z)^*$ on the arguments:

$$f_1(x) + f'_1(x)h + \|h\|_X R_x^{(1)}(h), \dots, f_m(x) + f'_m(x)h + \|h\|_X R_x^{(m)}(h).$$

In this way:

$$F(x+h) = L(f_1(x), \dots, f_m(x)) + + \sum_{k=1}^{m} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f_{k+1}(x), \dots, f_m(x)) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f_{k-1}(x), f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f'_k(x)h, f'_k(x)h, f'_k(x)h) + \frac{m}{2} L(f_1(x), \dots, f'_k(x)h) + \frac{m}{2} L($$

$$+ \|h\|_{X} \sum_{k=1}^{m} L\left(f_{1}(x), \dots, f_{k-1}(x), R_{x}^{(k)}(h), f_{k+1}(x), \dots, f_{m}(x)\right) + \sum_{k=2}^{m} \sum_{i_{1} < \dots < i_{k} \leq m} E_{i_{1},\dots,i_{k}}^{(k)}(f; x, h),$$

6	5

where $E_{i_1,\ldots,i_k}^{(k)}(f;x,h) \in \mathbb{Z}$ represents the value of the mapping $L \in (Y_1,\ldots,Y_m;\mathbb{Z})^*$ on the arguments $f_1(x),\ldots,f_m(x)$, with the exception of the positions $i_1,\ldots,i_k \in \{1,2,\ldots,m\}$ for which we have the arguments:

$$f'_{i_j}(x) h + \|h\|_X R_x^{(i_j)}(h), \ j = \overline{1,k}; \ k = \overline{2,m},$$

It is clear that if we define $F'(x) \in (X, Z)^*$, through the equality (2), and the mapping $R_x : X \to Z$ through:

$$R_{x}(h) = \begin{cases} \theta_{Z} & \text{for} \quad h = \theta_{X}, \\ P(x,h) + \frac{1}{\|h\|_{X}}Q(x,h) & \text{for} \quad h \neq \theta_{X}, \end{cases}$$

where we have denoted:

$$P(x,h) = \sum_{k=1}^{m} L\left(f_1(x), \dots, f_{k-1}(x), R_x^{(k)}(h), f_{k+1}(x), \dots, f_m(x)\right) \in \mathbb{Z}$$

and:

$$Q(x,h) = \sum_{k=2}^{m} \sum_{1 \le i_1 < \dots < i_k \le m} E_{i_1,\dots,i_k}^{(k)}(f;x,h) \in Z,$$

we will have:

$$F(x+h) - F(x) = F'(x)h + ||h||_X R_x(h).$$
(3)

It is clear that:

$$\|P(x,h)\|_{Z} \le \|L\| \sum_{k=1}^{m} \left(\left\| R_{x}^{(k)}(h) \right\|_{Y_{k}} \cdot \prod_{j=\overline{1,m}; j \neq k} \|f_{j}(x)\|_{Y_{j}} \right)$$

and from $\lim_{h\rightarrow\theta_{X}}\left\|R_{x}^{\left(k\right)}\left(h\right)\right\|_{Y_{k}}=0$ we deduce:

$$\lim_{h \to \theta_X} \|P(x,h)\|_Z = 0.$$
(4)

Concerning the expression of Q(x, h) we deduce:

$$\|Q(x,h)\|_{Z} \leq \sum_{k=2}^{m} \sum_{1 \leq i_{1} < \dots < i_{k} \leq m} \left\|E_{i_{1},\dots,i_{k}}^{(k)}(f;x,h)\right\|_{Z}$$

and for any $k \in \{2, 3, ..., m\}$ and $i_1, ..., i_k \in \{1, 2, ..., m\}$ with $1 \le i_1 < \dots < i_k \le m$ we have:

$$\begin{split} \left\| E_{i_{1},...,i_{k}}^{(k)}\left(f;x,h\right)\right\|_{Z} \leq \\ \leq \|L\| \cdot \prod_{j \in \{1,...,m\} \setminus \{i_{1},...,i_{k}\}} \|f_{j}\left(x\right)\|_{Y_{j}} \times \prod_{j=1}^{k} \left\|f_{i_{j}}'\left(x\right)h + \|h\|_{X} R_{x}^{(i_{j})}\left(h\right)\right\|_{Y_{i_{j}}} \leq \\ \leq \|L\| \cdot \|h\|_{X}^{k} \cdot \mathbf{C}_{i_{1},...,i_{k}}^{(k)}\left(x,h\right), \end{split}$$

where:

$$\mathbf{C}_{i_{1},...,i_{k}}^{(k)}\left(x,h\right) = \prod_{j \in \{1,...,m\} \setminus \{i_{1},...,i_{k}\}} \|f_{j}\left(x\right)\|_{Y_{j}} \times \prod_{j=1}^{k} \left(\left\|f_{i_{j}}'\left(x\right)\right\| + \left\|R_{x}^{(i_{j})}\left(h\right)\right\|_{Y_{i_{j}}}\right)$$

From the differentiability of the functions f_1, \ldots, f_m we deduce clearly that:

$$\lim_{h \to \theta_X} \mathbf{C}_{i_1,\dots,i_k}^{(k)}(x,h) = \prod_{j \in \{1,\dots,m\} \setminus \{i_1,\dots,i_k\}} \|f_j(x)\|_{Y_j} \times \prod_{j=1}^k \left\| f'_{i_j}(x) \right\|.$$
(5)

We have:

$$\|Q(x,h)\|_{Z} \le \|L\| \cdot \|h\|_{X} \sum_{k=2}^{m} \|h\|_{X}^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le m} \mathbf{C}_{i_{1},\dots,i_{k}}^{(k)}(x,h)$$

and from this relation we deduce for any $h \neq \theta_X$ the inequalities:

$$0 \le \|R_x(h)\|_Z \le \\ \le \|P(x,h)\|_Z + \|L\| \cdot \|h\|_X \sum_{k=2}^m \|h\|_X^{k-1} \sum_{1 \le i_1 < \dots < i_k \le m} \mathbf{C}_{i_1,\dots,i_k}^{(k)}(x,h)$$
(6)

From the relations (4) - (6) we deduce that:

$$\lim_{h \to \theta_X} \left\| R_x\left(h\right) \right\|_Z = 0. \tag{7}$$

The relations (3) and (7) indicate that the function (1) has a differential at the point $x \in int(D)$ and its value is given through the formula (2).

The lemma is proved. \Box

In order to pass to the expression of the differential of an order $n \in \mathbb{N}$ it is necessary to make certain specifications and to adopt certain notations.

To begin with, let be the set:

$$\mathbb{A}_{m,n} = \{ \alpha / \alpha = (\alpha_1, \dots, \alpha_m) \in (\mathbb{N} \cup \{0\})^m, \ \alpha_1 + \dots + \alpha_m = n \}.$$

In certain cases we can use the notation $|\alpha|$ for $\alpha_1 + \cdots + \alpha_m$.

