STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume ${\bf LI},$ Number 2, June 2006

FUNCTIONAL-DIFFERENTIAL EQUATIONS OF MIXED TYPE, VIA WEAKLY PICARD OPERATORS

OLARU ION MARIAN

Abstract. In this paper we apply the weakly Picard operators technique to study the following second order functional differential equations of mixed type

$$-x''(t) = f(t, x(t), \int_{t-h}^{t} x(s)ds, \int_{t}^{t+h} x(s)ds), \quad t \in [a, b], h > 0.$$

1. Introduction

The purpose of this paper is to study, the following boundary value problem:

$$-x''(t) = f(t, x(t), \int_{t-h}^{t} x(s)ds, \int_{t}^{t+h} x(s)ds), \quad t \in [a, b], h > 0.$$
(1)

$$\begin{cases} x(t) = \varphi(t) &, t \in [a - h, a] \\ x(t) = \psi(t) &, t \in [b, b + h] \end{cases}$$
(2)

Where:

- $(H_1) f \in C([a, b] \times \mathbb{R}^3, \mathbb{R}).$
- (H_2) There exists $L_f > 0$ such that:

$$|f(t, u_1, u_2, u_3) - f(t, v_1, v_2, v_3)| \le L_f \sum_{i=1}^3 |u_i - v_i|,$$

Received by the editors: 10.01.2006.

²⁰⁰⁰ Mathematics Subject Classification. 34K10, 47H10.

Key words and phrases. Picard operators, weakly Picard operators, fixed points, equations of mixed type, data dependence.

for all
$$t \in [a, b], u_i, v_i \in \mathbb{R}, i = \overline{1, 3}$$
.
(H₃) $\varphi \in C([a - h, a]), \psi \in C([b, b + h])$.

Let G be the Green function of the following problem:

$$\begin{cases} -x'' = \lambda \\ x(a) = 0 \\ x(b) = 0 \end{cases}$$

From the definition of the Green function we have that, the problem (1)+(2), $x \in C([a - h, b + h]) \cap C^2([a, b])$, is equivalent with the fixed point equation:

$$x(t) = \begin{cases} \varphi(t), & t \in [a - h, a] \\ w(\varphi, \psi)(t) + \int_{a}^{b} G(t, s) f(s, x(s), \int_{s - h}^{s} x(u) du, \int_{s}^{s + h} x(u) du)) ds, & t \in [a, b] \\ \psi(t), & t \in [b, b + h] \end{cases}$$
(3)

 $x \in C([a-h, b+h])$, where:

$$w(\varphi,\psi)(t) := \frac{t-a}{b-a} \cdot \psi(b) + \frac{b-t}{b-a} \cdot \varphi(a).$$

The equation (1) is equivalent with:

$$x(t) = \begin{cases} x(t), & t \in [a-h,a] \\ w(x|[a-h,a],x|[b,b+h]) + \\ + \int\limits_{a}^{b} G(t,s)f(s,x(s), \int\limits_{s-h}^{s} x(u)du, \int\limits_{s}^{s+h} x(u)du)ds, & t \in [a,b] \\ x(t), & t \in [b,b+h] \end{cases}$$
(4)

We consider the following operators:

$$B_f, E_f: C([a-h, b+h]) \to C([a-h, b+h])$$

where:

 $B_f(x)(t) :=$ second part of (3) and

FUNCTIONAL-DIFFERENTIAL EQUATIONS OF MIXED TYPE

$$E_f(x)(t) :=$$
 second part of (4).
We denote by $X := C([a - h, b + h]).$

Let be

$$X_{\varphi,\psi} := \{ x \in X \mid x \mid_{[a-h, a]} = \varphi, x \mid_{[b, b+h]} = \psi \}.$$

Then

$$X = \bigcup_{\substack{\varphi \in C([a-h,a])\\\psi \in C([b,b+h])}} X_{\varphi,\psi}$$

is a partition of X.

