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PFAFFIAN TRANSFORMATIONS

MARIA TERESA CALAPSO, FILIP DEFEVER, AND RADU ROSCA

Abstract. Geometrical and structural properties are proved for manifolds

possessing a particular locally conformal almost cosymplectic structure.

1. Introduction

Let M(g,9Q,¢,1n,€) be an 2m + 1-dimensional Riemannian manifold with
metric tensor g and associated Levi-Civita connection V. The quadruple (€2, ¢,&,n)
consists of a structure 2-form 2 of rank 2m, an endomorphism ¢ of the tangent bun-

dle, the Reeb vector field £, and its corresponding Reeb covector field 7, respectively.

We assume that the 2-form € satisfies the relation
dQ=AnAQ, (1)
where A is constant, and that the 1-form 7 is given by
n=Adf, (2)

for some scalar function f on M. We may therefore notice that a locally conformal

almost cosymplectic structure [7] [10] is defined on the manifold M.

In addition, we assume that the field ¢ of endomorphisms of the tangent spaces defines

a quasi-Sasakian structure, thus realizing in particular the identity

$*=-Td+n®¢.
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Moreover, we will assume the presence on M of a structure vector field X satisfying
the property
VX = fdp+ A\VE. (3)

In the present paper various properties involving the above mentioned objects are

studied. In particular, for the Lie differential of Q and n with respect to X, one has

»CX77 = 0,

LxQ = 0,
which shows that n and  define Pfaffian transformations [3].

2. Preliminaries

Let (M,g) be an n-dimensional Riemannian manifold and let V be the
covariant differential operator defined by the metric tensor. We assume in the sequel

that M is oriented and that the connection V is symmetric.

Let ITTM = Z(M) be the set of sections of the tangent bundle TM, and
b TM 2 T*M and . TM & T M

the classical isomorphisms defined by the metric tensor g (i.e. ® is the index lowering

operator, and * is the index raising operator).

Following [12], we denote by
AY(M, TM) = THom(AYTM, TM),

the set of vector valued g-forms (¢ < dimM) , and we write for the covariant derivative

operator with respect to V
d¥ : AYM, TM) — AT (M, TM). (4)

It should be noticed that in general AV’ =dvV od¥ #0, unlike d> = dod = 0.
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Furthermore, we denote by dp € A'(M,TM) the canonical vector valued 1-form
of M, which is also called the soldering form of M [3]; since V is assumed to be

symmetric, we recall that the identity d¥ (dp) = 0 is valid.

The operator
d¥ =d+e(w),

acting on AM is called the cohomology operator [5]. Here, e(w) means the exterior

product by the closed 1-form w, i.e.
d°u=du+wAu,
with w € AM. A form u € AM such that
d“u =0,

is said to be d“-closed, and w is called the cohomology form.

A vector field X € Z(M) which satisfies
dV(VX)=V?X =nAdpe A>(M,TM), TeAM, (5)

and where 7 is conformal to X”, is defined to be an exterior concurrent vector field

[14]. In this case, if R denotes the Ricci tensor field of V, one has

R(X,Z) = —2mA\3(k +n) Adp, Z € 2(M)

3. Geometrical properties

In terms of a local field of adapted vectorial frames O = vect{es|A =
0,---2m} and its associated coframe O* = covect{w?|A = 0,---2m}, the soldering

form dp can be expressed as

2m

dPZZwA@)eA;
A=0
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and we recall that E. Cartan’s structure equations can be written as

2m
Vea = Z@E@eg’, (6)
B=0
2m
dw? = —Z@g/\wB, (7)
B=0
2m
dog = =) 05708 +03. (8)
C=0

In the above equations 6 (respectively ©) are the local connection forms in the

tangent bundle TM (respectively the curvature 2-forms on M).

In terms of the frame fields O and O* with eg = ¢ and w® = 7, the structure vector

field X and the 2-form € can be expressed as

2m
X =) X, (9)
a=1

Q:iwimﬂ*, i*=i4+m. (10)

Taking the Lie differential (:f_ (12 and 1 with respect to X, one calculates
Lxn = 0, (11)
LxQ = 0. (12)

According to [6] the above equations (11) and (12) prove that that 7 and  define a

Pfaffian transformation [3].

Next, by (2) one gets that

05 = Aw®. (13)

Since we also assume that
VX = fdp+ AVE, (14)

we further also derive that
VE=Mdp—n®§). (15)
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Since the ¢-th covariant differential V27 of a vector field Z € Z(M) is defined induc-

tively, i.e.
ViZ =dvV (Vi lZ),
this yields
Vi = Nnedp,
V3¢ = 0.

Hence, one may say that the 3-covariant Reeb vector field £ is vanishing.