Considering a finite set $K \subseteq \mathbb{N}$, for a number $p \in \mathbb{N}$ we can consider the set:

$$C_p(K) = \{i/i = (i_1, \dots, i_p) \in \mathbb{K}^p, i_1 < \dots < i_p\},\$$

evidently $\mathcal{C}_p(K)$ represents the set of all subsets with p elements of the set K.

Evidently in the case in which the set K has q elements and $p \leq q$, then the set $\mathcal{C}_p(K)$ has $\binom{q}{p} = \frac{q!}{p!(q-p)!}$ elements, and if p > q the set $\mathcal{C}_p(K)$ is a void set.

In the special case in which $K = \{1, 2, ..., n\}$, we will use the notation $C_{n,k}$ for $C_k(K)$, with $k \leq n$ and evidently this set has $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ elements.

Let us consider now the finite set $K \subseteq \mathbb{N}$ having *n* elements and we will build the sets $J_0, J_1, \ldots, J_m \subseteq K$ considering $J_0 = K$. Let us also consider for $m \in \mathbb{N}$ a system $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{A}_{m,n}$.

Starting from these elements let us make the following construction.

To start with, we choose a system $(i_1^{(1)}, \ldots, i_{\alpha_1}^{(1)}) \in \mathcal{C}_{\alpha_1}(J_0)$.

Let be now the set $J_1 = J_0 \setminus \{i_1^{(1)}, \ldots, i_{\alpha_1}^{(1)}\}$ that has $n - \alpha_1$ elements. We choose a new system:

$$\left(i_1^{(2)},\ldots,i_{\alpha_2}^{(2)}\right)\in\mathcal{C}_{\alpha_2}\left(J_1\right).$$

So there exist $\binom{n-\alpha_1}{\alpha_2} = \frac{(n-\alpha_1)!}{\alpha_2!(n-\alpha_1-\alpha_2)!}$ possibilities for the choice of this new system.

Further on, for the systems $(i_1^{(1)}, \ldots, i_{\alpha_1}^{(1)})$ and $(i_1^{(2)}, \ldots, i_{\alpha_2}^{(2)})$ that are chosen above and are fixed we consider the set $J_2 = J_1 \setminus \{i_1^{(2)}, \ldots, i_{\alpha_2}^{(2)}\}$ with $n - \alpha_1 - \alpha_2$ elements, then we choose a new system:

$$\left(i_1^{(3)},\ldots,i_{\alpha_3}^{(3)}\right)\in\mathcal{C}_{\alpha_3}\left(J_2\right),$$

existing $\binom{n-\alpha_1-\alpha_2}{\alpha_3} = \frac{(n-\alpha-\alpha_2)!}{\alpha_3!(n-\alpha_1-\alpha_2-\alpha_3)!}$ possibilities for the choice of this new system.

We continue in this manner using mathematical induction.

Thus for the systems $(i_1^{(1)}, \ldots, i_{\alpha_1}^{(1)}), \ldots, (i_1^{(k-1)}, \ldots, i_{\alpha_{k-1}}^{(k-1)})$ already chosen and fixed, we consider the set:

$$J_{k-1} = J_{k-2} \Big\langle \left\{ i_1^{(k-1)}, \dots, i_{\alpha_{k-1}}^{(k-1)} \right\} =$$
$$= \{1, 2, \dots, n\} \Big\backslash \left\{ i_1^{(1)}, \dots, i_{\alpha_1}^{(1)}, \dots, i_1^{(k-1)}, \dots, i_{\alpha_{k-1}}^{(k-1)} \right\},$$

that has $n - \alpha_1 - \cdots - \alpha_{k-1}$ elements and we choose the new system $\left\{i_1^{(k)}, \ldots, i_{\alpha_k}^{(k)}\right\} \in \mathcal{C}_{\alpha_k}(J_{k-1})$ existing $\binom{n-\alpha_1-\cdots-\alpha_{k-1}}{\alpha_k} = \frac{(n-\alpha_1-\cdots-\alpha_{k-1})!}{\alpha_k!(n-\alpha_1-\cdots-\alpha_{k-1}-\alpha_k)!}$ possibilities for the choice of the new system.

At the end of this process we have already chosen and fixed the systems:

$$(i_1^{(1)},\ldots,i_{\alpha_1}^{(1)}),\ldots,(i_1^{(m-1)},\ldots,i_{\alpha_{m-1}}^{(m-1)})$$

we consider the set:

$$J_{m-1} = J_{m-2} \setminus \left\{ i_1^{(m-1)}, \dots, i_{\alpha_{m-1}}^{(m-1)} \right\} =$$
$$= \{1, 2, \dots, n\} \setminus \left\{ i_1^{(1)}, \dots, i_{\alpha_1}^{(1)}, \dots, i_1^{(m-1)}, \dots, i_{\alpha_{m-1}}^{(m-1)} \right\}$$

and we choose the new system $(i_1^{(m)}, \ldots, i_{\alpha_m}^{(m)}) \in \mathcal{C}_{\alpha_m}(J_{m-1})$ existing

$$\binom{n-\alpha_1-\cdots-\alpha_{m-1}}{\alpha_m} = \frac{(n-\alpha_1-\cdots-\alpha_{m-1})!}{\alpha_m! (n-\alpha_1-\cdots-\alpha_{m-1}-\alpha_m)!}$$

possibilities for the choice of the new system.

If we consider:

$$J_m = J_{m-1} \setminus \left\{ i_1^{(m)}, \dots, i_{\alpha_m}^{(m)} \right\}$$

this set has $n - \alpha_1 - \cdots - \alpha_{m-1} - \alpha_m = 0$ elements, therefore $J_m = \emptyset$ and so the process is finished.

We denote by

$$I = \left(\left(i_1^{(1)}, \dots, i_{\alpha_1}^{(1)} \right), \dots, \left(i_1^{(m)}, \dots, i_{\alpha_m}^{(m)} \right) \right)$$

a system composed of systems obtained through the process already presented.

For the numbers $m, n \in \mathbb{N}$ and $\alpha \in \mathbb{A}_{m,n}$ fixed, let us denote through $\mathcal{A}_{m,n}^{[\alpha]}(K)$ the set of all systems built in the manner already indicated.

It is clear that the number of elements of the set $\mathcal{A}_{m,n}^{[\alpha]}(K)$ is $\frac{n!}{\alpha_1! \dots \alpha_m!}$.

In the case in which $K = \{1, 2, ..., n\}$, we will use the notation $\mathcal{A}_{m,n}^{[\alpha]}$ for $\mathcal{A}_{m,n}^{[\alpha]}(\{1, 2, ..., n\})$.

