BOUNDARY VALUE PROBLEMS FOR ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS

IOAN A. RUS AND EDITH EGRI

Abstract. We consider the following boundary value problem

$$
\begin{aligned}
-x^{\prime \prime}(t) & =f(t, x(t), x(x(t))), \quad t \in[a, b] ; \\
x(t) & =\alpha(t), \quad a_{1} \leq t \leq a, \\
x(t) & =\beta(t), \quad b \leq t \leq b_{1} .
\end{aligned}
$$

Using the weakly Picard operators technique we establish an existence and uniqueness theorem and some data dependence results.

1. Introduction

By an iterative functional-differential equation we understand an equation of the following type (see [1]-[5], [7], [9], [12]-[14])

$$
x^{\prime}(t)=f\left(t, x(t), \ldots, x^{m}(t)\right), t \in J \subset \mathbb{R}
$$

or (see [6], [8])

$$
x^{\prime \prime}(t)=f\left(t, x(t), \ldots, x^{m}(t)\right), t \in J \subset \mathbb{R}
$$

where $x^{k}(t):=(x \circ x \circ \cdots \circ x)(t), k \in \mathbb{N}$.
The purpose of this paper is to study the following boundary value problem

$$
\begin{gather*}
-x^{\prime \prime}(t)=f(t, x(t), x(x(t))), \quad t \in[a, b] ; \tag{1.1}\\
\begin{cases}x(t)=\alpha(t) & t \in\left[a_{1}, a\right], \\
x(t)=\beta(t) & t \in\left[b, b_{1}\right],\end{cases} \tag{1.2}
\end{gather*}
$$

Received by the editors: 23.01.2006.
2000 Mathematics Subject Classification. 47H10, 34K10, 34K20.
Key words and phrases. iterative functional-differential equation, boundary value problem, weakly Picard
operator, fibre Picard operator, data dependence.
where
$\left(C_{1}\right) a_{1} \leq a<b \leq b_{1} ;$
$\left(C_{2}\right) f \in C\left([a, b] \times\left[a_{1}, b_{1}\right]^{2}\right)$;
$\left(C_{3}\right) \alpha \in C\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right)$ and $\beta \in C\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$;
$\left(C_{4}\right)$ there exists $L_{f}>0$ such that:

$$
\left|f\left(t, u_{1}, u_{2}\right)-f\left(t, v_{1}, v_{2}\right)\right| \leq L_{f}\left(\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|\right),
$$

for all $t \in[a, b], u_{i}, v_{i} \in\left[a_{1}, b_{1}\right], i=1,2$.
By a solution of the problem (1.1)-(1.2) we understand a function $x \in$ $C^{2}\left([a, b],\left[a_{1}, b_{1}\right]\right) \cap C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ which satisfies (1.1)-(1.2).

The problem (1.1)-(1.2) is equivalent with the following fixed point equation

$$
x(t)=\left\{\begin{array}{l}
\alpha(t), \quad t \in\left[a_{1}, a\right] \tag{1.3}\\
w(\alpha, \beta)(t)+\int_{a}^{b} G(t, s) f(s, x(s), x(x(s))) \mathrm{d} s, \quad t \in[a, b] \\
\beta(t), \quad t \in\left[b, b_{1}\right]
\end{array}\right.
$$

and $x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$, where

$$
w(\alpha, \beta)(t):=\frac{t-a}{b-a} \beta(b)+\frac{b-t}{b-a} \alpha(a),
$$

and G is the Green function of the problem

$$
-x^{\prime \prime}=\chi, x \in C[a, b] x(a)=0, x(b)=0
$$

On the other hand, the equation (1.1) is equivalent with

$$
x(t)=\left\{\begin{array}{l}
x(t), \quad t \in\left[a_{1}, a\right] \tag{1.4}\\
w\left(\left.x\right|_{\left[a_{1}, a\right]},\left.x\right|_{\left[b, b_{1}\right]}\right)(t)+\int_{a}^{b} G(t, s) f(s, x(s), x(x(s))) \mathrm{d} s, \quad t \in[a, b] \\
x(t), \quad t \in\left[b, b_{1}\right]
\end{array}\right.
$$

and $x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$.
In this paper we apply the weakly Picard operators technique to study the equations (1.3) and (1.4).

2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard operator theory (for more details see I. A. Rus [10] and [11]).

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations:
$F_{A}:=\{x \in X \mid A(x)=x\}$ - the fixed point set of $A ;$
$I(A):=\{Y \subset X \mid A(Y) \subset Y, Y \neq \emptyset\}$ - the family of the nonempty invariant subsets of A;

$$
\begin{aligned}
A^{n+1} & :=A \circ A^{n}, \quad A^{1}=A, \quad A^{0}=1_{X}, \quad n \in \mathbb{N} ; \\
P(X) & :=\{Y \subset X \mid Y \neq \emptyset\} ; \\
H(Y, Z) & :=\max \left\{\sup _{y \in Y} \inf _{z \in Z} d(y, z), \sup _{z \in Z} \inf _{y \in Y} d(y, z)\right\} \text {-the Pompeiu-Hausdorff }
\end{aligned}
$$

functional on $P(X) \times P(X)$.
Definition 2.1. Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is a Picard operator $(P O)$ if there exists $x^{*} \in X$ such that:
(i) $F_{A}=\left\{x^{*}\right\}$;
(ii) the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*} for all $x_{0} \in X$.

Theorem 2.1 (Contraction principle). Let (X, d) be a complete metric space and $A: X \rightarrow X$ a γ-contraction. Then
(i) $F_{A}=\left\{x^{*}\right\}$,
(ii) $\left(A^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*} for all $x_{0} \in X$,
(iii) $d\left(x^{*}, A^{n}\left(x_{0}\right)\right) \leq \frac{\gamma^{n}}{1-\gamma} d\left(x_{0}, A\left(x_{0}\right)\right)$, for all $n \in \mathbb{N}$.

