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A NEW MONTE CARLO ESTIMATOR FOR SYSTEMS
OF LINEAR EQUATIONS

NATALIA ROŞCA

Abstract. We propose a new Monte Carlo estimator to solve systems of

linear equations. We formulate and prove some results concerning the

quality and the properties of this estimator. Using this estimator, we give

error bounds and construct confidence intervals for the components of the

solution. We also consider numerical examples. The numerical results

indicate that the proposed estimator converges faster than another two

estimators from the literature.

1. Introduction

Let us consider the system of linear algebraic equations:

x = Tx + c, (1)

where T = (tij)n
i,j=1 ∈ Rn×n, c = (c1, . . . , cn)t ∈ Rn and I−T is an invertible matrix.

The solution x = (x1, . . . , xn)t ∈ Rn of system (1) is unique and admits the Neumann

series representation:

x = c + Tc + T 2c + T 3c + . . .

or, detailed,

xi = ci + (Tc)i + (T 2c)i + . . . , i = 1, . . . , n. (2)

We assume that
∑n

j=1 |tij | < 1, i = 1, . . . , n, which is a sufficient condition for the

convergence of Neumann series to the solution.
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Monte Carlo methods estimate the solution of system (1), by constructing

unbiased estimators for the components of the solution (see [4], [5], [10]). Let P =

(pij)n+1
i,j=1 ∈ R(n+1)×(n+1) be a matrix, whose elements satisfy the conditions:

1. pij ≥ 0 such that tji 6= 0 =⇒ pij 6= 0,

2.
∑n

j=1 pij ≤ 1, i = 1, . . . , n,

3. pi,n+1 = 1−
∑n

j=1 pij , i = 1, . . . , n,

4. pn+1,j = 0, j < n + 1 ,

5. pn+1,n+1 = 1.

The notation pi is also used to denote pi,n+1. The matrix P describes a Markov

chain with the set of states {1, . . . , n + 1}, where n + 1 is an absorbing state and pij ,

i, j = 1, . . . , n + 1, is the one step transition probability from state i to state j.

Define the weights:

wij =


tji

pij
if pij 6= 0

0 if pij = 0
, i, j = 1, . . . , n.

Denote by γ = (i0, i1, . . . , ik, n+1) a trajectory that starts at the initial state

i0 < n+1 and passes successfully through the sequence of states (i1, . . . , ik), to finally

get into the absorbing state ik+1 = n + 1.

Consider a vector α = (α1, . . . , αn), where αi, i = 1, . . . , n, is the probability

that a trajectory starts in state i, i.e.,

P (i0 = i) = αi, αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1.

The probability to follow trajectory γ is P (γ) = αi0pi0i1 . . . pik−1ik
pik

.

Define the estimators θi, i = 1, . . . , n, and λi, i = 1, . . . , n, on the space of

trajectories as follows. For a trajectory γ = (i0, i1, . . . , ik, n + 1), the values of these

estimators are defined as:

θi(γ) = Wk(γ)
δiki

pik

, λi(γ) =
k∑

m=0

Wm(γ)δimi, i = 1, . . . , n,
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where Wm, m = 0, . . . , k, are random variables whose values are:

W0(γ) =
ci0

αi0

,

Wm(γ) = Wm−1(γ)wim−1im

=
ci0

αi0

wi0i1wi1i2 . . . wim−1im
, m = 1, . . . , k.

These values are taken with probability P (γ) (δij is the Kronecker symbol, i.e., δij = 1

if i = j and 0 otherwise).

It is proved in [8] that θi and λi are unbiased estimators of xi, i.e., E(θi) =

E(λi) = xi, i = 1, . . . , n.

For some particular systems, the variances of the estimators θi and λi are

analytically compared in [6]. In [7], the complexity of the Monte Carlo method is

calculated, when certain techniques to generate the trajectories of the Markov chain

are used.

2. A new estimator

Definition 1. We define the estimator Ui, i = 1, . . . , n, on the space of trajectories

as follows. For an arbitrary trajectory γ = (i0, i1, . . . , ik, n + 1), the value of Ui is

defined as:

Ui(γ) = ci + Wk(γ)
tiik

pik

, i = 1, . . . , n,

and is taken with probability P (γ) = αi0pi0i1 . . . pik−1ik
pik

.

Remark 2. The distribution of the estimator Ui, i = 1, . . . , n, is:

Ui :

 ci + Wk(γ) tiik

pik

αi0pi0i1 . . . pik−1ik
pik


γ=(i0,i1,...,ik,n+1)
i0,i1,...,ik=1,...,n

.

Next, we formulate and prove some main results concerning the quality and the

properties of the estimator Ui.

Theorem 3. The expectation of Ui is equal to the component xi of the solution of

system (1), i.e.,

E(Ui) = xi, i = 1, . . . , n. (3)
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In other words, Ui is an unbiased estimator of xi, i = 1, . . . , n.