We can now enunciate the following:

Remark 2.2. With the hypotheses of the lemma 2.1 the relation concerning the value of F'(x) h can be written under the form:

$$F'(x)h = \sum_{\alpha \in \mathbb{A}_{m,1}} \sum_{I \in \mathcal{A}_{m,1}^{[\alpha]}} L\left(f_1^{(\alpha_1)}(x)h_{i_1^{(1)}}\dots h_{i_{\alpha_1}^{(1)}},\dots, f_m^{(\alpha_m)}(x)h_{i_1^{(m)}}\dots h_{i_{\alpha_m}^{(m)}}\right)$$

with $h_1 = h$.

Indeed, the fact that $\alpha \in \mathbb{A}_{m,1}$ means that $\alpha \in (\alpha_1, \ldots, \alpha_m) \in (\mathbb{N} \cup \{0\})^m$ (therefore $\alpha_i \in \mathbb{N} \cup \{0\}$ for any $i = \overline{1, m}$) with $|\alpha| = \alpha_1 + \cdots + \alpha_m = 1$, so we deduce that there exists a number $k \in \{1, 2, \ldots, m\}$, so that:

$$\alpha_i = \begin{cases} 0 & \text{for } i \neq k, \\ \\ 1 & \text{for } i = k, \end{cases}$$

so the only possibility for the choice of

$$I = \left(\left(i_1^{(1)}, \dots, i_{\alpha_1}^{(1)} \right), \dots, \left(i_1^{(m)}, \dots, i_{\alpha_m}^{(m)} \right) \right) = \left(i_1^{(k)}, \dots, i_{\alpha_k}^{(k)} \right) = i_1^{(k)} \in \mathcal{A}_{m,1}^{[\alpha]}$$

is $i_1^{(k)}$)1 and because $h_1 = h$, it is clear that:

$$L\left(f_{1}^{(\alpha_{1})}(x) h_{i_{1}^{(1)}} \dots h_{i_{\alpha_{1}}^{(1)}}, \dots, f_{m}^{(\alpha_{m})}(x) h_{i_{1}^{(m)}} \dots h_{i_{\alpha_{m}}^{(m)}}\right) = L\left(f_{1}(x), \dots, f_{k-1}(x), f_{k}'(x) h, f_{k+1}(x), \dots, f_{m}(x)\right),$$

which justifies the proposition from this remark.

Taking into account the **remark 2.2** as well, we are now able to establish the theorem concerning the values of the differential of the order n of the non-linear mapping (1).

Thus we have:

Theorem 2.3. If for $n \in \mathbb{N}$ the non-linear mappings $f_i : D \to Y_i$, $i = \overline{1, m}$ admit a differential of the order n at the point $x \in int(D)$, then the non-linear mapping (1) 70

also admits a differential of the order n at the same point x and:

$$F^{(n)}(x) h_1 \dots h_n =$$

$$= \sum_{\alpha \in \mathbb{A}_{m,n}} \sum_{I \in \mathcal{A}_{m,n}^{[\alpha]}} L\left(f_1^{(\alpha_1)}(x) h_{i_1^{(1)}} \dots h_{i_{\alpha_1}^{(1)}}, \dots, f_m^{(\alpha_m)}(x) h_{i_1^{(m)}} \dots h_{i_{\alpha_m}^{(m)}}\right)$$

Proof. We will proceed through mathematical induction after $n \in \mathbb{N}$.

For n = 1 the proposition is true on account of the **lemma 2.1** and of the remark **2.2**.

We suppose therefore that the property in discussion is true for a number $n \in \mathbb{N}$. We will prove that this property is true for n substituted by n + 1.

Therefore we consider that the non-linear mappings $f_i : D \to Y_i$, $i = \overline{1, m}$ admit at the point $x \in int(D)$ differentials with the order n + 1. On the basis of the definition there exists a neighbourhood V of the point x, so that the functions $f_i : D \to Y_i$, $i = \overline{1, m}$ admit differentials of the order n at every point $u \in V \cap D$.

On the basis of the hypothesis of the induction we deduce that the function $F: D \to Z$ defined through (1) also admits a differential of the order n at the point $u \in V \cap D$ and the equality in the conclusion of the theorem takes place with x replaced by u.

Choosing therefore $h_1 \in X$ so that $x + h_1 \in V \cap D$ and arbitrarily $h_2, \ldots, h_n, h_{n+1} \in X$ the equality in the conclusion of the theorem will be true for h_1, \ldots, h_n replaced by h_2, \ldots, h_{n+1} and $\mathcal{A}_{m,n}^{[\alpha]}$ by $\mathcal{A}_{m,n}^{[\alpha]}(\{2, \ldots, n+1\})$ and there will be another similar equality but with x replaced by $x + h_1$.

Subtracting these equalities member by member we obtain:

$$\left[F^{(n)}(x+h_{1})-F^{(n)}(x)\right]h_{2}\dots h_{n+1} = \\ = \sum_{\alpha \in \mathbb{A}_{m,n}} \sum_{I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2,\dots,n+1\})} \mathcal{L}_{\alpha}^{(I)}(x;h_{1},h_{2},\dots,h_{n+1}),$$

where:

$$\begin{aligned} \mathcal{L}_{\alpha}^{(I)}\left(x;h_{1},h_{2},\ldots,h_{n+1}\right) = \\ &= L\left(f_{1}^{(\alpha_{1})}\left(x+h_{1}\right)h_{i_{1}^{(1)}}\ldots h_{i_{\alpha_{1}}^{(1)}},\,\ldots\,,\,f_{m}^{(\alpha_{m})}\left(x+h_{1}\right)h_{i_{1}^{(m)}}\ldots h_{i_{\alpha_{m}}^{(m)}}\right) - \\ &- L\left(f_{1}^{(\alpha_{1})}\left(x\right)h_{i_{1}^{(1)}}\ldots h_{i_{\alpha_{1}}^{(1)}},\,\ldots\,,\,f_{m}^{(\alpha_{m})}\left(x\right)h_{i_{1}^{(m)}}\ldots h_{i_{\alpha_{m}}^{(m)}}\right),\end{aligned}$$

in the last expression $\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{A}_{m,n}$ and:

$$I = \left(\left(i_1^{(1)}, \dots, i_{\alpha_1}^{(1)} \right), \dots, \left(i_1^{(m)}, \dots, i_{\alpha_m}^{(m)} \right) \right) \in \mathcal{A}_{m,n}^{[\alpha]} \left(\{ 2, \dots, n+1 \} \right).$$
(8)

Let be the number $i \in \{1, 2, ..., m\}$. From the existence of the Fréchet differential of the order n + 1 of the function $f_i : D \to Y_i$ at the point $x \in int(D)$ we deduce the existence of these differentials for every $k \leq n + 1$.