Remark 2.1. Accordingly to the definition, the contraction principle insures that, if $A: X \rightarrow X$ is a γ-contraction on the complet metric space X, then it is a Picard operator.

Theorem 2.2. Let (X, d) be a complete metric space and $A, B: X \rightarrow X$ two operators. We suppose that
(i) the operator A is a γ-contraction;
(ii) $F_{B} \neq \emptyset$;
(iii) there exists $\eta>0$ such that

$$
d(A(x), B(x)) \leq \eta, \forall x \in X
$$

Then if $F_{A}=\left\{x_{A}^{*}\right\}$ and $x_{B}^{*} \in F_{B}$, we have

$$
d\left(x_{A}^{*}, x_{B}^{*}\right) \leq \frac{\eta}{1-\gamma}
$$

Definition 2.2. Let (X, d) be a metric space. An operator A is a weakly Picard operator (WPO) if the sequence $\left(A^{n}(x)\right)_{n \in \mathbb{N}}$ converges for all $x \in X$, and its limit (which may depend on x) is a fixed point of A.

Theorem 2.3. Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. The operator A is weakly Picard operator if and only if there exists a partition of X,

$$
X=\bigcup_{\lambda \in \Lambda} X_{\lambda}
$$

where Λ is the indices' set of partition, such that
(a) $X_{\lambda} \in I(A)$, for all $\lambda \in \Lambda$;
(b) $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is a Picard operator for all $\lambda \in \Lambda$.

Definition 2.3. If A is weakly Picard operator then we consider the operator A^{∞} defined by

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)
$$

It is clear that

$$
A^{\infty}(X)=F_{A} \text { and } \omega_{A}(x)=\left\{A^{\infty}(x)\right\}
$$

where $\omega_{A}(x)$ is the ω-limit point set of A.
Definition 2.4. Let A be a weakly Picard operator and $c>0$. The operator A is c-weakly Picard operator if

$$
d\left(x, A^{\infty}(x)\right) \leq c d(x, A(x)), \forall x \in X
$$

Example 2.1. Let (X, d) be a complete metric space and $A: X \rightarrow X$ a continuous operator. We suppose that there exists $\gamma \in[0,1)$ such that

$$
d\left(A^{2}(x), A(x)\right) \leq \gamma d(x, A(x)), \forall x \in X
$$

Then A is c-weakly Picard operator with $c=\frac{1}{1-\gamma}$.
Theorem 2.4. Let (X, d) be a metric space and $A_{i}: X \rightarrow X, i=1,2$. Suppose that
(i) the operator A_{i} is c_{i}-weakly Picard operator, $i=1,2$;
(ii) there exists $\eta>0$ such that

$$
d\left(A_{1}(x), A_{2}(x)\right) \leq \eta, \forall x \in X
$$

Then

$$
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \max \left(c_{1}, c_{2}\right)
$$

Theorem 2.5 (Fibre contraction principle). Let (X, d) and (Y, ρ) be two metric spaces and $A: X \times X \rightarrow X \times Y, A=(B, C),(B: X \rightarrow X, C: X \times Y \rightarrow Y) a$ triangular operator. We suppose that
(i) (Y, ρ) is a complete metric space;
(ii) the operator B is $P O$;
(iii) there exists $l \in[0,1)$ such that $C(x, \cdot): Y \rightarrow Y$ is l-contraction, for all $x \in X ;$
(iv) if $\left(x^{*}, y^{*}\right) \in F_{A}$, then $C\left(\cdot, y^{*}\right)$ is continuous in x^{*}.

Then the operator A is $P O$.

3. Boundary value problem

In what follows we consider the fixed point equation (1.3). Let

$$
B_{f}: C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C\left(\left[a_{1}, b_{1}\right], \mathbb{R}\right)
$$

where $B_{f}(x)(t):=$ the right hand side of (1.3). Let $L>0$ and

$$
\begin{aligned}
& \qquad C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right):=\left\{x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)| | x\left(t_{1}\right)-x\left(t_{2}\right)|\leq L| t_{1}-t_{2} \mid,\right. \\
& \left.\forall t_{1}, t_{2} \in\left[a_{1}, b_{1}\right]\right\} . \\
& \text { It is clear that } C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \text { is a complete metric space with respect to }
\end{aligned}
$$ the metric,

$$
d\left(x_{1}, x_{2}\right):=\max _{a_{1} \leq t \leq b_{1}}\left|x_{1}(t)-x_{2}(t)\right| .
$$

We have

Theorem 3.1. We suppose that
(i) the conditions $\left(C_{1}\right)-\left(C_{4}\right)$ are satisfied;
(ii) $\alpha \in C_{L}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right), \beta \in C_{L}\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$;
(iii) m_{f} and $M_{f} \in \mathbb{R}$ are such that $m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[a, b], u_{i} \in$ [$\left.a_{1}, b_{1}\right], i=1,2$, and moreover,

$$
\begin{array}{ll}
a_{1} \leq \min (\alpha(a), \beta(b))+m_{f} \frac{(b-a)^{2}}{8}, & \text { for } m_{f}<0 \\
a_{1} \leq \min (\alpha(a), \beta(b)), & \text { for } m_{f} \geq 0 \\
b_{1} \geq \max (\alpha(a), \beta(b)), & \text { for } M_{f} \leq 0 \\
b_{1} \geq \max (\alpha(a), \beta(b))+M_{f} \frac{(b-a)^{2}}{8}, & \text { for } M_{f}>0
\end{array}
$$

and

$$
\frac{|\beta(b)-\alpha(a)|}{b-a}+\left|M_{f}\right| \frac{a^{2}+b^{2}-6 a b}{2(b-a)} \leq L
$$

(iv) $\frac{(b-a)^{2}}{8} L_{f}(L+2)<1$.

