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FRICTIONAL CONTACT PROBLEMS WITH NORMAL
COMPLIANCE AND COULOMB’S LAW FOR NONLINEAR

ELASTIC BODIES

S. BOUTECHEBAK AND B. MEROUANI

Abstract. The subject of this work is the study of a problem modeling the

frictional contact between a non linear elastic body and a rigid foundation

at the presence of rapel forces. First, we present variational formulation

for this problem, after we indicate sufficient conditions in order to have

the existence, the uniqueness and the Lipschitz continuous dependence

of solution with respect to the data. Finally, we prove the dependence

of the solution by the parameter θ. The proofs are based on results of

topological degree theory as well as on convexity, monotonicity and fixed

point arguments see [1].

1. Introduction

In this paper we consider perturbed quasivariational inequalities of the form

u ∈ V, 〈Au, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ∀v ∈ V

where V denotes a real Hilbert space and A : V → V is a strongly monotone and

Lipschitz continuous operator on V .

(h1):

 a)∃m > 0 such that 〈Au−Av, u− v〉V ≥ m |u− v|2V ∀u, v ∈ V

b)∃M > 0 such that |Au−Av|V ≤ M |u− v|V ∀u, v ∈ V

Let B : V → V, satisfies:

(h2): There exists C ≥ 0 such that 〈Bv, v〉V ≥ −C |v|2V ∀v ∈ V
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(h3):


For every sequence {ηn} ⊂ V such that ηn → η ∈ V ,

then there exist a subsequence {ηn′} ⊂ V

Bηn′ → Bη strongly in V.

(h4): 〈Bu−Bv, v − u〉V < (m− α) |u− v|2V ∀u, v ∈ V, u 6= v.

(h5): ∃β, 0 ≤ β ≤ (m− α), 〈Bu−Bv, v − u〉V ≤ β |u− v|2V ∀u, v ∈ V.

The functional j : V × V → R satisfies

(h6): j(η, .) : V → R is a convex functional on V , for all η ∈ V,

It is well known that there exists the directional derivative j
′

2 given by

(h7): j
′

2(η, u; v) = limλ→0 [j(η, u + λv)− j(η, v)] ∀η, u, v ∈ V,

We consider now the following assumptions:

(J1):


For every sequence {un} ⊂ V with |un|V →∞

and every sequence {tn} ⊂ [0, 1] one has

lim infn→∞

[
1

|un|2V
j

′

2(tnun, un;−un)
]

< m− C

(J2):


For every sequence {un} ⊂ V with |un|V →∞

and every bounded sequence {ηn} ⊂ V one has

lim infn→∞

[
1

|un|2V
j

′

2(ηn, un;−un)
]

< m.

(J3):


For every sequence {un} ⊂ V and {ηn} ⊂ V such that

un → u ∈ V, ηn → η ∈ V and for every v ∈ V then one has

lim supn→∞ [j(ηn, vn)− j(ηn, un)] ≤ j(η, v)− j(η, u).

(J4): j(u, v)− j(u, u) + j(v, u)− j(v, v) < m |u− v|2V ∀u, v ∈ V, u 6= v

(J5): j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤ α |u− v|2V ,

∀u, v ∈ V,for some α ∈ R with α < m.

Theorem 1. We consider the following problem :

〈Au, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ∀v ∈ V

Let (h1), (h2) and (h6) hold.

(1) Under the assumptions (J1), (J2), (J3), (J5) and (h3), the problem has at

least a solution.
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(2) Under the assumptions (J1), (J2), (J3), (J5), (h3) and (h4),the problem

has a unique solution. .

(3) Under the assumptions (J1), (J2), (J3), (J5), (h3) and (h5), the problem

has a unique solution u = u(f) which depends Lipschitz continuously on f ∈ V with

the Lipschitz constant (m− α− β)−1, i.e.

|u(f1)− u(f2)|V ≤ 1
(m− α− β)

|f1 − f2|V ∀f1, f2 ∈ V

Proof. It is based on results of topological degree theory as well as on convexity,

monotonicity, compactness and fixed point arguments see [1].

Remark 1. The coercivity conditions (J1), (J2) and (h1) (a) are needed in order to

use the weakly sequential compactness property of the closed, bounded convex sets of

V , see [1].