From this fact we deduce that for any $k \leq n$ and $h_1 \in X$ there exists $R_x^{(k,i)}$: $X \to (X^{(k)}, Y_i)^*$ with $\lim_{h_1 \to \theta_X} \left\| R_x^{(k,i)}(h_1) \right\| = 0$ so that:

$$f_i^{(k)}(x+h_1) = f_i^{(k)}(x) + f_i^{(k+1)}(x)h_1 + \|h_1\|_X R_x^{(k,i)}(h_1).$$
(9)

From $\alpha \in \mathbb{A}_{m,n}$ we deduce that $\alpha = (\alpha_1, \ldots, \alpha_m) \in (\mathbb{N} \cup \{0\})^m$ and $|\alpha| = \alpha_1 + \cdots + \alpha_m = n$, therefore $\alpha_i \in \{0, 1, \ldots, n\}$. So the relation (9) is true for $k = \alpha_i$.

Using a similar process with that from the **lemma 2.1** and taking into account the **remark 2.2**, we obtain for $\alpha \in \mathbb{A}_{m,n}$ and $I \in \mathcal{A}_{m,n}^{[\alpha]}$ the equality:

$$\mathcal{L}_{\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n+1}) =$$

$$= \sum_{\beta \in \mathbb{A}_{m,1}} \sum_{J \in \mathcal{A}_{m,1}^{[\beta]}} L\left(T_{1}^{(\alpha,\beta;I,J)},\ldots,T_{m}^{(\alpha,\beta;I,J)}\right) +$$

$$+ \|h_{1}\|_{X} \mathbf{R}_{\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n+1}),$$
(10)

with $\beta \in \mathbb{A}_{m,1}$ (therefore $\beta = (\beta_1, \dots, \beta_m) \in (\mathbb{N} \cup \{0\})^m$ and $|\beta| = \beta_1 + \dots + \beta_m = 1$), while:

$$J = \left(\left(j_1^{(1)}, \dots, j_{\beta_1}^{(1)} \right), \dots, \left(j_1^{(m)}, \dots, j_{\beta_m}^{(m)} \right) \right) \in \mathcal{A}_{m,1}^{[\beta]} = \mathcal{A}_{m,1}^{[\beta]} \left(\{1\} \right), \quad (11)$$

where for $k = \overline{1, m}$ we have denoted:

$$\begin{split} T_k^{(\alpha,\beta;I,J)} &= \left(f_k^{(\alpha_k)}\right)^{(\beta_k)}(x) \, h_{j_1^{(k)}} \dots h_{j_{\beta_k}^{(k)}} h_{i_1^{(k)}} \dots h_{i_{\alpha_k}^{(k)}} = \\ &= f_k^{(\alpha_k + \beta_k)}(x) \, h_{j_1^{(k)}} \dots h_{j_{\beta_k}^{(k)}} h_{i_1^{(k)}} \dots h_{i_{\alpha_k}^{(k)}}. \end{split}$$

The element $\mathbf{R}_{\alpha}^{(I)}(x;h_1,h_2,\ldots,h_{n+1}) \in Z$ has the value θ_Z in the case in which $h_1 = \theta_X$ and the value that is deductible from (10) for $h_1 \neq \theta_X$.

So:

$$\left[F^{(n)}(x+h_{1})-F^{(n)}(x)\right]h_{2}\dots h_{n+1} =$$

$$= \mathcal{E}\left(x;h_{1},h_{2},\dots,h_{n},h_{n+1}\right) + \|h_{1}\|_{X} \mathcal{R}\left(x;h_{1},h_{2},\dots,h_{n},h_{n+1}\right),$$
(12)

where:

$$\mathcal{E}(x; h_1, h_2, \dots, h_n, h_{n+1}) =$$

$$= \sum_{\alpha \in \mathbb{A}_{m,n}} \sum_{I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2, \dots, n+1\})} \sum_{\beta \in \mathbb{A}_{m,1}} \sum_{J \in \mathcal{A}_{m,1}^{[\beta]}} L\left(T_1^{(\alpha, \beta; I, J)}, \dots, T_m^{(\alpha, \beta; I, J)}\right),$$
(13)

while:

$$\mathcal{R}(x; h_1, h_2, \dots, h_n, h_{n+1}) = \begin{cases} \theta_Z, & \text{for } h_1 = \theta_X, \\ \frac{\left[F^{(n)}(x+h_1) - F^{(n)}(x)\right]h_2 \dots h_{n+1} - \mathcal{E}(x; h_1, \dots, h_{n+1})}{\|h_1\|_X} & \text{for } h_1 \neq \theta_X. \end{cases}$$

It is clear that for $h_1 \neq \theta_X$ we have:

$$\mathcal{R}(x;h_{1},h_{2},\ldots,h_{n},h_{n+1}) =$$

$$= \sum_{\alpha \in \mathbb{A}_{m,n}} \sum_{I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2,\ldots,n+1\})} \mathbf{R}_{\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n},h_{n+1}).$$
(14)

Now let be:

$$\gamma = (\gamma_1, \dots, \gamma_m) = \alpha + \beta = (\alpha_1 + \beta_1, \dots, \alpha_m + \beta_m) \in (\mathbb{N} \cup \{0\})^m.$$

Because $|\alpha|=n$ and $|\beta|=1$ we deduce that:

$$|\gamma| = \gamma_1 + \dots + \gamma_m = (\alpha_1 + \dots + \alpha_m) + (\beta_1 + \dots + \beta_m) = |\alpha| + |\beta| = n + 1,$$

73

therefore $\gamma \in \mathbb{A}_{m,n+1}$.

For the system I which verifies (8) and the system J which verifies (11), let us introduce:

$$\left(s_{1}^{(k)},\ldots,s_{\gamma_{k}}^{(k)}\right) = \left(j_{1}^{(k)},\ldots,j_{\beta_{k}}^{(k)},i_{1}^{(k)},\ldots,i_{\alpha_{k}}^{(k)}\right); \quad k = \overline{1,m}$$

and:

that:

$$S = \left(\left(s_1^{(1)}, \dots, s_{\gamma_1}^{(1)} \right), \dots, \left(s_1^{(m)}, \dots, s_{\gamma_m}^{(m)} \right) \right).$$
(15)

 $i \neq r$,

Because $\beta \in \mathbb{A}_{m,1}$ we deduce that there exists a number $r \in \{1, \ldots, m\}$ so

$$\beta_i = \begin{cases} 0 & \text{for} \quad i \neq r, \\ 1 & \text{for} \quad i = r, \end{cases}$$

so the only possibility for the choosing of the index system:

$$J = \left(\left(j_1^{(1)}, \dots, j_{\beta_1}^{(1)} \right), \dots, \left(j_1^{(m)}, \dots, j_{\beta_m}^{(m)} \right) \right) = \left(j_1^{(r)}, \dots, j_{\beta_r}^{(r)} \right) = \\ = \left(j_1^{(r)} \right) \in \mathcal{A}_{m,1}^{[\beta]} \left(\{1\} \right),$$

is $j_1^{(k)} = 1$.

Form here we deduce that the systems from S are identical with a system $I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2,\ldots,n+1\})$ (having the form (11)) except the subsystem situated on the position r. To this subsystem we add the element 1 on its first position. This indicates that $S \in \mathcal{A}_{m,n+1}^{[\gamma]}$.

