PFAFFIAN TRANSFORMATIONS

MARIA TERESA CALAPSO, FILIP DEFEVER, AND RADU ROŞCA

Abstract

Geometrical and structural properties are proved for manifolds possessing a particular locally conformal almost cosymplectic structure.

1. Introduction

Let $M(g, \Omega, \phi, \eta, \xi)$ be an $2 m+1$-dimensional Riemannian manifold with metric tensor g and associated Levi-Civita connection ∇. The quadruple $(\Omega, \phi, \xi, \eta)$ consists of a structure 2 -form Ω of rank $2 m$, an endomorphism ϕ of the tangent bundle, the Reeb vector field ξ, and its corresponding Reeb covector field η, respectively.

We assume that the 2 -form Ω satisfies the relation

$$
\begin{equation*}
d \Omega=\lambda \eta \wedge \Omega \tag{1}
\end{equation*}
$$

where λ is constant, and that the 1 -form η is given by

$$
\begin{equation*}
\eta=\lambda d f, \tag{2}
\end{equation*}
$$

for some scalar function f on M. We may therefore notice that a locally conformal almost cosymplectic structure [7] [10] is defined on the manifold M.

In addition, we assume that the field ϕ of endomorphisms of the tangent spaces defines a quasi-Sasakian structure, thus realizing in particular the identity

$$
\phi^{2}=-\operatorname{Id}+\eta \otimes \xi
$$

Received by the editors: 22.11.2005.
2000 Mathematics Subject Classification. 53B20.
Key words and phrases. Pfaffian transformation, almost cosymplectic structure

Moreover, we will assume the presence on M of a structure vector field X satisfying the property

$$
\begin{equation*}
\nabla X=f d p+\lambda \nabla \xi \tag{3}
\end{equation*}
$$

In the present paper various properties involving the above mentioned objects are studied. In particular, for the Lie differential of Ω and η with respect to X, one has

$$
\begin{aligned}
\mathcal{L}_{X} \eta & =0 \\
\mathcal{L}_{X} \Omega & =0
\end{aligned}
$$

which shows that η and Ω define Pfaffian transformations [3].

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor. We assume in the sequel that M is oriented and that the connection ∇ is symmetric.

Let $\Gamma T M=\Xi(M)$ be the set of sections of the tangent bundle $T M$, and

$$
b: T M \xrightarrow{b} T^{*} M \quad \text { and } \quad \sharp: T M \stackrel{\sharp}{\Perp} T^{*} M
$$

the classical isomorphisms defined by the metric tensor g (i.e. ${ }^{b}$ is the index lowering operator, and \sharp is the index raising operator).

Following [12], we denote by

$$
A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right),
$$

the set of vector valued q-forms $(q<\operatorname{dim} M)$, and we write for the covariant derivative operator with respect to ∇

$$
\begin{equation*}
d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M) . \tag{4}
\end{equation*}
$$

It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=d \circ d=0$.

Furthermore, we denote by $d p \in A^{1}(M, T M)$ the canonical vector valued 1-form of M, which is also called the soldering form of M [3]; since ∇ is assumed to be symmetric, we recall that the identity $d^{\nabla}(d p)=0$ is valid.

The operator

$$
d^{\omega}=d+e(\omega),
$$

acting on ΛM is called the cohomology operator [5]. Here, $e(\omega)$ means the exterior product by the closed 1-form ω, i.e.

$$
d^{\omega} u=d u+\omega \wedge u
$$

with $u \in \Lambda M$. A form $u \in \Lambda M$ such that

$$
d^{\omega} u=0,
$$

is said to be d^{ω}-closed, and ω is called the cohomology form.

A vector field $X \in \Xi(M)$ which satisfies

$$
\begin{equation*}
d^{\nabla}(\nabla X)=\nabla^{2} X=\pi \wedge d p \in A^{2}(M, T M), \quad \pi \in \Lambda^{1} M \tag{5}
\end{equation*}
$$

and where π is conformal to X^{b}, is defined to be an exterior concurrent vector field [14]. In this case, if \mathcal{R} denotes the Ricci tensor field of ∇, one has

$$
\mathcal{R}(X, Z)=-2 m \lambda^{3}(\kappa+\eta) \wedge d p, \quad Z \in \Xi(M)
$$