Next, by (13), one derives that
1
V2X = N(df +n) ANdp = %)\77/\@07

and consecutively one gets that

VX =0.

(16)

(17)

(18)

(19)

This shows that both vector fields £ and X together define a 3-vanishing structure.

Moreover, by reference to [13], it follows from (18) that one may write that

1
VX = ——Ric(X) — X° Adp,
2m

where Ric is the Ricci tensor.

Reminding that by the definition of the operator ¢

de; = e ic{l,---m},

dei = —e; T =i+m,

(20)

one can check that indeed ¢? = —Id. Acting with ¢ on the vector field X, one obtains

in a first step that

m
X =) Xeqw —X'e i =i4+m.
=1

(21)
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Calculating the Lie derivative of ¢ w.r.t. £, one gets

(Led)X = [€,6X] — 0l¢, X]. (22)
Since clearly
€. 6X] =0, (23)
there follows that
(Led)X = 0. (24)

Hence, the Jacobi bracket corresponding to the Reeb vector field £ vanishes.

By reference to the definition of the divergence

2m
div Z =Y w*(V.,2)
A=0

one obtains in the case under consideration that
div X =2m(\ + f?), (25)

and
div ¢ X =0. (26)

Calculating the differential of the dual form X" of X, one gets

2m 2m
ax’ =3y (dX“ +y Xbog> Aw?. (27)

a=1 b=1
Since
2m
dX*+ > XPoy = I, (28)
b=1
one has that
dx" =0, (29)

which means that the Pfaffian X” is closed. This implies that X” is an eigenfunction
of the Laplacian A, and one can write that
AX" = fIIX|PX".
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If we set

20 = ||IX]1%, (30)
one also derives by (28) that

dl=\X". (31)

From (31) it follows that dX” = 0 which is indeed in accordance with (29).

Returning to the operator ¢, one calculates that

V(¢X) = Apdp — Y | (Z(Xaeg) ®ei +»_(X,) @ ei> . (32)

i=1 \a=1 a=1

Hence there follows that

€, X] = p{—9C, (33)
[€,0X] = ((C°)*+C°(1 =N, (34)
[X,0X] = VepC=C%-C (35)

which shows that the triple {X ,£,¢X} defines a 3-distribution on M.

It is also interesting to draw the attention on the fact that X possesses the following

property. From (14) and (15) one derives that

which means that X is an affine geodesic vector field.

Finally, if we denote by X the exterior differential system which defines X, it follows

by Cartan’s test [1] that the characteristic numbers are
r=3, so=1, 51 =2.

Since r = sg + s1, it follows that ¥ is in involution and the existence of X depends

on an arbitrary function of 1 argument.

Summarizing, we can organize our results into the following
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Theorem 3.1. Let M be a 2m + 1-dimensional Riemannian manifold and let V be
the Levi-Clivita connection and & be the Reeb vector field and n the Reeb covector field
on M. On has the following properties:

(i): € and X define a 3-vanishing structure;
(ii): the Jacobi bracket corresponding to & vanishes;

iii): the harmonic operator acting on X’ gives
(iii) /Z g 9
AX" = fIIX|PX”,
which proves that X is an eigenfunction of A, having f||X||? as eigen-
value;

(iv): the 2-form Q and the Reeb covector n define a Pfaffian transformation,

1.€.
LxQ = 0,
Lxn = 0;

(v): the Ricci tensor is determined by V2X ;

(vi): one has
VxX =fX, f = scalar,

which shows that X is an affine geodesic;
(vii): the triple {X, £, ¢ X} is a 3-distribution on M and is in involution in
the sense of Cartan.

4. The structure 2-form ()

In the present section, we derive some properties of the structure 2-form §2.

First, we recall that one has
dQY =M AQ, A = constant . (37)
By Lie differentiation with respect to X, one gets

LxQ=0. (38)
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Further, since 7¢€2 = 0, one calculates that
L = A2,
d(LeQ) = NnAQ.
Moreover, by the Lie bracket [, | one also has that
iixg2=0. (39)

Next, we consider the vector field ¢.X. By (32), one calculates that

LoxQ= -2 nAX", A = constant . (40)

Since X’ is closed, this yields
d(LsxQ)=0. (41)

This shows that ¢X defines a relative conformal transformation [15] [8] of Q. In

addition, one also derives that
Lixeg=LxLeOQ—LeLxQ)=Lx L

and
LfXQ:fCXQ‘Fdf/\ixdef/\ng

Theorem 4.1. The structure 2-form Q) satisfies the following relations

(i) (iv):
dQ =X AQ d(LsxQ) =0
(ii): (v):
L) = AQ LixgQ = LxLeQ
d(Le) = NpAQ
(iii): (vi):
ix. =0 LixQ=df Nix$
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