Through the aforementioned process starting with the elements $\alpha \in \mathbb{A}_{m,n}$, $\beta \in \mathbb{A}_{m,1}, I \in \mathcal{A}_{m,n}^{[\alpha]}\left(\{2,\ldots,n+1\}\right) \text{ and } J \in \mathcal{A}_{m,1}^{[\beta]}\left(\{1\}\right) \text{ we obtain a } \gamma \in \mathbb{A}_{m,n+1}$ together with $S \in \mathcal{A}_{m,n+1}^{[\gamma]}$.

The inverted process starting from $\gamma \in \mathbb{A}_{m,n+1}$ together with $S \in \mathcal{A}_{m,n+1}^{[\gamma]}$ exists with a unique determination, a $\alpha \in \mathbb{A}_{m,n}$ together with $I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2,\ldots,n+1\})$ and $J \in \mathcal{A}_{m,1}^{[\beta]}(\{1\})$, so that we obtain the systems from S through (15), the systems I and J having the forms (8) and (11) respectively.

So it is clear that for any $k = \overline{1, m}$ we have:

$$T_{k}^{(\alpha,\beta;I,J)} = f_{k}^{(\gamma_{k})}(x) h_{s_{1}^{(k)}} \dots h_{s_{\gamma_{k}}^{(k)}}$$

and from (13) we deduce that:

$$\mathcal{E}(x;h_1,h_2,\ldots,h_n,h_{n+1}) = \sum_{\gamma \in \mathbb{A}_{m,n+1}} \sum_{S \in \mathcal{A}_{m,n+1}^{[\gamma]}} \mathbf{L}_{\gamma}^{(S)},$$
(16)

where:

$$\mathbf{L}_{\gamma}^{(S)} = L\left(f_{1}^{(\gamma_{1})}\left(x\right)h_{s_{1}^{(1)}}\dots h_{s_{\gamma_{1}}^{(1)}},\dots, f_{m}^{(\gamma_{m})}\left(x\right)h_{s_{1}^{(m)}}\dots h_{s_{\gamma_{m}}^{(m)}}\right).$$
 (17)

Let us denote:

$$\mathcal{H}_{n,X} = \{ h/h = (h_1, \dots, h_n) \in X^n, \|h_1\|_X = \dots = \|h_n\|_X = 1 \}$$

and let us now evaluate $\|\mathcal{R}(x; h_1, h_2, \dots, h_n, h_{n+1})\|_Z$ supposing that $(h_2, \dots, h_{n+1}) \in \mathcal{H}_{n,X}$ which means that $\|h_2\|_X = \dots = \|h_{n+1}\|_X = 1$.

First we notice that for any $h_1 \neq \theta_X$, $\alpha \in \mathbb{A}_{m,n}$ and $I \in \mathcal{A}_{m,n}^{[\alpha]}$ we have:

$$\mathbf{R}_{\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n+1}) =$$

$$= \sum_{j=1}^{m} \mathbf{G}_{j,\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n+1}) +$$

$$+ \frac{1}{\|h_{1}\|_{X}} \sum_{k=2}^{m} \sum_{1 \leq r_{1} < \cdots < r_{k} \leq m} \mathbf{E}_{r_{1},\ldots,r_{k}}^{(k,\alpha,I)}(x;h_{1},h_{2},\ldots,h_{n+1}).$$
(18)

In (18) $\mathbf{G}_{j,\alpha}^{(I)}(x;h_1,h_2,\ldots,h_{n+1}) \in Z$ for $j \in \{1,2,\ldots,m\}$ represents the value of the mapping $L \in (Y_1,\ldots,Y_m;Z)^*$ with the arguments:

$$f_{q}^{(\alpha_{q})}(x) h_{i_{1}^{(q)}} \dots h_{i_{\alpha_{q}}^{(q)}} \in Y_{q}; \ q = \overline{1, m},$$

except the argument of the rank j, this argument being:

$$R_x^{(\alpha_j,j)}(h_1) h_{i_1^{(j)}} \dots h_{i_{\alpha_j}^{(j)}}$$

So:

$$\left\|\mathbf{G}_{j,\alpha}^{(I)}(x;h_1,h_2,\ldots,h_{n+1})\right\|_{Z} \le \|L\| \cdot \left\|R_x^{(\alpha_j,j)}(h_1)\right\| \prod_{q=\overline{1,m} q \ne k} \left\|f_q^{(\alpha_q)}(x)\right\|,$$

here we take into account that $I \in \mathcal{A}_{m,n}^{[\alpha]}(\{2,\ldots,n+1\})$, therefore:

$$\prod_{q=1}^{m} \left(\left\| h_{i_{1}^{(q)}} \right\|_{X} \dots \left\| h_{i_{\alpha_{q}}^{(q)}} \right\|_{X} \right) = \|h_{2}\|_{X} \dots \|h_{n+1}\|_{X} = 1.$$

1	7	5

In the same relation (18) for $k \in \{2, \ldots, n+1\}$ and $r_1, \ldots, r_k \in \mathbb{N}$ with $1 \leq r_1 < \cdots < r_k \leq m$ the expression $\mathbf{E}_{r_1,\ldots,r_k}^{(k,\alpha,I)}(x;h_1,h_2,\ldots,h_{n+1})$ is the value of the mapping $L \in (Y_1,\ldots,Y_m;Z)^*$ with the arguments $f_q^{(\alpha_q)}(x)h_{i_1^{(q)}}\ldots h_{i_{\alpha_q}^{(q)}} \in Y_q; q = \overline{1,m}$ except the arguments situated in the position r_1,\ldots,r_k where the arguments:

$$\left[f_{p}^{(\alpha_{p}+1)}(x)h_{1}+\|h_{1}\|_{X}R_{x}^{(\alpha_{p},p)}(h_{1})\right]h_{i_{1}^{(p)}}\dots h_{i_{\alpha_{p}}^{(p)}}; \quad p \in \{r_{1},\dots,r_{k}\}$$

appear.

$$\left\| \mathbf{E}_{r_1,\dots,r_k}^{(k,\alpha,I)}\left(x;h_1,h_2,\dots,h_{n+1}\right) \right\| \leq \|h_1\|_X^k \times \|L\| \times \prod_{q \in \{1,\dots,m\} \setminus \{r_1,\dots,r_k\}} \left\| f_q^{(\alpha_q)}\left(x\right) \right\| + \left\| R_x^{(\alpha_{r_q},r_q)}\left(h_1\right) \right\| \right) \times \prod_{q \in \{1,\dots,m\} \setminus \{r_1,\dots,r_k\}} \left\| f_q^{(\alpha_q)}\left(x\right) \right\|.$$