Then the boundary value problem (1.1)-(1.2) has, in $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$, a unique solution. Moreover, the operator

$$
B_{f}: C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C_{L}\left(\left[a_{1}, b_{1}\right], C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)\right)
$$

is a c-Picard operator with $c=\frac{8}{8-(b-a)^{2} L_{f}(L+2)}$.
Proof. First of all we remark that the condition (iii) implies that $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$ is an invariant subset for B_{f}. Indeed, we have $a_{1} \leq B_{f}(x)(t) \leq b_{1}, x(t) \in\left[a_{1}, b_{1}\right]$ for all $t \in[a, b]$. Actually, using the positivity of the Green function, for m_{f} and $M_{f} \in \mathbb{R}$ such that

$$
m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[a, b], u_{i} \in\left[a_{1}, b_{1}\right], i=1,2
$$

we have

$$
G(t, s) m_{f} \leq G(t, s) f(s, x(s), x(x(s))) \leq G(t, s) M_{f}, \forall t \in[a, b]
$$

This implies that

$$
\int_{a}^{b} G(t, s) m_{f} \mathrm{~d} s \leq \int_{a}^{b} G(t, s) f(s, x(s), x(x(s))) \mathrm{d} s \leq \int_{a}^{b} G(t, s) M_{f} \mathrm{~d} s, \forall t \in[a, b],
$$

that is,
$w(\alpha, \beta)(t)+m_{f} \int_{a}^{b} G(t, s) \mathrm{d} s \leq B_{f}(x)(t) \leq w(\alpha, \beta)(t)+M_{f} \int_{a}^{b} G(t, s) \mathrm{d} s, \forall t \in[a, b]$.
It is easy to see that,

$$
\min _{t \in[a, b]} \int_{a}^{b} G(t, s) \mathrm{d} s=\min _{t \in[a, b]} \frac{(t-a)(b-t)}{2}=0
$$

and

$$
\max _{t \in[a, b]} \int_{a}^{b} G(t, s) \mathrm{d} s=\max _{t \in[a, b]} \frac{(t-a)(b-t)}{2}=\frac{(b-a)^{2}}{8}
$$

Therefore, if condition (iii) holds, we have satisfied the invariance property for the operator B_{f} in $C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$.

Now, consider $t_{1}, t_{2} \in\left[a_{1}, a\right]$. Then,

$$
\left|B_{f}(x)\left(t_{1}\right)-B_{f}(x)\left(t_{2}\right)\right|=\left|\alpha\left(t_{1}\right)-\alpha\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|,
$$

because of $\alpha \in C_{L}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right)$.
Similarly, for $t_{1}, t_{2} \in\left[b, b_{1}\right]$

$$
\left|B_{f}(x)\left(t_{1}\right)-B_{f}(x)\left(t_{2}\right)\right|=\left|\beta\left(t_{1}\right)-\beta\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|,
$$

that follows from (ii), too.
On the other hand, if $t_{1}, t_{2} \in[a, b]$, we have,

$$
\begin{aligned}
& \left|B_{f}(x)\left(t_{1}\right)-B_{f}(x)\left(t_{2}\right)\right|= \\
= & \left|w(\alpha, \beta)\left(t_{1}\right)-w(\alpha, \beta)\left(t_{2}\right)+\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] f(s, x(s), x(x(s))) \mathrm{d} s\right|= \\
= & \left|\frac{t_{1}-t_{2}}{b-a}(\beta(b)-\alpha(a))+\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] f(s, x(s), x(x(s))) \mathrm{d} s\right| \leq \\
\leq & \left|\frac{\beta(b)-\alpha(a)}{b-a}\left(t_{1}-t_{2}\right)\right|+\left|\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] f(s, x(s), x(x(s))) \mathrm{d} s\right| \leq \\
\leq & \left|\frac{\beta(b)-\alpha(a)}{b-a}\right|\left|t_{1}-t_{2}\right|+\left|M_{f}\right|\left|\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] \mathrm{d} s\right| .
\end{aligned}
$$

But,

$$
\begin{aligned}
\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] \mathrm{d} s & =\int_{a}^{t_{1}}\left[\frac{(s-a)\left(b-t_{1}\right)}{b-a}-\frac{(s-a)\left(b-t_{2}\right)}{b-a}\right] \mathrm{d} s+ \\
& +\int_{t_{1}}^{t_{2}}\left[\frac{\left(t_{1}-a\right)(b-s)}{b-a}-\frac{(s-a)\left(b-t_{2}\right)}{b-a}\right] \mathrm{d} s+ \\
& +\int_{t_{2}}^{b}\left[\frac{\left(t_{1}-a\right)(b-s)}{b-a}-\frac{\left(t_{2}-a\right)(b-s)}{b-a}\right] \mathrm{d} s
\end{aligned}
$$

After some calculation we obtain,

$$
\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] \mathrm{d} s=\left[(a-b)\left(t_{1}+t_{2}\right)-a^{2}-4 a b+b^{2}\right] \frac{t_{1}-t_{2}}{2(b-a)}
$$

Thus,

$$
\left|\int_{a}^{b}\left[G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right] \mathrm{d} s\right| \leq \frac{a^{2}+b^{2}-6 a b}{2(b-a)}\left|t_{1}-t_{2}\right| .
$$

So, we can affirm that

$$
\left|B_{f}(x)\left(t_{1}\right)-B_{f}(x)\left(t_{2}\right)\right| \leq\left[\frac{|\beta(b)-\alpha(a)|}{b-a}+\left|M_{f}\right| \frac{a^{2}+b^{2}-6 a b}{2(b-a)}\right]\left|t_{1}-t_{2}\right|
$$

$\forall t_{1}, t_{2} \in[a, b], t_{1} \leq t_{2}$, and due to (iii), $B_{f}(x)$ is L-Lipschitz.
Thus, according to the above, we have $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \in I\left(B_{f}\right)$.
From the condition (iv) it follows that, B_{f} is an $L_{B_{f}}$-contraction, with

$$
L_{B_{f}}:=\frac{(b-a)^{2}}{8} L_{f}(L+2)
$$

Indeed, for all $t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right]$, we have $\left|B_{f}\left(x_{1}\right)(t)-B_{f}\left(x_{2}\right)(t)\right|=0$.