Proof. We can write:

E(Ui) =
∑

γ=(i0,...,ik,n+1)

Ui(γ)P (γ)

=
∑

γ=(i0,...,ik,n+1)

(
ci + Wk(γ)

tiik

pik

)
P (γ)

=
∑

γ=(i0,...,ik,n+1)

ciP (γ) +
∑

γ=(i0,...,ik,n+1)

Wk(γ)
tiik

pik

P (γ)

= ci +
∑

γ=(i0,...,ik,n+1)

ci0

αi0

wi0i1 . . . wik−1ik

tiik

pik

αi0pi0i1 . . . pik−1ik
pik

= ci +
∑

γ=(i0,...,ik,n+1)

ci0

ti1i0

pi0i1

. . .
tikik−1

pik−1ik

tiik
pi0i1 . . . pik−1ik

= ci +
∞∑

k=0

n∑
i0=1

. . .
n∑

ik=1

tiik
tikik−1 . . . ti1i0ci0

= ci + (Tc)i + (T 2c)i + . . .

= xi.

In the last equality, we used relation (2).

Proposition 4. The following relationship between the estimators Ui and θi holds:

Ui = ci +
n∑

j=1

θjtij , i = 1, . . . , n.

Proof. For any trajectory γ, we can write:

Ui(γ) = ci + Wk(γ)
tiik

pik

= ci +
n∑

j=1

Wk(γ)
δikj

pik

tij

= ci +
n∑

j=1

θj(γ)tij , i = 1, . . . , n.
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Theorem 5. The following relationship between the variance of Ui and the variance

of θi holds:

V ar(Ui) =
n∑

j=1

t2ijV ar(θj) +
∑
j<l

2tijtilCov(θj , θl). (4)

Proof. Using the result from Proposition 4 and some known properties of the variance,

we can write:

V ar(Ui) = V ar
(
ci +

n∑
j=1

θjtij

)

=
n∑

j=1

V ar
(
tijθj

)
+

∑
j<l

2Cov(tijθj , tilθl)

=
n∑

j=1

t2ijV ar(θj) +
∑
j<l

2tijtilCov(θj , θl).

Practically, to solve system (1), we generate N independent trajectories

γ1, . . . , γN and for each trajectory we compute the value of the estimator Ui. The

values Ui(γj), j = 1, . . . , N , are values of the sample variables Ui1, . . . , UiN that are

independent identically distributed random variables and have the same distribution

as Ui.

We use the notation U i,N for the sample mean of the random variables Uij ,

j = 1, . . . , N , and ui,N for its value, i.e.:

U i,N =

∑N
j=1 Uij

N
, ui,N =

∑N
j=1 Ui(γj)

N
. (5)

Proposition 6. The estimator U i,N , i = 1, . . . , n, has the following properties:

E(U i,N ) = xi, (unbiased estimator of xi), (6)

lim
N→∞

V ar(U i,N ) = 0, (7)

P ( lim
N→∞

U i,N = xi) = 1, (U i,N converges almost surely to xi). (8)

Proof. Properties (6) and (7) can be proved using known properties of the mean and

variance. For property (8), we apply the Kolmogorov theorem ([1]) to the sequence
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of random variables (UiN )N≥1 that are independent identically distributed and have

finite means E(UiN ) = xi < ∞. Under these conditions, the Kolmogorov theorem

asserts that relation (8) is satisfied.

Taking into account these properties, the component xi is approximated by:

xi ≈ ui,N =
1
N

N∑
j=1

Ui(γj), i = 1, . . . , n. (9)

The estimate of the solution is:

xU =

[
1
N

N∑
j=1

U1(γj), . . . ,
1
N

N∑
j=1

Un(γj)

]t

. (10)

Similar estimates xθ and xλ can be obtained by replacing the estimator Ui,

i = 1, . . . , n, by θi and λi respectively, i.e.,

xθ =

[
1
N

N∑
j=1

θ1(γj), . . . ,
1
N

N∑
j=1

θn(γj)

]t

, (11)

xλ =

[
1
N

N∑
j=1

λ1(γj), . . . ,
1
N

N∑
j=1

λn(γj)

]t

. (12)

Remark 7. The variance V ar(Ui) is in general unknown. It can be estimated using

an unbiased estimation of it, given by the sample variance:

σ2
U,i =

1
N − 1

N∑
j=1

(Uij − U i,N )2. (13)

Remark 8. Comparing the variances of estimators Ui and θi can be done either

analytically (using, eventually, the result from Theorem 5) or experimentally. Ex-

perimentally, we can use the same N generated trajectories γj, j = 1, . . . , N , and

compute the values θi(γj), j = 1, . . . , N . Let θi1, . . . , θiN be the corresponding sample

variables. We use the same notation θi,N for the sample mean of the random variables

θij, j = 1, . . . , N , and respectively for its value, i.e.,

θi,N =

∑N
j=1 θij

N
, θi,N =

∑N
j=1 θi(γj)

N
.
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We estimate V ar(θi) by the following unbiased estimator:

σ2
θ,i =

1
N − 1

N∑
j=1

(θij − θi,N )2.