Therefore we can write that:

$$\left\|\mathbf{R}_{\alpha}^{(I)}(x;h_{1},h_{2},\ldots,h_{n+1})\right\|_{Z} \leq \|L\| \mathbf{C}_{\alpha}^{(I)}(x,h_{1})$$
(19)

where:

$$\mathbf{C}_{\alpha}^{(I)}(x,h_{1}) = \sum_{k=1}^{m} \left(\left\| R_{x}^{(\alpha_{r_{k}},r_{k})}(h_{1}) \right\| \times \prod_{q=\overline{1,m} \ q \neq k} \left\| f_{q}^{(\alpha_{q})}(x) \right\| \right) + \sum_{k=2}^{m} \left\| h_{1} \right\|_{X}^{k-1} \times \sum_{1 \leq r_{1} < \dots < r_{k} \leq m} \mathbf{D}_{r_{1},\dots,r_{k}}^{(k,\alpha,I)}(x,h_{1}),$$

while for $k \in \{2, ..., m\}$ and $r_1, ..., r_k \in \mathbb{N}$ with $1 \le r_1 < \cdots < r_k \le m$ we have:

$$\mathbf{D}_{r_{1},...,r_{k}}^{(k,\alpha,I)}(x,h_{1}) =$$

$$= \prod_{q=1}^{k} \left(\left\| f_{r_{q}}^{(\alpha_{r_{q}}+1)}(x) \right\| + \left\| R_{x}^{(\alpha_{r_{q}},r_{q})}(h_{1}) \right\| \right) \times \prod_{q \in \{1,...,m\} \setminus \{r_{1},...,r_{k}\}} \left\| f_{q}^{(\alpha_{q})}(x) \right\|.$$

Thus, it is clear from the hypotheses on account of which for the specified values of k and of r_1, \ldots, r_k we have:

$$\lim_{h_1 \to \theta_X} \mathbf{D}_{r_1, \dots, r_k}^{(k, \alpha, I)}(x, h_1) = \prod_{q=1}^k \left\| f_{r_q}^{(\alpha_{r_q} + 1)}(x) \right\| \cdot \prod_{q \in \{1, \dots, m\} \setminus \{r_1, \dots, r_k\}} \left\| f_q^{(\alpha_q)}(x) \right\|,$$

that for any $\alpha \in \mathbb{A}_{m,n}$ and $I \in \mathcal{A}_{m,n}^{[\alpha]}$ we have:

$$\lim_{h \to \theta_X} \mathbf{C}_{\alpha}^{(I)}\left(x, h_1\right) = 0$$

and so, in the same situation as in (19) we deduce that:

$$\lim_{h_1 \to \theta_X} \sup_{(h_2, \dots, h_{n+1}) \in \mathcal{H}_{n,X}} \|\mathcal{R}(x; h_1, h_2, \dots, h_{n+1})\|_Z = 0.$$
(20)

We define the mapping:

$$F^{(n+1)}(x) \in \left(X^{(n+1)}, Z\right)^{*},$$

$$F^{(n+1)}(x) h_{1}h_{2} \dots h_{n+1} = \mathcal{E}\left(x; h_{1}, h_{2}, \dots, h_{n+1}\right),$$
(21)

and it is clear that if we define $R_x(h_1) \in (X^{(n)}, Z)^*$ through:

$$R_{x}(h_{1}) = \begin{cases} \Theta_{n} & ; h_{1} = \theta_{X} \\ \frac{F^{(n)}(x+h_{1}) - F^{(n)}(x) - F^{(n+1)}(x)h_{1}}{\|h_{1}\|_{X}} & ; h_{1} \neq \theta_{X} \end{cases}$$

we have in $(X^{(n)}, Z)^*$ the equality:

$$F^{(n)}(x+h_1) - F^{(n)}(x) = F^{(n+1)}(x)h_1 + \|h_1\|_X R_x(h_1).$$
(22)

In the same time for $h_1 \neq \theta_X$ we have:

$$\|R_{x}(h_{1})h_{2}\dots h_{n+1}\|_{Z} \leq \\ \leq \frac{\|\left[F^{(n)}(x+h_{1})-F^{(n)}(x)\right]h_{2}\dots h_{n+1}-F^{(n+1)}(x)h_{1}h_{2}\dots h_{n+1}\|_{Z}}{\|h_{1}\|_{X}} = \\ = \frac{\|\left[F^{(n)}(x+h_{1})-F^{(n)}(x)\right]h_{2}\dots h_{n+1}-\mathcal{E}(x;h_{1},h_{2},\dots,h_{n+1})\|_{Z}}{\|h_{1}\|_{X}} = \\ = \|\mathcal{R}(x;h_{1},h_{2},\dots,h_{n+1})\|_{Z},$$

therefore:

$$0 \le \|R_x(h_1)\| = \sup_{(h_2,\dots,h_{n+1})\in\mathcal{H}_{n,X}} \|R_x(h_1)h_2\dots h_{n+1}\|_Z \le$$
$$\le \sup_{(h_2,\dots,h_{n+1})\in\mathcal{H}_{n,X}} \|\mathcal{R}(x;h_1,h_2,\dots,h_{n+1})\|_Z.$$

From here, also using the relation (20), we deduce that:

$$\lim_{h \to \theta_X} \|R_x(h_1)\| = 0.$$
(23)

From the relations (22) and (23) we deduce that the mapping $F: D \to Z$ has a Fréchet differential of the order n + 1 at the point $x \in int(D)$, the expression of the mapping $F^{(n+1)}(x) \in (X^{(n+1)}, Z)^*$ being specified through (21), therefore on account of the obtained expression (16) for $\mathcal{E}(x; h_1, h_2, \ldots, h_{n+1})$ we have:

$$F^{(n+1)}(x) h_1 \dots h_{n+1} =$$

$$= \sum_{\gamma \in \mathbb{A}_{m,n+1}} \sum_{S \in \mathcal{A}_{m,n+1}^{[\gamma]}} L\left(f_1^{(\gamma_1)}(x) h_{s_1^{(1)}} \dots h_{s_{\gamma_1}^{(1)}}, \dots, f_m^{(\gamma_m)}(x) h_{s_1^{(m)}} \dots h_{s_{\gamma_m}^{(m)}}\right).$$

The aforementioned assertion together with its corresponding equality indicates that the property expressed through this theorem is true for any $n \in \mathbb{N}$ replaced by n + 1.

On account of the principle of mathematical induction this property is true for any $n \in \mathbb{N}$.

The theorem is proved. \Box

Remark 2.4. In the case of m = 2, case in which $L \in (L_1, L_2; Z)^*$, $f : D \to Y_1$, $g : D \to Y_2$ where $D \subseteq X$ and $x \in int(D)$, in the hypothesis of the existence of the differentials with the order n of the considered functions at the point x, it results the existence of the differential with the order n of the function $F : D \to Z$, F(x) = L(f(x), g(x)) together with the equality:

$$F^{(n)}(x) h_1 \dots h_n = \sum_{k=0}^n \sum_{i \in \mathcal{C}_{m,k}} L\left(f^{(k)}(x) h_{i_1} \dots h_{i_k}, g^{(n-k)}(x) h_{j_1} \dots h_{j_{n-k}}\right)$$
(24)

where we have denoted $i = (i_1, \ldots, i_k) \in \mathcal{C}_{m,k}$ and:

$$\{j_1,\ldots,j_{n-k}\}\in\{1,2,\ldots,n\}\setminus\{i_1,\ldots,i_k\}$$

with $j_1 < \cdots < j_{n-k}$.