2. Weakly Picard operators

Led (X,d) be a metric space and $A:X\longrightarrow X$ an operator. We shall use the following notations:

 $F_A := \{x \in X \mid A(x) = x\}$ - the fixed point set of A.

 $I(A) := \{Y \subset X \mid A(Y) \subset, Y \neq \emptyset\}\text{-the family of the nonempty invariant subsets of } A.$

$$A^{n+1} := A \circ A^n A^0 = 1_X, \ A^1 = A, \ n \in \mathbb{N}.$$

Definition 2.1. [1],[2] An operator A is weakly Picard operator (WPO) if the sequence

$$(A^n(x))_{n \in \mathbb{N}}$$

converges , for all $x \in X$ and the limit (which depend on x) is a fixed point of A.

Definition 2.2. [1],[2] If the operator A is WPO and $F_A = \{x^*\}$ then by definition A is Picard operator.

Definition 2.3. [1],[2] If A is WPO, then we consider the operator

$$A^{\infty}: X \to X, A^{\infty}(x) = \lim_{n \to \infty} A^n(x).$$

We remark that $A^{\infty}(X) = F_A$.

Definition 2.4. [1],[2] Let be A an WPO and c > 0. The operator A is c-WPO if

$$d(x, A^{\infty}(x)) \le c \cdot d(x, A(x)).$$

We have the following characterization of the WPOs:

Theorem 2.1. [1],[2]Let (X, d) be a metric space and $A : X \to X$ an operator. The operator A is WPO (c-WPO) if and only if there exists a partition of X,

$$X = \bigcup_{\lambda \in \Lambda} X_{\lambda}$$

such that

- (a) $X_{\lambda} \in I(A)$
- (b) $A \mid X_{\lambda} : X_{\lambda} \to X_{\lambda}$ is a Picard (c-Picard) operator, for all $\lambda \in \Lambda$.

For the class of c-WPOs we have the following data dependence result:

Theorem 2.2. [1],[2] Let (X,d) be a metric space and $A_i : X \to X, i = \overline{1,2}$ an operator. We suppose that :

- (i) the operator A_i is $c_i WPO$, $i = \overline{1, 2}$.
- (ii) there exists $\eta > o$ such that

$$d(A_1(x), A_2(x)) \le \eta, (\forall) x \in X.$$

Then

$$H(F_{A_1}, F_{A_2}) \le \eta \max\{c_1, c_2\}.$$

Here stands for Hausdorff-Pompeiu functional.

We have:

Lemma 2.1. [1],[2] $Let(X, d, \leq)$ be an ordered metric space and $A : X \to X$ an operator such that:

a)A is monotone increasing.
b)A is WPO.
Then the operator A[∞] is monotone increasing.

Lemma 2.2. [1],[2] Let (X, d, \leq) be an ordered metric space and $A, B, C : X \to X$ such that:

- $(i)A \le B \le C.$
- (ii) the operators A,B,C are W.P.Os.
- (iii) the operator B is monotone increasing.

Then

$$x \le y \le z \Longrightarrow A^{\infty}(x) \le B^{\infty}(y) \le C^{\infty}(z).$$

Lemma 2.3. [1],[2] Let (X, d, \leq) be an ordered metric space, $A : X \longrightarrow X$ an operator and $x, y \in X$ such that

$$x < y, x \le A(x), y \ge A(y).$$

We suppose that

- (i) A is W.P.O;
- (ii) A is monotone increasing.

Then

- (a) $x \leq A^{\infty}(x) \leq A^{\infty}(y) \leq y;$
- (b) A[∞](x) is the minimal fixed point of A in [x, y] and A[∞](y) is the maximal fixed point of A in [x, y]

3. Boundary value problem

We consider the problem (1)+(2)

Theorem 3.1. We suppose that

- (a) The conditions $(H_1) (H_3)$ are satisfied.
- (b) $\frac{1}{8}L_f(b-a)^2(1+2h) < 1$

Then the problem (1)+(2) has a unique solution in X.