3. Geometrical properties

In terms of a local field of adapted vectorial frames $\mathcal{O}=\operatorname{vect}\left\{e_{A} \mid A=\right.$ $0, \cdots 2 m\}$ and its associated coframe $\mathcal{O}^{*}=\operatorname{covect}\left\{\omega^{A} \mid A=0, \cdots 2 m\right\}$, the soldering form $d p$ can be expressed as

$$
d p=\sum_{A=0}^{2 m} \omega^{A} \otimes e_{A}
$$

and we recall that E. Cartan's structure equations can be written as

$$
\begin{align*}
\nabla e_{A} & =\sum_{B=0}^{2 m} \theta_{A}^{B} \otimes e_{B} \tag{6}\\
d \omega^{A} & =-\sum_{B=0}^{2 m} \theta_{B}^{A} \wedge \omega^{B} \tag{7}\\
d \theta_{B}^{A} & =-\sum_{C=0}^{2 m} \theta_{B}^{C} \wedge \theta_{C}^{A}+\Theta_{B}^{A} \tag{8}
\end{align*}
$$

In the above equations θ (respectively Θ) are the local connection forms in the tangent bundle $T M$ (respectively the curvature 2-forms on M).

In terms of the frame fields \mathcal{O} and \mathcal{O}^{*} with $e_{0}=\xi$ and $\omega^{0}=\eta$, the structure vector field X and the 2 -form Ω can be expressed as

$$
\begin{gather*}
X=\sum_{a=1}^{2 m} X^{a} e_{a} \tag{9}\\
\Omega=\sum_{i=1}^{m} \omega^{i} \wedge \omega^{i^{*}}, \quad i^{*}=i+m \tag{10}
\end{gather*}
$$

Taking the Lie differential of Ω and η with respect to X, one calculates

$$
\begin{align*}
\mathcal{L}_{X} \eta & =0 \tag{11}\\
\mathcal{L}_{X} \Omega & =0 \tag{12}
\end{align*}
$$

According to [6] the above equations (11) and (12) prove that that η and Ω define a Pfaffian transformation [3].

Next, by (2) one gets that

$$
\begin{equation*}
\theta_{0}^{a}=\lambda \omega^{a} . \tag{13}
\end{equation*}
$$

Since we also assume that

$$
\begin{equation*}
\nabla X=f d p+\lambda \nabla \xi \tag{14}
\end{equation*}
$$

we further also derive that

$$
\begin{equation*}
\nabla \xi=\lambda(d p-\eta \otimes \xi) \tag{15}
\end{equation*}
$$

Since the q-th covariant differential $\nabla^{q} Z$ of a vector field $Z \in \Xi(M)$ is defined inductively, i.e.

$$
\nabla^{q} Z=d^{\nabla}\left(\nabla^{q-1} Z\right)
$$

this yields

$$
\begin{align*}
\nabla^{2} \xi & =\lambda^{2} \eta \otimes d p \tag{16}\\
\nabla^{3} \xi & =0 \tag{17}
\end{align*}
$$

Hence, one may say that the 3 -covariant Reeb vector field ξ is vanishing.

Next, by (13), one derives that

$$
\begin{equation*}
\nabla^{2} X=\lambda^{3}(d f+\eta) \wedge d p=\frac{1+\lambda}{\lambda} \eta \wedge d p \tag{18}
\end{equation*}
$$

and consecutively one gets that

$$
\begin{equation*}
\nabla^{3} X=0 \tag{19}
\end{equation*}
$$

This shows that both vector fields ξ and X together define a 3 -vanishing structure.

Moreover, by reference to [13], it follows from (18) that one may write that

$$
\begin{equation*}
\nabla^{2} X=-\frac{1}{2 m} \operatorname{Ric}(X)-X^{b} \wedge d p \tag{20}
\end{equation*}
$$

where Ric is the Ricci tensor.

Reminding that by the definition of the operator ϕ

$$
\begin{array}{rl}
\phi e_{i}=e_{i^{*}} & i \in\{1, \cdots m\} \\
\phi e_{i^{*}}=-e_{i} & i^{*}=i+m
\end{array}
$$

one can check that indeed $\phi^{2}=-\mathrm{Id}$. Acting with ϕ on the vector field X, one obtains in a first step that

$$
\begin{equation*}
\phi X=\sum_{i=1}^{m} X^{i} e_{i^{*}}-X^{i^{*}} e_{i} \quad i^{*}=i+m \tag{21}
\end{equation*}
$$

Calculating the Lie derivative of ϕ w.r.t. ξ, one gets

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} \phi\right) X=[\xi, \phi X]-\phi[\xi, X] . \tag{22}
\end{equation*}
$$

Since clearly

$$
\begin{equation*}
[\xi, \phi X]=0, \tag{23}
\end{equation*}
$$

there follows that

$$
\begin{equation*}
\left(\mathcal{L}_{\xi} \phi\right) X=0 . \tag{24}
\end{equation*}
$$

Hence, the Jacobi bracket corresponding to the Reeb vector field ξ vanishes.