Indeed, in this case:

$$\mathbb{A}_{2,1} = \left\{ \alpha / \alpha = (\alpha_1, \alpha_2) \in (\mathbb{N} \cup \{0\})^2, \ \alpha_1 + \alpha_2 = n \right\} = \\ = \left\{ (k, n - k) / k = \overline{0, n} \right\}$$

and the set $\mathcal{A}_{2,n}^{[\alpha]} = \mathcal{A}_{2,n}^{(k,n-k)}$ is made of a pair of disjunct systems, the first system has k elements and the second n-k elements. If we put together the elements from these systems we obtain the set $\{1, 2, \ldots, n\}$.

If we denote this pair of systems from $\mathcal{A}_{2,n}^{(k,n-k)}$ by:

$$(i,j) = ((i_1,\ldots,i_k),(j_1,\ldots,j_{n-k}))$$

because $1 \leq i_1 < \cdots < i_k \leq n$ and the system (j_1, \ldots, j_{n-k}) is obtained in the aforementioned manner, then $i \in \mathcal{C}_{n,k}$ and we also obtain the equality (24).

Remark 2.5. In the case when $h_1 = \cdots = h_n = h \in X$ we have for the equality from the conclusion of the **theorem 2.3** the form:

$$F^{(n)}(x)h^{n} = \sum_{\alpha \in \mathbb{A}_{m,n}} \frac{n!}{\alpha_{1}! \dots \alpha_{m}!} L\left(f_{1}^{(\alpha_{1})}(x)h^{\alpha_{1}}, \dots, f_{m}^{(\alpha_{m})}(x)h^{\alpha_{m}}\right)$$
(25)

and for the equality (24) we have the form:

$$F^{(n)}(x)h^{n} = \sum_{k=0}^{n} \binom{n}{k} L\left(f^{(k)}(x)h^{k}, g^{(n-k)}(x)h^{n-k}\right).$$
 (26)

These relations are evident because the number of elements of the set $\mathcal{A}_{m,n}^{[\alpha]}$ is $\frac{n!}{\alpha_1!...\alpha_m!}$, while the number of elements of the set $\mathcal{C}_{n,k}$ is $\frac{n!}{k!(n-k)!} = \binom{n}{k}$. In the aforementioned writings it is clear that $f^{(k)}(x) h^k$ means:

$$f^{(k)}(x)(\underbrace{h,\ldots,h}_{k \text{ times}}).$$

3. An application to the differential of certain composed functions

Let us consider the number $m \in \mathbb{N}$, the linear normed spaces:

$$(X, \|\cdot\|_X), (Y_1, \|\cdot\|_{Y_1}), \dots, (Y_m, \|\cdot\|_{Y_m}), (Z, \|\cdot\|_Z),$$

the set $D \subseteq X$ and the mappings:

$$U_i: D \to Y_i, \ i = \overline{1, m}; \quad W: D \to (Y_1, \dots, Y_m; Z)^*.$$

Using the aforemationed mappings we consider the composed mapping:

$$G: D \to Z, \ G(x) = [W(x)](U_1(x), \dots, U_m(x)).$$
 (27)

Concerning the mapping (27), we have the following proposition:

Proposition 3.1. If for an $n \in \mathbb{N}$ the mappings $W : D \to (Y_1, \ldots, Y_m; Z)^*$ and $U_i : D \to Y_i$; $i = \overline{1, m}$ admit Fréchet differentials with the order n at the point $x \in int(D)$, then the mapping $G : D \to Z$ defined through (27) also admits a Fréchet differential of the order n at the same point x, and for any $h_1, \ldots, h_n \in X$ we have the equality:

$$G^{(n)}(x) h_{1} \dots h_{n} =$$

$$= \sum_{k=0}^{n} \sum_{\alpha \in \mathbb{A}_{m,n-k}} \sum_{S \in \mathcal{C}_{n,k}} \sum_{I \in \mathcal{A}_{m,n-k}^{[\alpha]}(M_{n,k}(S))} E_{k,\alpha}^{(S,I)}(W,U;x;h_{1},\dots,h_{n})$$
(28)

where $U = (U_1, \ldots, U_m)$ and $E_{k,\alpha}^{(S,I)}(W,U;x;h_1, \ldots, h_n)$ is

$$\left[W^{(k)}(x)h_{s_1}\dots h_{s_k}\right]\left(U_1^{(\alpha_1)}(x)h_{i_1^{(1)}}\dots h_{i_{\alpha_1}^{(1)}},\dots, U_m^{(\alpha_m)}(x)h_{i_1^{(m)}}\dots h_{i_{\alpha_m}^{(m)}}\right)$$
(29)

where for $S = (s_1, \ldots, s_k) \in \mathcal{C}_{n,k}$ we have denoted:

$$M_{n,k}(S) = \{1, \ldots, n\} \setminus \{s_1, \ldots, s_k\}.$$

Proof. We will consider the mapping:

$$L: (Y_1, \ldots, Y_m; Z)^* \times Y_1 \times \cdots \times Y_m \to Z, \ L(T; y_1, \ldots, y_m) = T(y_1, \ldots, y_m)$$

where $y_i \in Y_i$ with $i = \overline{1, m}$ while $T \in (Y_1, \dots, Y_m; Z)^*$.

From the definition of the operations in the set of mappings we deduce the linearity of the mapping L after the first argument, while from the linearity of the mapping $T: Y_1 \times \cdots \times Y_m \to Z$ we deduce the linearity of the mapping L after the last m arguments.

It is also clear that:

 $\|L(T; y_1, \dots, y_m)\|_Z = \|T(y_1, \dots, y_m)\|_Z \le \|T\| \cdot \|y_1\|_{Y_1} \cdots \|y_m\|_{Y_m},$

therefore:

$$L \in ((Y_1, \ldots, Y_m; Z)^*, Y_1, \ldots, Y_m; Z)^*$$

and:

$$G(x) = L(W(x), U_1(x), \dots, U_m(x))$$

as well.