Proof. The problem (1)+(2) is equivalent with the fixed point equation

$$B_f(x) = x, x \in X.$$

From the condition (H_2) we have

$$\begin{split} |B_{f}(x)(t) - B_{f}(y)(t)| \leq \\ \leq \int_{a}^{b} G(t,s)|f(s,x(s),\int_{s-h}^{s} x(u)du, \int_{s}^{s+h} x(u)du) - f(s,y(s),\int_{s-h}^{s} y(u)du, \int_{s}^{s+h} y(u)du)|ds \leq \\ \leq L_{f} \int_{a}^{b} G(t,s)[|x(s) - y(s)| + \int_{s-h}^{s} |x(u) - y(u)|du + \int_{s}^{s+h} |x(u) - y(u)|du]ds \leq \\ \leq \frac{L_{f}}{8}(b-a)^{2}||x-y||_{C}(1+2h), \end{split}$$

for all $x, y \in X_{\varphi, \psi}$.

Then B_f is Picard operator on $X_{\varphi,\psi}$.

From this we have the conclusion.

Remark 3.1. From the Theorem 3.1, using the Theorem 2.1, we have that the operator E_f is W.P.O and $F_{E_f} \cap X_{\varphi,\psi} = \{x_{\varphi,\psi}^{\star}\}$ where $x_{\varphi,\psi}^{\star}$ is the unique solution of (1)+(2).

4. Inequalities of Čaplygin type

We have

Theorem 4.1. We suppose that

- (a) The conditions $(H_1) (H_3)$ are satisfied;
- (b) $\frac{L_f}{8}(b-a)^2(1+2h) < 1;$
- (c) the operator $f(t, \cdot, \cdot, \cdot) : \mathbb{R}^3 \longrightarrow \mathbb{R}$ is monotone increasing for all $t \in [a, b]$;

Let x be a solution of the corresponding equation (1) and y a solution of the inequality

$$-y''(t) \le f(t, y(t), \int_{t-h}^{t} y(s)ds, \int_{t}^{t+h} y(s)ds).$$

Then

$$y(t) \le x(t), (\forall)t \in [a-h,a] \cup [b,b+h] \Longrightarrow y \le x$$

Proof. In the terms of the operator E_f we have that

$$\begin{split} &x=E_f(x),\\ &y\leq E_f(y)\\ &w(y\mid_{[a-h,a]},y\mid_{[b,b+h]})\leq w(x\mid_{[a-h,h]},x\mid_{[b,b+h]}).\\ &\text{On the other hand, from the condition }(c), \text{ using Lemma 2.1 we have that} \end{split}$$

the operator E_f^{∞} is monotone increasing.

From this using Lemma 2.3 we have that

$$y \le E_f^{\infty}(y) = E_f^{\infty}(\widetilde{w}(y)) \le E_f^{\infty}(\widetilde{w}(x)) = x,$$

where, for $z \in X$,

$$\widetilde{w}(z) = \begin{cases} z(t) & , t \in [a - h, a] \\ w(z \mid_{[a - h, h]}, z \mid_{[b, b + h]}) & , t \in [a, b] \\ z(t) & , t \in [b, b + h] \end{cases}$$

5. Data dependence: Monotony

Now we shall study the monotony of the solutions of the equation (1) with respect to initial conditions.We have

Theorem 5.1. Let $f_i \in C([a, b] \times \mathbb{R}^3, \mathbb{R}), i = \overline{1, 3}$ be as in the Theorem 3.1. We suppose that

- (a) $f_2(t, \cdot, \cdot, \cdot) : \mathbb{R}^3 \longrightarrow \mathbb{R}$ is monotone increasing;
- (b) $f_1 \le f_2 \le f_3;$

Let x_i , be a solution of the equation

$$-x''(t) = f_i(t, x(t), \int_{t-h}^t x(s)ds, \int_t^{t+h} x(s)ds), \quad i = \overline{1, 3}.$$

If

$$x_1(t) \le x_2(t) \le x_3(t), (\forall)t \in [a-h, a] \cup [b, b+h]$$

then

$$x_1 \le x_2 \le x_3.$$

Proof. The operators E_{f_i} are W.P.O.s. From the condition (a) the operator E_{f_2} is monotone increasing. From (b) it follows that $E_{f_1} \leq E_{f_2} \leq E_{f_3}$. We remark that $x_i = E_{f_i}^{\infty}(\widetilde{w}(x_i)), i = \overline{1,3}$.