2. The elastic contact problem

2.1. Formulation of the mechanical problem and assumptions. Let us con-

sider an elastic, homogeneous isotrop body whose material particles occupy a bounded

domain Ω ⊂Rn(n = 1, 2, 3) and whose boundary Γ, assumed to be sufficiently

smooth is partitioned into three disjoint measurable parts Γ1,Γ2 and Γ3 such that

meas Γ1 > 0.

We denote by u the displacement vector, σ represents the stress field and

ε(u) is the small strain tensor such that that ε = (εij) : H1 → H

εij(u) =
1
2

(
∂ui

∂uj
+

∂uj

∂ui

)
where the spaces H1 and H are defined below. The elastic constitutive law of the

material is assumed to be

σ = F (ε(u), θ)

In which F is a given nonlinear function, and θ is a parameter.

We assume that the body is clamped on Γ1 and thus the displacement field

vanishes there, that the surface tractions h act on Γ2 and that the body rests on a
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rigid foundation on the part Γ3 of the boundary and that the normal stress σν satisfies

the normal compliance condition:

σν = −pν(uν)

where ν = (νi) represents the outward unit normal vector on Γj , (j = 1, 2, 3), uν rep-

resents the normal displacement (uν = u.ν), pν is a prescribed nonnegative function

and uν when it is positive, represents the penetration of the body in the foundation.

The associated friction law on Γ3 is chosen as
|στ | ≤ pτ (uν)

|στ | < pτ (uν) ⇒ uτ = 0

|στ | = pτ (uν) ⇒ στ = −λuτ , λ ≥ 0

here τ is the tangent unit vector in the positive sense on Γj (j = 1, 2, 3), pτ is a non-

negative function, the so-called friction bound, uτ denotes the tangential displacement

(uτ = u− uνν) and στ represents the tangential force on the contact boundary.

For example, we can consider

(1): pν(r) = cν(r+)mν , pτ (r) = cτr+

where mν ∈]0, 1], cν and cτ are positives constants and r+ = max {0, r} .

Also, the friction law can be used with

(2): pν = µpν or pτ = µpν(1− αpν)+

where µ > 0 is a coefficient of friction and α is a small positive coefficient related to

the wear and hardness of the surface.

2.2. Position of the problem. The mechanical problem may be formulated as

follows:

Problem (P): Find a displacement field u : Ω → Rn and a stress field

σ : Ω → Sn such that :

(3): Div σ + f0 = 0 in Ω

(4): σ = F (x, ε(u), θ) in Ω

(5): u = 0 on Γ1

(6): γ(σν + Φ(x, u)) = h on Γ2
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and on Γ3,

(7):



σν = −pν(uν)

|στ | ≤ pτ (uν)

|στ | < pτ (uν) ⇒ uτ = 0

|στ | = pτ (uν) ⇒ στ = −λuτ , pour un certain λ ≥ 0

(6) is called rapel forces and it means that the surface tractions are propor-

tional to the displacement. It’s the case of building and matlats, ...).

To provide the variational analysis of the problem (P) we need additional

notations. Let

H =
(
L2(Ω)

)n
, H1 =

(
H1(Ω)

)n
.

H =
(
L2(Ω)

)n×n
, H1 =

(
H1(Ω)

)n×n
.

The spaces H,H1 and H are real Hilbert spaces endowed with the canonical

inner products denoted by 〈., .〉H , 〈., .〉H1
and 〈., .〉H , respectively. The associate norms

on H,H1 and H are denoted by |.|H , |.|H1
and |.|H, respectively.

In the study of the mechanical problem (P ) we assume that the elasticity

operator F : Ω× Sn × RM → Sn satisfies

(H1):



(a) ∃mF > 0 such that ∀ε1, ε2 ∈ Sn,∀θ ∈ RM

(F (x, ε1, θ)− F (x, ε2, θ)) . (ε1 − ε2) ≥ mF |ε1 − ε2|2 a.e.in Ω, .

(b) ∃L1, L2 > 0 such that ∀ε1, ε2 ∈ S2,∀θ1, θ2 ∈ RM

|F (x, ε1, θ1)− F (x, ε2, θ2)| ≤ L1 |ε1 − ε2|+ L2 |θ1 − θ2| a.e.in Ω,

(c)x → F (x, ε, θ) is measurable function with respect to the

Lebesgue measure a.e.in Ω,∀ε ∈ Sn,∀θ ∈ RM

(d) F (x, 0n, 0M ) = 0n.