In this way for the existence and the calculation of the differential with the order n of the non-linear mapping defined by (27) it is possible to use the theorem 2.3, therefore as the mappings $U_i: D \to Y_i; i = \overline{1,m}$ and $W: D \to (Y_1, \ldots, Y_m; Z)^*$ have the Fréchet differentials with the order n, at the point $x \in int(D)$, the same fact can be said about the mapping $G: X \to Z$, and for any $h_1, \ldots, h_n \in X$ we have:

$$G^{(n)}(x) h_1 \dots h_n = \sum_{\gamma \in \mathbb{A}_{m+1,n}} \sum_{J \in \mathcal{A}_{m+1,n}^{[\gamma]}} \mathcal{G}_{\gamma,J}(x; h_1, \dots, h_n),$$

where $\mathcal{G}_{\gamma,J}(x;h_1,\ldots,h_n)$ has the value:

$$L\left(W^{(\gamma_1)}(x) h_{j_1^{(1)}} \dots h_{j_{\gamma_1}^{(1)}}, U_1^{(\gamma_2)}(x) h_{j_1^{(2)}} \dots h_{j_{\gamma_2}^{(2)}}, \dots, U_m^{(\gamma_{m+1})}(x) h_{j_1^{(m+1)}} \dots h_{j_{\gamma_{m+1}}^{(m+1)}}\right)$$

for $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_{\bar{m}+1}) \in \mathbb{A}_{m+1,n}$ and

$$J = \left(\left(j_1^{(1)}, \dots, j_{\gamma_1}^{(1)} \right), \left(j_1^{(2)}, \dots, j_{\gamma_2}^{(2)} \right), \dots, \left(j_1^{(m+1)}, \dots, j_{\gamma_{m+1}}^{(m+1)} \right) \right) \in \mathcal{A}_{m+1,n}^{[\gamma]}.$$

The fact that $\gamma \in \mathbb{A}_{m+1,n}$ means that $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_{m+1}) \in (\mathbb{N} \cup \{0\})^{m+1}$ with $|\gamma| = \gamma_1 + \gamma_2 + \dots + \gamma_{m+1} = n$.

We place:

$$k = \gamma_1, \ \alpha_1 = \gamma_2, \ \dots, \ \alpha_m = \gamma_{m+1}$$

and we deduce that in fact $k \in \{0, 1, ..., n\}$ and $\alpha = (\alpha_1, ..., \alpha_m) \in (\mathbb{N} \cup \{0\})^m$ with $|\alpha| = \alpha_1 + \cdots + \alpha_m = n - \gamma_1 = n - k$, therefore $\alpha \in \mathbb{A}_{m,n-k}$.

We then place:

$$S = (s_1, \dots, s_k) = \left(j_1^{(1)}, \dots, j_k^{(1)}\right) = \left(j_1^{(1)}, \dots, j_{\gamma_1}^{(1)}\right)$$
81

and:

$$I = \left(\left(j_1^{(2)}, \dots, j_{\gamma_2}^{(2)} \right), \left(j_1^{(3)}, \dots, j_{\gamma_3}^{(3)} \right), \dots, \left(j_1^{(m+1)}, \dots, j_{\gamma_{m+1}}^{(m+1)} \right) \right).$$

Thus it is evident that $J = (S, I) \in \mathcal{A}_{m+1,n}^{[k]}$ if and only if $S \in \mathcal{C}_{n,k}$ and:

$$I \in \mathcal{A}_{m,n-k}^{[\alpha]}\left(\{1,2,\ldots,n\} \setminus \{s_1,\ldots,s_k\}\right) = \mathcal{A}_{m,n-k}^{[\alpha]}\left(M_{n,k}\left(S\right)\right),$$

this fact results from the manner in which we have obtained the systems $J \in \mathcal{A}_{m+1,n}^{[\gamma]}$.

Thus the relations (28) and (29) are clear.

The proposition is proved. \Box

We have the following:

Remark 3.2. In the case where $h_1 = \cdots = h_n = h \in X$ in the hypotheses of the proposition 3.1 we have the equality:

$$G^{(n)}(x) h^{n} =$$

$$= \sum_{k=0}^{n} \frac{n!}{k!} \sum_{\alpha \in \mathbb{A}_{m,n-k}} \frac{\left[W^{(k)}(x) h^{k}\right] \left(U_{1}^{(\alpha_{1})}(x) h^{\alpha_{1}}, \dots, U_{m}^{(\alpha_{m})}(x) h_{m}\right)}{\alpha_{1}! \dots \alpha_{m}!}.$$
(30)

For n = 1 we have:

Remark 3.3. If the mappings $W : D \to (Y_1, \ldots, Y_m; Z)^*$ and $U_i : D \to Y_i; i = \overline{1, m}$ are Fréchet differentiable at the point $x \in int(D)$, then the mapping $G : D \to Z$ defined through (27) is also differentiable at the same point x, and for any $h_1, \ldots, h_n \in X$ we have the equality:

$$G'(x) h = [W'(x) h] (U_1(x), \dots, U_m(x)) +$$

$$+ \sum_{j=1}^{m} [W(x)] (U_1(x), \dots, U_{j-1}(x), U'_j(x) h, U_{j+1}(x), \dots, U_m(x)).$$
(31)

For $n \in \mathbb{N}$ arbitrary and m = 1 we have:

Remark 3.4. If the linear normed spaces $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ and the functions $f: D \to (Y, Z)^*$, $g: D \to Y$, that admit Fréchet differentials with the order n at a point $x \in int(D)$ are given, then the function:

$$G: D \to Z; \ G(x) = [f(x)]g(x)$$

also admits a Fréchet differential with the order n at the same point x, and for any $h_1, h_2, \ldots, h_n \in X$ we have:

$$([f(x)] g(x))^{(n)} h_1 \dots h_n =$$

$$= \sum_{k=0}^n \sum_{i \in \mathcal{C}_{n,k}} [f^{(k)}(x) h_{i_1} \dots h_{i_k}] g^{(n-k)}(x) h_{j_1} \dots h_{j_{n-k}}$$
(32)

where $i = (i_1, \ldots, i_k) \in C_{n,k}$ and $\{j_1, \ldots, j_{n-k}\} = \{1, 2, \ldots, n\} \setminus \{i_1, \ldots, i_k\}$ with $j_1 < \cdots < j_{n-k}$.

The **remarks 3.2-3.4** are evident.

References

- Diaconu, A., Sur quelques propriétés des dérivées de type Fréchet d'ordre supérieur, Preprint nr. 1, 1983, "Babeş-Bolyai" University, Faculty of Mathematics, Research seminars, Seminar of Functional Analysis and Numerical Methods, 13-26.
- [2] Krasnoselski, A. M., Vaininko, M. G., Zabreiko, P. P., Rutitzkii, B. A., Stetzenko, V., Priblijennoe rechenie operatornih uravnenii, Izdatelistvo nauka glavnaia redactzia fizicomatematicescoi literaturi, Moskva (1969) (in russian).
- [3] Păvăloiu, I., Introducere în teoria aproximării soluțiilor ecuațiilor, Editura Dacia, Cluj-Napoca, (in Romanian) 1976.

BABEŞ-BOLYAI UNIVERSITY,

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, STR. KOGĂLNICEANU NR. 1, RO-400084 CLUJ-NAPOCA, ROMANIA