Otherwise, for $t \in[a, b]$

$$
\begin{aligned}
& \left|B_{f}\left(x_{1}\right)(t)-B_{f}\left(x_{2}\right)(t)\right|= \\
= & \left|\int_{a}^{b} G(t, s)\left[f\left(s, x_{1}(s), x_{1}\left(x_{1}(s)\right)\right)-f\left(s, x_{2}(s), x_{2}\left(x_{2}(s)\right)\right)\right] \mathrm{ds}\right| \leq \\
\leq & \max _{x \in[a, b]}\left|\int_{a}^{b} G(t, s) \mathrm{ds}\right| L_{f}\left(\left|x_{1}(s)-x_{2}(s)\right|+\left|x_{1}\left(x_{1}(s)\right)-x_{2}\left(x_{2}(s)\right)\right|\right) \leq \\
\leq & \frac{(b-a)^{2}}{8} L_{f}\left(\left\|x_{1}-x_{2}\right\|_{C}+\left|x_{1}\left(x_{1}(s)\right)-x_{1}\left(x_{2}(s)\right)\right|+\left|x_{1}\left(x_{2}(s)\right)-x_{2}\left(x_{2}(s)\right)\right|\right) \leq \\
\leq & \frac{(b-a)^{2}}{8} L_{f}\left(\left\|x_{1}-x_{2}\right\|_{C}+L\left|x_{1}(s)-x_{2}(s)\right|+\left\|x_{1}-x_{2}\right\|_{C}\right) \leq \\
\leq & \frac{(b-a)^{2}}{8} L_{f}(L+2)\left\|x_{1}-x_{2}\right\|_{C} .
\end{aligned}
$$

So, B_{f} is a c-Picard operator, with $c=\frac{1}{1-L_{B_{f}}}$.
In what follows, consider the following operator

$$
E_{f}: C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)
$$

where

$$
E_{f}(x)(t):=\text { the right hand side of (1.4). }
$$

Theorem 3.2. In the conditions of the Theorem 3.1, the operator

$$
E_{f}: C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right) \rightarrow C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)
$$

is WPO.

Proof. The operator E_{f} is a continuous operator but it is not a contraction operator.
Let take the following notation:

$$
X_{\alpha, \beta}:=\left\{x \in C\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)|x|_{\left[a_{1}, a\right]}=\alpha,\left.x\right|_{\left[b, b_{1}\right]}=\beta\right\} .
$$

Then we can write

$$
\begin{equation*}
C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)=\bigcup_{\substack{\alpha \in C_{L}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right) \\ \beta \in C_{L}\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)}} X_{\alpha, \beta} . \tag{3.5}
\end{equation*}
$$

We have that $X_{\alpha, \beta} \in I\left(E_{f}\right)$ and $\left.E_{f}\right|_{X_{\alpha, \beta}}$ is a Picard operator, because it is the operator which appears in the proof of the Theorem 3.1.

By applying the Theorem 2.3, we obtain that E_{f} is WPO.

4. Increasing solutions of (1.1)

4.1. Inequalities of Čaplygin type. We have

Theorem 4.1. We suppose that
(a) the conditions of the Theorem 3.1 are satisfied;
(b) $u_{i}, v_{i} \in\left[a_{1}, b_{1}\right], u_{i} \leq v_{i}, i=1,2$, imply that

$$
f\left(t, u_{1}, u_{2}\right) \leq f\left(t, v_{1}, v_{2}\right)
$$

for all $t \in[a, b]$.
Let x be a increasing solution of the equation (1.1) and y an increasing solution of the inequality

$$
-y^{\prime \prime}(t) \leq f(t, y(t), y(y(t))), \quad t \in[a, b] .
$$

Then

$$
y(t) \leq x(t), \forall t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right] \Rightarrow y \leq x
$$

Proof. In the terms of the operator E_{f}, we have

$$
x=E_{f}(x) \text { and } y \leq E_{f}(y),
$$

and

$$
w\left(\left.y\right|_{\left[a_{1}, a\right]},\left.y\right|_{\left[b, b_{1}\right]}\right) \leq w\left(\left.x\right|_{\left[a_{1}, a\right]},\left.x\right|_{\left[b, b_{1}\right]}\right) .
$$

However, from the condition (b), we have that the operator E_{f}^{∞} is increasing (see Lemma 7.1 in [11]), we have

$$
y \leq E_{f}^{\infty}(y)=E_{f}^{\infty}(\widetilde{w}(y)) \leq E_{f}^{\infty}(\widetilde{w}(x))=x
$$

BOUNDARY VALUE PROBLEMS FOR ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS
thus $y \leq x$. Here, for $z \in C[a, b]$, we used the notation

$$
\widetilde{w}(z)(t):=\left\{\begin{array}{l}
z(z), t \in\left[a_{1}, a\right] \\
w\left(\left.z\right|_{\left[a_{1}, a\right]},\left.z\right|_{\left[b, b_{1}\right]}\right)(t) t \in[a, b], \\
z(b), t \in\left[b, b_{1}\right] .
\end{array}\right.
$$

4.2. Comparison theorem. In what follows we want to study the monotony of the solution of the problem (1.1)-(1.2), with respect to α, β and f. We will use the result below:

Lemma 4.1 (Abstract comparison lemma). Let (X, d, \leq) be an ordered metric space and $A, B, C: X \rightarrow X$ be such that:
(i) $A \leq B \leq C$;
(ii) the operators A, B, C are weakly Picard operators;
(iii) the operator B is increasing.