We assume that the forces and the tractions have the regularity

(H2): f0 ∈ H = L2(Ω)n, h ∈ L2(Γ2)n,

also,

(H3): θ ∈ L2(Ω)M
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The function Φ is defined by:

Φ : Γ2 × Rn → Rn

such that

(H4):



(a) ∃mΦ > 0 such that

(Φ(x, u1)− Φ(x, u2)) . (u1 − u2) ≥ mΦ |u1 − u2|2

a.e. in Γ2,∀u1, u2 ∈ Rn

(b) ∃LΦ > 0 such that

|Φ(x, u1)− Φ(x, u2)| ≤ LΦ |u1 − u2| a.e.in Γ2,∀u1, u2 ∈ Rn

(c) x 7→ Φ(x, u) is measurable function with respect to the

Lebesgue measure a.e.in Γ2,∀u ∈ Rn.

(d) Φ(x, 0n) = 0n

We also assume that the normal compliance functions satisfy the following

hypothesis for r = ν, τ :

(H5):



(a) pr : Γ3 × R → R+ such that

pr(., r) is Lebesgue measurable on Γ3, ∀r ∈ R

(b) The mapping pτ (., r) = 0 for r ≤ 0;

(c) There exists an Lr > 0 such that

|pr(x, r1)− pr(x, r2)| ≤ Lr |r1 − r2| ,∀r1, r2 ∈ R, a.e.on Γ3,

(H
′

5): (pν(x, r1)− pν(x, r2)) . (r1 − r2) ≥ 0,∀r1, r2 ∈ R, a.e.on Γ3,

Remark 2. Certainly the functions defined in (1) satisfy the conditions (H5) and

(H
′

5). Also, if pν defined in (2) is Lipschitz then the conditions (H5) is satisfied.

Using the hypothesis (H5)(b) and (c) it follows that:

(8): |pr(x, t)| ≤ Lτ |t| ,∀t ∈ R, a.e.on Γ3.

Remark 3. Using (H1) we find that for all τ ∈ H the function x → F (x, τ(x), θ(x))

belongs to H and hence we may consider F (., θ) as an operator defined on H with

range in H by: F (., θ) : H → H

F (ε, θ)(x) = F (x, ε(x), θ(x)) a.e.in Ω ∀ε ∈ H

Moreover, F (., θ) is a strongly monotone Lipschitz continuous operator:
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(9): ∃L1 > 0 : |F (ε1, θ)− F (ε2, θ)|H ≤ L1 |ε1 − ε2|H .

(10): 〈F (ε1, θ)− F (ε2, θ), ε1 − ε2〉H ≥ mF |ε1 − ε2|2H

The inequality (9) is a particular case of

(11): ∃L1, L2 > 0 : |F (ε1, θ1)− F (ε2, θ2)|H ≤ L1 |ε1 − ε2|H +

L2 |θ1 − θ2|L2(Ω)M .

Therefore F (., θ) is invertible and its inverse F−1(., θ) : H → H is also a

strongly Lipschitz continuous operator.

Remark 4. The assumptions (H4) allows us to consider the operator denoted by

Φ : H → L2(Γ2)n

Φ(v)(x) = Φ(x, v(x)) a.e. in Γ2 ∀v ∈ H

Moreover, Φ is a strongly monotone Lipschitz continuous operator and there-

fore Φ is invertible and its inverse Φ−1 : L2(Γ2)n → H is also a strongly Lipschitz

continuous operator.

We denote by V the closed subspace of H1 given by

(12): V = {v ∈ H1/ γv = 0 sur Γ1}

Since meas Γ1 > 0, Korn’s inequality holds:

|ε(v)|H ≥ C |v|H1
∀v ∈ V

C denotes a strictly positive generic constant which may depend on Ω, Γ1, Γ2,Γ3

and F.