Comparing the variances V ar(Ui) and V ar(θi) reduces to comparing their estimations

σ2
U,i and σ2

θ,i.

3. Error estimation

We evaluate (estimate) the error in formula (9). One way of doing this is by

using the Chebyshev inequality ([1]). We have the following main result concerning

the error:

Proposition 9. The following estimation of the error of approximation of xi holds:

P

(∣∣U i,N − xi

∣∣ <
σ(Ui)√

Nγ

)
≥ 1− γ, γ ∈ (0, 1),

where σ(Ui) is the standard deviation of Ui, i.e. σ2(Ui) = V ar(Ui).

Proof. The proof is immediately, by applying the Chebyshev inequality for the esti-

mator U i,N and choosing ε = σ(Ui)√
Nγ

.

Another modality of estimating the error is based on the Lindeberg’s limit

theorem ([1]). In this case, we have the following main result:

Proposition 10. The following estimation of the error of approximation of xi holds:

P

(∣∣U i,N − xi

∣∣ < λ
σ(Ui)√

N

)
≈ 2φ(λ)− 1, λ > 0,

where

φ(λ) =
1√
2π

∫ λ

−∞
e−

t2
2 dt,

is the Laplace function.

Proof. The proof is immediately, by applying the Lindeberg’s limit theorem to the se-

quence of random variables (UiN )N≥1 that are independent and identically distributed

and have the same distribution as Ui.
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4. Confidence intervals

We construct confidence intervals for xi, i = 1, . . . , n. We consider the confi-

dence level α ∈ (0, 1).

Proposition 11. A (1− α)% confidence interval for xi is:(
U i,N − tN−1,1−α

2

σU,i√
N

, U i,N + tN−1,1−α
2

σU,i√
N

)
. (14)

where U i,N is defined in (5), tN−1,1−α
2

is the (1 − α
2 )-th percentile of the Student

distribution with N − 1 degrees of freedom, and σU,i is the sample standard deviation

(σ2
U,i is defined in (13)).

Proof. We consider the statistics:

T =
U i,N − xi

σU,i√
N

,

that has the t (Student) distribution with N − 1 degrees of freedom. We take t2 =

tN−1,1−α
2
, t1 = −t2, i.e.,

FN−1(t2) = 1− α

2
, FN−1(t1) =

α

2
,

where FN−1 is the distribution function of the t distribution with N − 1 degrees of

freedom. We have P (t1 < T < t2) = 1− α, which is equivalent to:

P

(
U i,N − tN−1,1−α

2

σU,i√
N

< xi < U i,N + tN−1,1−α
2

σU,i√
N

)
= 1− α.

Thus, a (1− α)% confidence interval for xi is given by (14).

5. Numerical example

We consider the system: x1 = 0.1x1 + 0.5x2 + 0.4

x2 = 0.3x1 + 0.1x2 + 0.6

with the exact solution x = (1, 1).
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We choose the matrix P of the following form:

P =


0.1 0.3 0.6

0.5 0.1 0.4

0 0 1

 .

The matrix P describes a Markov chain with the set of states {1, 2, 3}, where state

3 is the absorbing one. As pij = tji, i, j = 1, 2, we have wij = 1, i, j = 1, 2. Since

c1, c2 ≥ 0 and c1 + c2 = 1, we take the vector α = ct = (0.4, 0.6).

In order to get the initial state i0 ∈ {1, 2} of an arbitrary trajectory, we

sample from the following discrete distribution:

Yα :

 1 2

α1 α2

 .

Once the trajectory is in state im = i ∈ {1, 2}, we sample from the distribution:

Yi :

 1 2 3

pi1 pi2 pi

 ,

described by the i-th line of matrix P , in order to determine the next state im+1.

We repeat this procedure till absorbtion takes place. The sampling method is the

inversion method ([2], [3]).

We generate N trajectories and we calculate the estimates xθ, xλ, xU using

formulas (11), (12) and (10), respectively. The following table contains: the number

N of trajectories generated, the estimates xθ, xλ, xU and the euclidian norm of the

errors ‖x− xθ‖, ‖x− xλ‖, ‖x− xU‖.
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N xθ xλ xU ‖x− xθ‖ ‖x− xλ‖ ‖x− xU‖

5000 (0.9853 , (0.9768, (1.0095, 0.0264 0.0234 0.0098

1.0220) 0.9968) 0.9978)

10000 (0.9897, (0.9859, (1.0067, 0.0186 0.0150 0.0069

1.0155) 0.9948) 0.9985)

15000 (0.9939 , (0.9875, (1.0040, 0.0110 0.0144 0.0041

1.0092) 0.9930) 0.9991)

50000 (0.9945, (0.9942, (1.0036, 0.0100 0.0061 0.0037

1.0083) 0.9979) 0.9992)

100000 (0.9987 , (0.9977, (1.0009, 0.0024 0.0023 0.0009

1.0020) 0.9994) 0.9998)

The numerical results indicate that the proposed estimate xU converges faster than

the estimations xθ and xλ.
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