Then

$$
x \leq y \leq z \Rightarrow A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z)
$$

In this case we can establish the theorem
Theorem 4.2. Let $f_{i} \in C\left([a, b] \times\left[a_{1}, b_{1}\right]^{2}\right), i=1,2,3$. We suppose that
(a) $f_{2}(t, \cdot, \cdot):\left[a_{1}, b_{1}\right]^{2} \rightarrow\left[a_{1}, b_{1}\right]^{2}$ is increasing;
(b) $f_{1} \leq f_{2} \leq f_{3}$.

Let x_{i} be a increasing solution of the equation

$$
-x^{\prime \prime}=f_{i}(t, x(t), x(x(t))), \quad t \in[a, b] .
$$

If

$$
x_{1}(t) \leq x_{2}(t) \leq x_{3}(t), \forall t \in\left[a_{1}, a\right] \cap\left[b, b_{1}\right],
$$

then

$$
x_{1} \leq x_{2} \leq x_{3}
$$

IOAN A. RUS AND EDITH EGRI
Proof. The operators $E_{f_{i}}, i=1,2$ are weakly Picard operators. Taking into consideration the condition (a) the operator $E_{f_{2}}$ is increasing. From (b) we have that

$$
E_{f_{1}} \leq E_{f_{2}} \leq E_{f_{3}}
$$

We note that $x_{i}=E_{f_{i}}^{\infty}\left(\widetilde{w}\left(x_{i}\right)\right), i=1,2$. Now, using the Abstract comparison lemma, the proof is complete.

5. Data dependence: continuity

Consider the boundary value problem (1.1)-(1.2) and suppose the conditions of the Theorem 3.1 are satisfied. Denote by $x(\cdot ; \alpha, \beta, f)$ the solution of this problem. We can state the following result:

Theorem 5.1. Let $\alpha_{i}, \beta_{i}, f_{i}, i=1,2$, be as in the Theorem 3.1. Furthermore, we suppose that
(i) there exists $\eta_{1}>0$, such that

$$
\left|\alpha_{1}(t)-\alpha_{2}(t)\right| \leq \eta_{1}, \quad \forall t \in\left[a_{1}, a\right],
$$

and

$$
\left|\beta_{1}(t)-\beta_{2}(t)\right| \leq \eta_{1}, \forall t \in\left[b, b_{1}\right] ;
$$

(ii) there exists $\eta_{2}>0$ such that

$$
\left|f_{1}\left(t, u_{1}, u_{2}\right)-f_{2}\left(t, u_{1}, u_{2}\right)\right| \leq \eta_{2}, \forall t \in[a, b], \forall u_{i} \in\left[a_{1}, b_{1}\right], i=1,2 .
$$

Then

$$
\left|x\left(t ; \alpha_{1}, \beta_{1}, f_{1}\right)-x\left(t ; \alpha_{2}, \beta_{2}, f_{2}\right)\right| \leq \frac{8 \eta_{1}+\eta_{2}(b-a)^{2}}{8-L_{f}(L+2)(b-a)^{2}}
$$

where $L_{f}=\max \left(L_{f_{1}}, L_{f_{2}}\right)$.
Proof. Consider the operators $B_{\alpha_{i}, \beta_{i}, f_{i}}, i=1,2$. From Theorem 3.1 these operators are contractions. Additionally,

$$
\begin{gathered}
\left\|B_{\alpha_{1}, \beta_{1}, f_{1}}(x)-B_{\alpha_{2}, \beta_{2}, f_{2}}(x)\right\|_{C}= \\
=\left|\left[w\left(\alpha_{1}, \beta_{1}\right)(t)-w\left(\alpha_{2}, \beta_{2}\right)(t)\right]+\int_{a}^{b} G(t, s)\left[f_{1}(s, x(s), x(x(s)))-f_{2}(s, x(s), x(x(s)))\right] \mathrm{d} s\right| \leq
\end{gathered}
$$

BOUNDARY VALUE PROBLEMS FOR ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS

$$
\begin{aligned}
\leq \left\lvert\, \frac{t-a}{b-a}\left[\beta_{1}(b)-\beta_{2}(b)\right]+\right. & \left.\frac{b-t}{b-a}\left[\alpha_{1}(a)-\alpha_{2}(a)\right]\left|+\max _{t \in[a, b]}\right| \int_{a}^{b} G(t, s) \mathrm{d} s \right\rvert\, \eta_{2} \\
& \leq \eta_{1}+\eta_{2} \frac{(b-a)^{2}}{8}
\end{aligned}
$$

$\forall x \in C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$.
Now, the proof follows from the Theorem 2.2, with

$$
A:=B_{\alpha_{1}, \beta_{1}, f_{1}}, \quad B:=B_{\alpha_{2}, \beta_{2}, f_{2}}, \quad \eta:=\eta_{1}+\eta_{2} \frac{(b-a)^{2}}{8}
$$

and

$$
\gamma:=L_{A}=\frac{(b-a)^{2}}{8} L_{f}(L+2)
$$

From the theorem above we have
Theorem 5.2. Let $\alpha_{i}, \beta_{i}, f_{i}, i \in \mathbb{N}$ and α, β, f be as in the Theorem 3.1. We suppose that

$$
\begin{aligned}
& \alpha_{i} \xrightarrow{\text { univ. }} \alpha \text { as } i \rightarrow \infty, \\
& \beta_{i} \xrightarrow{\text { univ. }} \beta \text { as } i \rightarrow \infty, \\
& f_{i} \xrightarrow{\text { univ. }} f \text { as } i \rightarrow \infty .
\end{aligned}
$$