We endow V with the inner product defined by

(13): 〈u, v〉V = 〈ε(u), ε(v)〉H ∀u, v ∈ V

and let |.|V the associated norm. It follows from the Korn’s inequality that |.|V and

|.|H1
are equivalent norms on V. Therefore, (V, |.|V ) is a real Hilbert space. Moreover,

by the Sobolev trace theorem, Korn’s inequality and (13) we have a constant C0

depending on Ω,Γ1 et Γ3 such that:

(14): |v|L2(Γ3)n ≤ C0 |v|V ,∀v ∈ V.

19



S. BOUTECHEBAK AND B. MEROUANI

The functional v → 〈f, v〉H + 〈h, γv〉L2(Γ2)n ,∀v ∈ V is linear and continue on

V ; it results, by using the Riesz Fréchet theorem, the existence of an element f ∈ V

such that

(15): 〈f, v〉V = 〈f0, v〉H + 〈h, γv〉L2(Γ2)n ∀v ∈ V.

For all fixed w in V and for all fixed θ in L2(Ω)M , the functional defined on

V by: v → 〈Fε(w), θ), ε(v)〉H + 〈Φ(w), v〉L2(Γ2)n is a continuous linear functional on

V. Then using Riesz-Fréchet’s theorem, there exists an element Aθw ∈ V such that:

(16): 〈Aθw, v〉V = 〈Fε(w), θ), ε(v)〉H + 〈Φ(w), v〉L2(Γ2)n ∀v ∈ V.

Let B : V → V defined by

(17): 〈Bu, v〉V =
∫
Γ3

pν(uν − g)vνds,∀u, v ∈ V.

and let j : V × V → R be the functional

(18): j(u, v) =
∫
Γ3

pτ (uν − g) |vτ | ds,∀u, v ∈ V.

Using the conditions (H5)(b), (c) it follows that for all v ∈ V the functions

(19): x 7−→ pr(x, v(x)), (r = ν, τ),

belong to L2(Γ3) and hence the integrals in (17) and (18) are well defined.

2.3. Variational Formulation.

Theorem 2. If (u, σ) ∈ H1×H1are sufficiently smooth functions satisfying (3)− (7)

then

(20): u ∈ V : 〈σ, ε(v)− ε(u)〉H + 〈Φ(x, u), v − u〉L2(Γ2)n + 〈Bu, v − u〉V

+j(u, v)− j(u, u) � 〈q, v − u〉V ,∀v ∈ V.

Proof. Let u, v ∈ Uad, by using the Green formula we obtain:

〈f0, v − u〉H = −〈Divσ, ε(v)− ε(u)〉H

= 〈σ, ε(v)− ε(u)〉H − 〈σν, γ(v − u)〉H′
Γ×HΓ

but
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〈σν, γ(v − u)〉H′
Γ×HΓ

=
∫
Γ

σν(v − u)ds =
3∑

j=1

∫
Γj

σνj(v − u)ds

=
∫
Γ2

h(v − u)ds−
∫
Γ2

Φ(u)(v − u)ds +
∫
Γ3

σν1(v − u)ds

Let (uν , uτ ), (vν , vτ ) and (σν , στ ) the components of the vectors u, v and σν in the

orthonorm system (ν, τ). From (5) and (7) it results that we obtain on Γ3

σν(v − u) = σν(vν − uν) + στ (vτ − uτ )

= −pν(uν)(vν − uν) + στ (vτ − uτ )

Then

〈f0, v − u〉H + 〈h, γ(v − u)〉L2(Γ2)n = 〈σ, ε(v − u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+
∫
Γ3

pν(uν)(vν − uν)ds−
∫
Γ3

στ (vν − uν)ds

So, by (15) we obtain:

〈f, v − u〉H = 〈σ, ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+ 〈Bu, v − u〉V −
∫
Γ3

στ (vν − uν)ds

Using (7) it results

−στ (vν − uν) = −στvν + στuν ,

−στvν ≤ pν(uν) |vν |

στuν = −pν(uν) |uν |

It follows that

〈f, v − u〉H ≤ 〈σ, ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+ 〈Bu, v − u〉V + j(u, v)− j(u, u)
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it results

〈Aθu, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉H

and using (4), yields to the following variational formulation of the problem (P ):

Find a displacement field u : Ω → H1, such that

(21): u ∈ V, 〈F (ε(u), θ), ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ,∀v ∈ V.

Remark 5. If u is a solution (21) then (u, σ) satisfy the mechanical problem (P ),

where σ is given by (4).