By reference to the definition of the divergence

$$
\operatorname{div} Z=\sum_{A=0}^{2 m} \omega^{A}\left(\nabla_{e_{A}} Z\right)
$$

one obtains in the case under consideration that

$$
\begin{equation*}
\operatorname{div} X=2 m\left(\lambda+f^{2}\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div} \phi X=0 . \tag{26}
\end{equation*}
$$

Calculating the differential of the dual form X^{b} of X, one gets

$$
\begin{equation*}
d X^{b}=\sum_{a=1}^{2 m}\left(d X^{a}+\sum_{b=1}^{2 m} X^{b} \theta_{b}^{a}\right) \wedge \omega^{a} \tag{27}
\end{equation*}
$$

Since

$$
\begin{equation*}
d X^{a}+\sum_{b=1}^{2 m} X^{b} \theta_{b}^{a}=\lambda \omega^{a}, \tag{28}
\end{equation*}
$$

one has that

$$
\begin{equation*}
d X^{b}=0, \tag{29}
\end{equation*}
$$

which means that the Pfaffian X^{b} is closed. This implies that X^{b} is an eigenfunction of the Laplacian Δ, and one can write that

$$
\Delta X^{b}=f\|X\|^{2} X^{b}
$$

If we set

$$
\begin{equation*}
2 l=\|X\|^{2}, \tag{30}
\end{equation*}
$$

one also derives by (28) that

$$
\begin{equation*}
d l=\lambda X^{b} \tag{31}
\end{equation*}
$$

From (31) it follows that $d X^{b}=0$ which is indeed in accordance with (29).

Returning to the operator ϕ, one calculates that

$$
\begin{equation*}
\nabla(\phi X)=\lambda \phi d p-\sum_{i=1}^{m}\left(\sum_{a=1}^{2 m}\left(X^{a} \theta_{a}^{i}\right) \otimes e_{i^{*}}+\sum_{a=1}^{2 m}\left(X^{a} \theta_{a}^{i^{*}}\right) \otimes e_{i}\right) \tag{32}
\end{equation*}
$$

Hence there follows that

$$
\begin{align*}
{[\xi, X] } & =\rho \xi-\phi C \tag{33}\\
{[\xi, \phi X] } & =\left(\left(C^{0}\right)^{2}+C^{0}(1-\lambda)\right) \xi \tag{34}\\
{[X, \phi X] } & =\nabla_{\xi} \phi C=C^{0} \xi-C \tag{35}
\end{align*}
$$

which shows that the triple $\{X, \xi, \phi X\}$ defines a 3-distribution on M.

It is also interesting to draw the attention on the fact that X possesses the following property. From (14) and (15) one derives that

$$
\begin{equation*}
\nabla_{X} X=f X \tag{36}
\end{equation*}
$$

which means that X is an affine geodesic vector field.

Finally, if we denote by Σ the exterior differential system which defines X, it follows by Cartan's test [1] that the characteristic numbers are

$$
r=3, \quad s_{0}=1, \quad s_{1}=2
$$

Since $r=s_{0}+s_{1}$, it follows that Σ is in involution and the existence of X depends on an arbitrary function of 1 argument.

Summarizing, we can organize our results into the following

Theorem 3.1. Let M be a $2 m+1$-dimensional Riemannian manifold and let ∇ be the Levi-Civita connection and ξ be the Reeb vector field and η the Reeb covector field on M. On has the following properties:
(i): ξ and X define a 3-vanishing structure;
(ii): the Jacobi bracket corresponding to ξ vanishes;
(iii): the harmonic operator acting on X^{b} gives

$$
\Delta X^{b}=f\|X\|^{2} X^{b},
$$

which proves that X^{b} is an eigenfunction of Δ, having $f\|X\|^{2}$ as eigenvalue;
(iv): the 2-form Ω and the Reeb covector η define a Pfaffian transformation, i.e.

$$
\begin{aligned}
\mathcal{L}_{X} \Omega & =0 \\
\mathcal{L}_{X} \eta & =0
\end{aligned}
$$

(v): the Ricci tensor is determined by $\nabla^{2} X$;
(vi): one has

$$
\nabla_{X} X=f X, \quad f=\text { scalar },
$$

which shows that X is an affine geodesic;
(vii): the triple $\{X, \xi, \phi X\}$ is a 3-distribution on M and is in involution in the sense of Cartan.