Now the proof follows from Lemma 2.2.

Theorem 5.2. We consider the equation (1) under conditions of the Theorem 3.1. Let x, y be two solutions of the equations (1). We suppose that f is monotone increasing. If

$$x(t) \le y(t), \quad (\forall)t \in [a-h,a] \cup [b,b+h],$$

then

$$x \leq y,$$

on [a - h, b + h].

Proof. The operator E_f is W.P.O. Because f is monotone increasing we obtain that E_f is monotone increasing. From Lemma 2.1 we have that E_f^{∞} is increasing. It follows that $E_f^{\infty}(\widetilde{w}(x)) \leq E_f^{\infty}(\widetilde{w}(y))$ and $x \leq y$.

6. Data dependence: continuity

Next, for $i = \overline{1, 2}$, we consider the equations:

$$-x''(t) = f_i(t, x(t), \int_{t-h}^t x(s)ds, \int_t^{t+h} x(s)ds).$$
(5)

Theorem 6.1. Let f_1 and f_2 be as in the Theorem 3.1.Let S_i be the solutions set of the equation (5) corresponding to $f_i, i = \overline{1,2}$.

If $\eta > 0$ is such that

$$|f_1(t, u, v, w) - f_2(t, u, v, w)| \le \eta,$$

for all $t \in [a, b], u, v, w \in \mathbb{R}$, then

$$H(S_1, S_2) \le \frac{\eta(b-a)^2}{8 - L(b-a)^2(1+2h)}$$

where $L := \max\{L_{f_1}, L_{f_2}\}.$

Proof. In the conditions of the Theorem 3.1 the operators E_{f_i} , $i = \overline{1, 2}$ are $c_i - W.P.O.s$, with

$$c_i = (1 - \alpha_i)^{-1}$$

where,

$$\alpha_i = \frac{1}{8} \cdot L_{f_i} (b-a)^2 (1+2h).$$

From

$$\begin{aligned} |E_{f_1}(x)(t) - E_{f_2}(x)(t)| \leq \\ \leq \int_a^b G(t,s) |f_1(s,x(s), \int_{s-h}^s x(u)du, \int_s^{s+h} x(u)du) - f_2(s,x(s), \int_{s-h}^s x(u)du, \int_s^{s+h} x(u)du)| ds \leq \\ \leq \eta \int_a^b G(t,s)ds \leq \eta \frac{(b-a)^2}{8}, \end{aligned}$$

using the Theorem 2.2, we have the conclusions.

7. Smooth dependence on parameters

Consider the following boundary value problem with parameter

$$-x''(t) = f(t, x(t), \int_{t-h}^{t} x(s)ds, \int_{t}^{t+h} x(s)ds; \lambda), t \in [a, b], \lambda \in J$$
(6)

$$\begin{cases} x(t) = \varphi(t) &, t \in [a - h, a] \\ x(t) = \psi(t) &, t \in [b, b + h] \end{cases}$$

$$(7)$$

We suppose that

 (C_1) $J \subseteq \mathbb{R}$, a compact interval;

$$(C_2) \ f \in C^1([a,b] \times \mathbb{R}^3 \times J, \mathbb{R});$$

 (C_3) There exists $L_f > 0$ such that:

$$|\frac{\partial f}{\partial u_i}(t, u_1, u_2, u_3; \lambda)| \le L_f,$$
 for all $t \in [a, b], u_i \in \mathbb{R}, i = \overline{1, 3}.$

(C₄)
$$\varphi \in C([a - h, a]), \psi \in C([b, b + h]).$$

(C₅) $\frac{1}{8}L_f(b - a)^2 < 1$

In the above conditions from Theorem 3.1 we have that the problem (6)+(7) has a unique solution, $x^*(\cdot; \lambda)$.