2.4. Existence and uniqueness results. Let L0 > 0 a constant such that:

L0 =
mF + mΦ

C2
0

Theorem 3. Assume that (H1)− (H5) and Lτ < L0 hold. Then

1) the variational problem (PV ) has at least a solution u ∈ V

2) in addition to (H
′

5) the problem (PV ) has a unique solution which depends

Lipschitz continuously on f .

Proof. The proof fellows from the abstract result provided by theorem1. It will be

carried out in several steps. We are going to prove that if the hypothesis (H1)− (H5)

hold then the conditions (h1)− (h6), (j2), (j3) and (j5) will be satisfied.

Lemma 4. We suppose that (H1)− (H5) hold, the we obtain that the conditions (h1)

and (h6) are satisfied.

Proof. 1) We see that (16) et (H5)(b), (c) give (h1)(a) with m = mF +mΦ and (h1)(b)

with M = L1 + LΦ.

2) Moreover, from (18) we deduce that j(u, .) is convex ∀u ∈ V .

Using (8) and (18) we obtain that ∀u, v1, v2 ∈ V

|j(u, v1)− j(u, v2)| ≤ Lτ |uν |L2(Γ2)
|v1 − v2|L2(Γ2)d ≤ C(u) |v1 − v2|V

Then j(u, .) is continuous on V for all u ∈ V.
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Lemma 5. Under assumptions (H4), (H5), and Lτ < L0, The functional J satisfies

the conditions (J2), (J3) and (J5).

Proof. 1) Using (18) it results that ,∀ η, u ∈ V,∀λ ∈]0, 1[:

1
λ

[j(η, u− λu)− j(η, u)] =
∫
Γ3

pτ (uν)(− |uτ |)ds ≤ 0

Then j
′

2(η, u;−u) ≤ 0 ∀ η, u ∈ V. It follows that for every sequence {un} and {ηn}

in V , we have

lim inf
n→∞

1
|un|2V

[
j

′

2(ηn, un;−un)
]
≤ 0 < m

and we deduce that J satisfies (J2).

2)Let now {un} ⊂ V, {ηn} ⊂ V be two sequences such that un ⇀ u and

ηn ⇀ η weakly in V .

Using the compactness property of the trace map of H1(Ω) in L2(Γ) it follows

that

(30): un → u in L2(Γ3) strongly for a subsequence,

and

(31): ηn → η in L2(Γ3) strongly for a subsequence,

Using (H5)(c) and (31) we have

(32): pτ (., ηnν − g) → pτ (., ην − g) in L2(Γ3) strongly for a subsequence,

Therefore we deduce that

(33): j(ηn, v) → j(η, v) ∀v ∈ V.

Also, (30) gives

(34): |unτ | → |uτ | in L2(Γ3) strongly for a subsequence,

So, by (18), (32) and (34) we obtain

(35): j(ηn, un) → j(η, v) for a subsequence.

Using (33) and (35) we have for all v ∈ V,

lim sup
n→∞

[j(ηn, v)− j(ηn, un)] = j(η, v)− j(η, u)

The (J3) is satisfied.
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3) Let u, v ∈ V. Using (H5)(c) and (18) we obtain:

j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤
∫
Γ3

|pτ (uν)− pτ (vν)| |vτ − uτ | ds

≤ Lτ |u− v|2L2(Γ3)

Using now (14) in the previous inequality we deduce

j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤ LτC2
0 |u− v|2L2(Γ3)

Then (J5) is satisfied with α = LτC2
0 , Lτ < L0.

Lemma 6. Under assumptions (H4) and (H5) we deduce that (J1), (h2) and (h3) are

satisfied, and under assumptions (H4), (H5) and (H
′

5) we obtain the condition (h5).

Proof. 1) Using (17) we obtain 〈Bu, v〉V =
∫
Γ3

pν(uν)vνds ∀v ∈ V.

Let vν ≥ 0, since pν ≥ 0, it results

〈Bv, v〉V ≥ 0

then (h2) is satisfied with C = 0.

2) By using (18) we have for all η, u ∈ V, j
′

2(η, u;−u) ≤ 0. which results (J1)

with C = 0.