4. The structure 2-form Ω

In the present section, we derive some properties of the structure 2 -form Ω. First, we recall that one has

$$
\begin{equation*}
d \Omega=\lambda \eta \wedge \Omega, \quad \lambda=\text { constant } \tag{37}
\end{equation*}
$$

By Lie differentiation with respect to X, one gets

$$
\begin{equation*}
\mathcal{L}_{X} \Omega=0 . \tag{38}
\end{equation*}
$$

PFAFFIAN TRANSFORMATIONS

Further, since $i_{\xi} \Omega=0$, one calculates that

$$
\begin{aligned}
\mathcal{L}_{\xi} \Omega & =\lambda \Omega \\
d\left(\mathcal{L}_{\xi} \Omega\right) & =\lambda^{2} \eta \wedge \Omega
\end{aligned}
$$

Moreover, by the Lie bracket [,] one also has that

$$
\begin{equation*}
i_{[X, \xi]} \Omega=0 . \tag{39}
\end{equation*}
$$

Next, we consider the vector field ϕX. By (32), one calculates that

$$
\begin{equation*}
\mathcal{L}_{\phi X} \Omega=-2 \lambda \eta \wedge X^{b}, \quad \lambda=\text { constant } . \tag{40}
\end{equation*}
$$

Since X^{b} is closed, this yields

$$
\begin{equation*}
d\left(\mathcal{L}_{\phi X} \Omega\right)=0 . \tag{41}
\end{equation*}
$$

This shows that ϕX defines a relative conformal transformation [15] [8] of Ω. In addition, one also derives that

$$
\mathcal{L}_{[X, \xi]} \Omega=\mathcal{L}_{X} \mathcal{L}_{\xi} \Omega-\mathcal{L}_{\xi} \mathcal{L}_{X} \Omega=\mathcal{L}_{X} \mathcal{L}_{\xi} \Omega
$$

and

$$
\mathcal{L}_{f X} \Omega=f \mathcal{L}_{X} \Omega+d f \wedge i_{X} \Omega=d f \wedge i_{X} \Omega
$$

Theorem 4.1. The structure 2-form Ω satisfies the following relations
(i):

$$
d \Omega=\lambda \eta \wedge \Omega
$$

(ii):

$$
\begin{aligned}
\mathcal{L}_{\xi} \Omega & =\lambda \Omega \\
d\left(\mathcal{L}_{\xi} \Omega\right) & =\lambda^{2} \eta \wedge \Omega
\end{aligned}
$$

(iv):

$$
d\left(\mathcal{L}_{\phi X} \Omega\right)=0
$$

(v):

$$
\mathcal{L}_{[X, \xi]} \Omega=\mathcal{L}_{X} \mathcal{L}_{\xi} \Omega
$$

(vi):

$$
\mathcal{L}_{f X} \Omega=d f \wedge i_{X} \Omega
$$

References

[1] Cartan, E., Systemes differentiels extérieurs et leurs applications géometriques, Hermann, Paris (1945).
[2] Defever, F., Rosca, R., On a class of even-dimensional manifolds structured by a \mathcal{T} parallel connection, Tsukuba Math. J. 25 (2001) 359-369.
[3] Dieudonné, J., Treatise on Analysis, Vol. 4, Academic Press, New York (1974).
[4] Godbillon, C., Géometrie différentielle et mécanique analytique, Herman, Paris (1969).
[5] Guedira, F., Lichnerowicz, A., Geometrie des algebres de Lie locales de Kirilov, J. Math. Pures Appl. 63(1984). 407-494.
[6] Lichnerowicz, A., Les relations intégrales d'invariance et leurs applications a la dynamique, Bull. Sci. Math. 70(1946), 82-95.
[7] Matsumoto, K., Mihai, I., Rosca, R., A certain locally conformal almost cosymplectic manifold and its submanifolds, Tensor N.S. 51(1992), 91-102.
[8] Matsumoto, K., Mihai, I., Rosca, R., On gradient almost torse forming vector fields, Math. J. Toyama Univ. 19(1996), 149-157.
[9] Mihai, I., Rosca, R., Verstraelen, L., Some aspects of the differential geometry of vector fields, Padge, K. U. Brussel 2(1996).
[10] Olszak, Z., Rosca, R., Normal locally conformal almost cosymplectic manifolds, Publ. Math. Debrecen 39(1991), 3-4.
[11] Petrovic, M., Rosca, R., Verstraelen, L., Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15(1989), 179-187.
[12] Poor, W.A., Differential Geometric Structures, Mc Graw Hill, New York (1981).
[13] Rosca, R., On parallel conformal connections, Kodai Math. J. 2(1979), 1-9.
[14] Rosca, R., Exterior concurrent vectorfields on a conformal cosymplectic manifold admitting a Sasakian structure, Libertas Math. (Univ. Arlington, Texas) 6(1986), 167-174.
[15] Rosca, R., On conformal cosymplectic quasi-Sasakian manifolds, Giornate di Geometria, Univ. Messina (1988).

Seminario Matematico, Universita di Messina, C. Da Papardo - Salita Sperone 31, 98165 S. Agata - Messina, Italy

Departement Industriële Wetenschappen en Technologie, Katholieke Hogeschool Brugge-Oostende, Zeedijk 101, 8400 Oostende, Belgium

59 Avenue Emile Zola, 75015 Paris, France