Then

$$
x\left(\cdot, \alpha_{i}, \beta_{i}, f_{i}\right) \xrightarrow{\text { univ. }} x(\cdot, \alpha, \beta, f), \text { as } i \rightarrow \infty .
$$

Theorem 5.3. Let f_{1} and f_{2} be as in the Theorem 3.1. Let $F_{E_{f_{i}}}$ be the solution set of equation (1.1) corresponding to $f_{i}, i=1,2$. Suppose that there exists $\eta>0$ such that

$$
\begin{equation*}
\left|f_{1}\left(t, u_{1}, u_{2}\right)-f_{2}\left(t, u_{1}, u_{2}\right)\right| \leq \eta \tag{5.6}
\end{equation*}
$$

for all $t \in[a, b], u_{i} \in\left[a_{1}, b_{1}\right], i=1,2$. Then

$$
H_{\|\cdot\| \|_{C}}\left(F_{E_{f_{1}}}, F_{E_{f_{2}}}\right) \leq \frac{\eta(b-a)^{2}}{8-L_{f}(L+2)(b-a)^{2}}
$$

where $L_{f}:=\max \left(L_{f_{1}}, L_{f_{2}}\right)$ and $H_{\|\cdot\|_{C}}$ denotes the Pompeiu-Hausdorff functional with respect to $\|\cdot\|_{C}$ on $C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$.

Proof. We will look for those c_{i}, for which in condition of the Theorem 3.1 the operators $E_{f_{i}}, i=1,2$, are c_{i} - weakly Picard operators.

Let $X_{\alpha, \beta}:=\left\{x \in C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)|x|_{\left[a_{1}, a\right]}=\alpha,\left.x\right|_{\left[b, b_{1}\right]}=\beta\right\}$
It is clear that $\left.E_{f_{i}}\right|_{X_{\alpha, \beta}}=B_{f_{i}}$. So, from Theorem 2.3 and Theorem 3.1 we have

$$
\left\|E_{f_{i}}^{2}(x)-E_{f_{i}}(x)\right\|_{C} \leq L_{f_{i}}(L+2) \frac{(b-a)^{2}}{8}\left\|E_{f_{i}}(x)-x\right\|_{C}
$$

for all $x \in C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right), i=1,2$.
Now, choosing $\lambda_{i}=\frac{(b-a)^{2}}{8} L_{f_{i}}(L+2)$, we get that $E_{f_{i}}$ are $c_{i}-$ weakly Picard operators, with $c_{i}=\left(1-\lambda_{i}\right)^{-1}$.

From (5.6) we obtain that

$$
\left\|E_{f_{1}}(x)-E_{f_{2}}(x)\right\|_{C} \leq \eta \frac{(b-a)^{2}}{8}, \text { for all } x \in C_{L}\left(\left[a_{1}, b_{1}\right],\left[a_{1}, b_{1}\right]\right)
$$

Applying Theorem 2.4 we have that

$$
H_{\|\cdot\|_{C}}\left(F_{E_{f_{1}}}, F_{E_{f_{2}}}\right) \leq \frac{\eta(b-a)^{2}}{8-L_{f}(L+2)(b-a)^{2}}
$$

6. Data dependence: differentiability

Consider the following boundary value problem with parameter

$$
\begin{gather*}
-x^{\prime \prime}(t)=f(t, x(t), x(x(t)) ; \lambda), \quad t \in[a, b] ; \tag{6.7}\\
\begin{cases}x(t)=\alpha(t) & t \in\left[a_{1}, a\right] \\
x(t)=\beta(t) & t \in\left[b, b_{1}\right]\end{cases} \tag{6.8}
\end{gather*}
$$

Suppose that we have satisfied the following conditions:
$\left(P_{1}\right) a_{1} \leq a<b \leq b_{1} ; J \subset \mathbb{R}$, a compact interval;
$\left(P_{2}\right) \alpha \in C_{L}^{1}\left(\left[a_{1}, a\right],\left[a_{1}, b_{1}\right]\right)$ and $\beta \in C_{L}^{1}\left(\left[b, b_{1}\right],\left[a_{1}, b_{1}\right]\right)$;
$\left(P_{3}\right) f \in C^{1}\left([a, b] \times\left[a_{1}, b_{1}\right]^{2} \times J\right)$;
$\left(P_{4}\right)$ there exists $L_{f}>0$ such that

$$
\left|\frac{\partial f\left(t, u_{1}, u_{2} ; \lambda\right)}{\partial u_{i}}\right| \leq L_{f}
$$

for all $t \in[a, b], u_{i} \in\left[a_{1}, b_{1}\right], i=1,2, \lambda \in J ;$
$\left(P_{5}\right) m_{f}$ and $M_{f} \in \mathbb{R}$ are such that $m_{f} \leq f\left(t, u_{1}, u_{2}\right) \leq M_{f}, \forall t \in[a, b], u_{i} \in$ $\left[a_{1}, b_{1}\right], i=1,2$, moreover we have

$$
\begin{array}{ll}
a_{1} \leq \min (\alpha(a), \beta(b))+m_{f} \frac{(b-a)^{2}}{8}, & \text { for } m_{f}<0 \\
a_{1} \leq \min (\alpha(a), \beta(b)), & \text { for } m_{f} \geq 0 \\
b_{1} \geq \max (\alpha(a), \beta(b)), & \text { for } M_{f} \leq 0 \\
b_{1} \geq \max (\alpha(a), \beta(b))+M_{f} \frac{(b-a)^{2}}{8}, & \text { for } M_{f}>0
\end{array}
$$

and

$$
\frac{|\beta(b)-\alpha(a)|}{b-a}+\left|M_{f}\right| \frac{a^{2}+b^{2}-6 a b}{2(b-a)} \leq L ;
$$

$\left(P_{6}\right) \frac{(b-a)^{2}}{8} L_{f}(L+2)<1$.
Then, from the Theorem 3.1, we have that the problem (6.7)-(6.8) has a unique solution, $x^{*}(\cdot, \lambda)$.