Now we prove that $x^{\star}(t, \cdot) \in C^1(J)$. For this we consider the equation

$$-x''(t,\lambda) = f(t,x(t,\lambda), \int_{t-h}^{t} x(s,\lambda)ds, \int_{t}^{t+h} x(s,\lambda)ds; \lambda),$$
(8)

for all $t \in [a, b], \lambda \in J, x \in C([a - h, b + h] \times J)$.

The problem (8)+(7) is equivalent with

$$x(t,\lambda) = \begin{cases} \varphi(t), & t \in [a-h,a], \lambda \in J \\ w(\varphi,\psi)(t) + \int_{a}^{b} G(t,s)f(s,x(s,\lambda), \\ \int_{s-h}^{s} x(u,\lambda)du, \int_{s}^{s+h} x(u,\lambda)du)ds, & t \in [a,b], \lambda \in J \\ x(t), & t \in [b,b+h], \lambda \in J \end{cases}$$
(9)

We consider the operator

$$B: C([a-h, b+h] \times J) \longrightarrow C([a-h, b+h] \times J),$$

where

B(x)(t) =second part of (9).

Let $X := C([a - h, b + h] \times J)$ and let, $\|\cdot\|$, be the Chebyshev norm on X. It is clear that in the condition $(C_1) - (C_5)$ the operator B is Picard operator.

Let x^* be the unique fixed point of *B*. We suppose that there exists $\frac{\partial x^*}{\partial \lambda}$. Then for (9) we have that

$$\frac{\partial x^{\star}}{\partial \lambda}(t,\lambda) =$$

$$\begin{array}{ll} 0, & t \in [a-h,a], \lambda \in J \\ \int \limits_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{1}}(s, x^{\star}(s,\lambda), \int \limits_{s-h}^{s} x^{\star}(u,\lambda) du, \int \limits_{s}^{s+h} x^{\star}(u,\lambda) du) \cdot \\ \cdot \frac{\partial x^{\star}}{\partial \lambda}(s,\lambda) ds + \\ + \int \limits_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{2}}(s, x^{\star}(s,\lambda), \int \limits_{s-h}^{s} x^{\star}(u,\lambda) du, \int \limits_{s}^{s+h} x^{\star}(u,\lambda) du) \cdot \\ \cdot \int \limits_{s-h}^{s} \frac{\partial x^{\star}}{\partial \lambda}(u,\lambda) du ds + \\ + \int \limits_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{3}}(s, x^{\star}(s,\lambda), \int \limits_{s-h}^{s} x^{\star}(u,\lambda) du, \int \limits_{s}^{s+h} x^{\star}(u,\lambda) du) \cdot \\ \cdot \int \limits_{s}^{s+h} \frac{\partial x^{\star}}{\partial \lambda}(u,\lambda) du ds + \\ + \int \limits_{a}^{b} G(t,s) \frac{\partial f}{\partial \lambda}(s, x^{\star}(s,\lambda), \int \limits_{s-h}^{s} x^{\star}(u,\lambda) du, \int \limits_{s}^{s+h} x^{\star}(u,\lambda) du) ds, \quad t \in [a,b], \lambda \in J \\ 0, & t \in [b,b+h] \end{array}$$

This relation suggest us to consider the following operator

$$C: X \times X \longrightarrow X$$
$$(x, y) \longrightarrow C(x, y),$$

where

$$\begin{split} C(x,y)(t,\lambda) = & t \in [a-h,a], \lambda \in J \\ \int_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{1}}(s,x(s,\lambda), \int_{s-h}^{s} x(u,\lambda) du, \int_{s}^{s+h} x(u,\lambda) du) \cdot \\ \cdot y(s,\lambda) ds + & + \int_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{2}}(s,x(s,\lambda), \int_{s-h}^{s} x(u,\lambda) du, \int_{s}^{s+h} x(u,\lambda) du) \cdot \\ \cdot \int_{s-h}^{s} y(u,\lambda) du ds + & + \int_{a}^{b} G(t,s) \frac{\partial f}{\partial u_{3}}(s,x(s,\lambda), \int_{s-h}^{s} x(u,\lambda) du, \int_{s}^{s+h} x(u,\lambda) du) \cdot \\ \cdot \int_{s}^{s+h} y(u,\lambda) du ds + & + \int_{a}^{b} G(t,s) \frac{\partial f}{\partial \lambda}(s,x(s,\lambda), \int_{s-h}^{s} x(u,\lambda) du, \int_{s}^{s+h} x(u,\lambda) du) ds, \quad t \in [a,b], \lambda \in J \\ 0, & t \in [b,b+h], \lambda \in J \end{split}$$

In this way we have that the operator

$$A: X \times X \longrightarrow X \times X$$
$$(x, y) \longrightarrow (B(x), C(x, y)),$$

where B is Picard operator and $C(x, \cdot): X \longrightarrow X$ is a α - contraction, with

$$\alpha = L_f (1+2h) \frac{(b-a)^2}{8}$$

From the theorem of fibre contraction(see [1],[5]) we have that the operator A is a Picard operator.So the sequences

$$x_{n+1} = B(x_n),$$
$$y_{n+1} = C(x_n, y_n),$$

converges uniformly (with respect to $t \in [a - h, b + h], \lambda \in J$) to $(x^*, y^*) \in F_A$, for all $x_0, y_0 \in C([a - h, b + h] \times J)$.

 $x_0, y_0 \in C([a - h, b + h] \times J).$ If we take, $x_0 = 0$, $y_0 = \frac{\partial x_0}{\partial \lambda} = 0$, then, $y_1 = \frac{\partial x_1}{\partial \lambda}$. By induction, we prove that

$$y_n = \frac{\partial x_n}{\partial \lambda}, (\forall) n \in \mathbb{N}$$

Thus

$$x_n \longrightarrow x^*, \text{ as } n \longrightarrow \infty, \text{ uniformly,}$$

 $\frac{\partial x_n}{\partial \lambda} \longrightarrow y^* \text{ as } n \longrightarrow \infty, \text{ uniformly.}$

These imply that there exists $\frac{\partial x^{\star}}{\partial \lambda}$ and, $\frac{\partial x^{\star}}{\partial \lambda} = y^{\star}$.

From the above consideration, we have that

Theorem 7.1. Consider the problem (7)+(8) in the conditions $(C_1) - (C_5)$. Then

- (a) The problem, (7)+(8), has in C([a-h, b+h]) a unique solution x^* .
- (b) $x^{\star}(t, \cdot) \in C^{1}(J), (\forall)t \in [a h, b + h].$

References

- Rus, I.A., Weakly Picard operators and applications, Seminar on fixed Point theory, Cluj-Napoca, 2, 2001.
- Rus, I.A., Functional-Differential Equations of mixed Type via weakly Picard operators, Seminar on fixed Point theory, Cluj-Napoca, 3, 2002, 335-345.
- [3] Rus, I.A., Differential equation, integral equation and dynamic systems, Tansilvania Press, Cluj-Napoca, 1996 (in Romanian).
- [4] Rus, I.A., Muresan, S., Data dependence of the fixed points set of weakly Picard operators, Studia Univ. "Babes-Bolyai", Mathematica, Volume XLIII, Number 1, March 1998, 79-83.
- [5] Rus, I.A., Generalized contractions, Cluj University Press, 2001.

DEPARTMENT OF MATHEMATICS, UNIVERSITY "LUCIAN BLAGA" SIBIU, ROMANIA *E-mail address:* olaruim@yahoo.com