We will prove that $x^{*}(t, \cdot) \in C^{1}(J)$, for all $t \in\left[a_{1}, b_{1}\right]$.
For this, we consider the equation

$$
\begin{align*}
-x^{\prime \prime}(t ; \lambda)= & f(t, x(t ; \lambda), x(x(t ; \lambda) ; \lambda) ; \lambda), t \in[a, b], \lambda \in J, \\
& x \in C\left(\left[a_{1}, b_{1}\right] \times J,\left[a_{1}, b_{1}\right] \times J\right) \cap C^{2}\left([a, b] \times J,\left[a_{1}, b_{1}\right] \times J\right) . \tag{6.9}
\end{align*}
$$

The problem (6.9)-(6.8) is equivalent with the following functional-integral equation

$$
x(t ; \lambda)=\left\{\begin{array}{l}
\alpha(t), t \in\left[a_{1}, a\right], \quad \lambda \in J \tag{6.10}\\
w(\alpha, \beta)(t)+\int_{a}^{b} G(t, s) f(s, x(s ; \lambda), x(x(s ; \lambda) ; \lambda) ; \lambda) \mathrm{d} s, t \in[a, b], \lambda \in J \\
\beta(t), t \in\left[b, b_{1}\right], \quad \lambda \in J
\end{array}\right.
$$

Now, let take the operator

$$
B: C_{L}\left(\left[a_{1}, b_{1}\right] \times J,\left[a_{1}, b_{1}\right] \times J\right) \rightarrow C_{L}\left(\left[a_{1}, b_{1}\right] \times J,\left[a_{1}, b_{1}\right] \times J\right)
$$

where $B(x)(t ; \lambda):=$ the right hand side of (6.10)
Let $X:=C_{L}\left(\left[a_{1}, b_{1}\right] \times J,\left[a_{1}, b_{1}\right]\right)$. It is clear from the proof of the Theorem 3.1 that in the conditions $\left(P_{1}\right)-\left(P_{6}\right)$, the operator $B:\left(X,\|\cdot\|_{C}\right) \rightarrow\left(X,\|\cdot\|_{C}\right)$

IOAN A. RUS AND EDITH EGRI

is a PO. Let x^{*} be the unique fixed point of B. We consider the subset $X_{1} \subset X$, $X_{1}:=\left\{x \in X \left\lvert\, \frac{\partial x}{\partial t} \in C\left[a_{1}, b_{1}\right]\right.\right\}$. We remark that $x^{*} \in X_{1}, B\left(X_{1}\right) \subset X_{1}$ and $B:$ $\left(X_{1},\|\cdot\|_{C}\right) \rightarrow\left(X_{1},\|\cdot\|_{C}\right)$ is PO. Let $Y:=C\left(\left[a_{1}, b_{1}\right] \times J\right)$.

Supposing that there exists $\frac{\partial x^{*}}{\partial \lambda}$, from (6.10) we have that

$$
\begin{aligned}
& \frac{\partial x^{*}(t ; \lambda)}{\partial \lambda}= \int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}\left(x^{*}(s ; \lambda) ; \lambda\right) ; \lambda\right)}{\partial u_{1}} \cdot \frac{\partial x^{*}(s ; \lambda)}{\partial \lambda} \mathrm{d} s+ \\
&+\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}\left(x^{*}(s ; \lambda) ; \lambda\right) ; \lambda\right)}{\partial u_{2}} \\
& \cdot {\left[\frac{\partial x^{*}\left(x^{*}(s ; \lambda) ; \lambda\right)}{\partial u_{1}} \cdot \frac{\partial x^{*}(s ; \lambda)}{\partial \lambda}+\frac{\partial x^{*}\left(x^{*}(s ; \lambda) ; \lambda\right)}{\partial \lambda}\right] \mathrm{d} s+} \\
&+\int_{a}^{b} G(t, s) \frac{\partial f\left(s, x^{*}(s ; \lambda), x^{*}\left(x^{*}(s ; \lambda) ; \lambda\right) ; \lambda\right)}{\partial \lambda} \mathrm{d} s, \quad t \in[a, b], \lambda \in J
\end{aligned}
$$

This relation suggest us to consider the following operator

$$
\begin{aligned}
& C: X_{1} \times Y \rightarrow Y \\
& (x, y) \mapsto C(x, y)
\end{aligned}
$$

with

$$
\begin{aligned}
& C(x, y)(t ; \lambda):=\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(x(s ; \lambda) ; \lambda) ; \lambda)}{\partial u_{1}} \cdot y(s ; \lambda) \mathrm{d} s+ \\
&+\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(x(s ; \lambda) ; \lambda) ; \lambda)}{\partial u_{2}} . \\
& \cdot {\left[\frac{\partial x(x(s ; \lambda) ; \lambda)}{\partial u_{1}} \cdot y(s ; \lambda)+\frac{\partial x(x(s ; \lambda) ; \lambda)}{\partial \lambda}\right] \mathrm{d} s+} \\
&+\int_{a}^{b} G(t, s) \frac{\partial f(s, x(s ; \lambda), x(x(s ; \lambda) ; \lambda) ; \lambda)}{\partial \lambda} \mathrm{d} s, \quad t \in[a, b], \lambda \in J
\end{aligned}
$$

and

$$
C(x, y)(t, \lambda):=0, \text { for } t \in\left[a_{1}, a\right] \cup\left[b, b_{1}\right], \lambda \in J .
$$

In this way we have the triangular operator

$$
\begin{gathered}
A: X_{1} \times Y \rightarrow X_{1} \times Y \\
(x, y) \mapsto(B(x), C(x, y))
\end{gathered}
$$

where B is a Picard operator and $C(x, \cdot): Y \rightarrow Y$ is an $L_{C}-$ contraction, with $L_{C}=\frac{(b-a)^{2}}{8} \widetilde{L}_{f}(L+2)$, where $\widetilde{L}_{f}=\max \left(L_{f}, L \cdot L_{f}\right)$.

From the fibre contraction theorem we have that the operator A is Picard operator, i.e. the sequences

$$
\begin{aligned}
& x_{n+1}:=B\left(x_{n}\right), \\
& y_{n+1}:=C\left(x_{n}, y_{n}\right), \quad n \in \mathbb{N}
\end{aligned}
$$

converges uniformly, with respect to $t \in\left[a_{1}, b_{1}\right], \lambda \in J$, to $\left(x^{*}, y^{*}\right) \in F_{A}$, for all $x_{0} \in X_{1}, y_{0} \in Y$.

If we take $x_{0}=0, y_{0}=\frac{\partial x_{0}}{\partial \lambda}=0$, then $y_{1}=\frac{\partial x_{1}}{\partial \lambda}$.
By induction we prove that $y_{n}=\frac{\partial x_{n}}{\partial \lambda}, \forall n \in \mathbb{N}$.
So,

$$
\begin{aligned}
& x_{n} \xrightarrow{\text { unif. }} x^{*} \text { as } n \rightarrow \infty, \\
& \frac{\partial x_{n}}{\partial \lambda} \rightarrow y^{*} \text { as } n \rightarrow \infty
\end{aligned}
$$

From these we have that there exists $\frac{\partial x^{*}}{\partial \lambda}$ and $\frac{\partial x^{*}}{\partial \lambda}=y^{*}$.
Taking into consideration the above, we can formulate the theorem
Theorem 6.1. Consider the problem (6.9)-(6.8), and suppose the conditions $\left(P_{1}\right)-$ $\left(P_{6}\right)$ holds. Then,
(i) (6.9)-(6.8) has a unique solution, x^{*}, in $C\left(\left[a_{1}, b_{1}\right] \times J,\left[a_{1}, b_{1}\right]\right)$,
(ii) $x^{*}(t, \cdot) \in C^{1}(J), \forall t \in\left[a_{1}, b_{1}\right]$.

Remark 6.1. By the same arguments we have that, if $f(t, \cdot, \cdot) \in C^{k}$, then $x^{*}(t, \cdot) \in$ $C^{k}(J), \forall t \in\left[a_{1}, b_{1}\right]$.

References

[1] Buică, A., On the Chauchy problem for a functional-differential equation, Seminar on Fixed Point Theory, Cluj-Napoca, 1993, 17-18.
[2] Buică, A., Existence and continuous dependence of solutions of some functionaldifferential equations, Seminar on Fixed Point Theory, Cluj-Napoca, 1995, 1-14.
[3] Coman, Gh., Pavel, G., Rus, I., Rus, I.A., Introducere in teoria ecuaţilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
[4] Devasahayam, M.P., Existence of monoton solutions for functional differential equations, J. Math. Anal. Appl., 118(1986), No.2, 487-495.
[5] Dunkel, G.M., Functional-differential equations: Examples and problems, Lecture Notes in Mathematics, No.144(1970), 49-63.
[6] Grimm, L.J., Schmitt, K., Boundary value problems for differential equations with deviating arguments, Aequationes Math., 4(1970), 176-190.
[7] Oberg, R.J., On the local existence of solutions of certain functional-differential equations, Proc. AMS, 20(1969), 295-302.
[8] Petuhov, V.R., On a boundary value problem, Trud. Sem. Teorii Diff. Unov. Otklon. Arg., 3(1965), 252-255 (in Russian).
[9] Rus, I.A., Principii şi aplicaţii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
[10] Rus, I.A., Picard operators and applications, Scientiae Math. Japonicae, 58(2003), No.1, 191-219.
[11] Rus, I.A., Functional-differential equations of mixed type, via weakly Picard operators, Seminar on fixed point theory, Cluj-Napoca, 2002, 335-345.
[12] Rzepecki, B., On some functional-differential equations, Glasnik Mat., 19(1984), 73-82.
[13] Si, J.-G., Li, W.-R., Cheng, S.S., Analytic solution of on iterative functional-differential equation, Comput. Math. Appl., 33(1997), No.6, 47-51.
[14] Stanek, S., Global properties of decreasing solutions of equation $x^{\prime}(t)=x(x(t))+x(t)$, Funct. Diff. Eq., 4(1997), No.1-2, 191-213.

Babeş-Bolyai University, Department of Applied Mathematics, Str. M. Kogălniceanu Nr.1, 400084 Cluj-Napoca, Romania E-mail address: iarus@math.ubbcluj.ro

Babeş-Bolyai University, Department of Computer Science, Information Technology, 530164 Miercurea-Ciuc, Str. Topliţa, nr.20, jud. Harghita, Romania
E-mail address: egriedit@yahoo.com