3)Let now ηn → η weakly in V. Using the compactness property of the trace

map of H1(Ω) in L2(Γ) it follows that ηn → η in L2(Γ3) strongly for a subsequence,

It results from (17)

〈Bu1 −Bu2, v〉V = 〈pν(u1ν)− pν(u2ν), vν〉L2(Γ3)
∀u1, u2, v ∈ V

Taking v = Bu1 −Bu2 in the previous equality, we have

|v|2V ≤ |pν(u1ν)− pν(u2ν)|L2(Γ3)
. |v|L2(Γ3)

≤ C |pν(u1ν)− pν(u2ν)|L2(Γ3)
. |v|V .

Then

(36): |Bu1 −Bu2| ≤ C |pν(u1ν)− pν(u2ν)|L2(Γ3)
.

So, by (H5) we obtain
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(37): pν(ηnν − g) → pν(ην − g) in L2(Γ3) strongly for a subsequence.

Finally, (36) and (37) give Bηn → Bη in V strongly for a subsequence.

4)Using (17) and (H
′

5) it follows that (h5) is satisfied for β = 0 : ∀u1, u2 ∈ V :

(38): 〈B, u1 −Bu2, u2 − u1〉V = 〈pν(u1ν)− pν(u2ν), u2ν − u1ν〉L2(Γ3)
≤ 0.

Proof of theorem 3.

The proof is based on the application of the theorem1. It follows by using

the lemma 4, lemma 5 and lemma 6.

3. The dependence of the solution on the parameter

Theorem 7. under the assumptions (H1)−(H5), let (ui, σi), (i = 1, 2) the variational

solution of the problem (P) associée to the parameter θi such that θi ∈ L2(Ω)M is

satisfied. Then there exists a positive constant C > 0 which is depend to Ω, Γ1 and Γ

such that:

|u1 − u2|H1
+ |σ1 − σ2|H1

≤ C |θ1 − θ2|L2(Ω)M

Proof. Let (ui, σi), (i = 1, 2), the variational solutions of the problem (P ).

〈σi, ε(v − ui)〉H + 〈Φ(u1), v − ui〉L2(Γ2)n + 〈Bui, v − ui〉V +

+j(ui, v)− j(ui, ui) ≥ 〈f, v − ui〉H

Where v = u2 for i = 1, and v = u1 for i = 2.

〈σ1, ε(u2 − u1)〉H + 〈Φ(u1), u2 − u1〉L2(Γ2)n + 〈Bu1, u2 − u1〉V +

+j(u1, u2)− j(u1, u1)+ � 〈f, u2 − u1〉V

and

〈σ2, ε(u1 − u2)〉H + 〈Φ(u2), u1 − u2〉L2(Γ2)n + 〈Bu2, u1 − u2〉V +

+j(u2, u1)− j(u2, u2)+ � 〈f, u1 − u2〉V

it follows that

〈σ1 − σ2, ε(u2 − u1)〉H + 〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n +

+ 〈Bu1 −Bu2, u2 − u1〉V + j(u1, u2)− j(u1, u1) + j(u2, u1)− j(u2, u2) � 0
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Then, using (j5), we deduce that

j(u1, u2)− j(u1, u1) + j(u2, u1)− j(u2, u2) ≤ α |u1 − u2|2V , α < m

by (33), we obtain that:

〈σ1 − σ2, ε(u2 − u1)〉H + 〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n + α |u1 − u2|2V ≥ 0

it follows that

〈σ1 − F (ε(u2), θ1), ε(u2 − u1)〉H + 〈F (ε(u2), θ1)− σ2, ε(u2 − u1)〉H+

〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n + α |u1 − u2|2V ≥ 0

Then ∣∣∣〈F (ε(u2), θ1)− σ1, ε(u2 − u1)〉H + 〈Φ(u2)− Φ(u1), u2 − u1〉L2(Γ2)n

∣∣∣
≤ |〈F (ε(u2), θ1)− σ2, ε(u2 − u1)〉H|+ α |u1 − u2|2V

Using the Cauchy-Schwartz inequality and (H1)(b)on the right member of the previous

inequality, and (H1)(a), (H4)(a) and Korn’s inequality on the left member, we obtain

that

m |u1 − u2|2V ≤ cL2 |θ1 − θ2|L2(Ω)M |u1 − u2|V + α |u1 − u2|2V

Then

(m− α) |u1 − u2|V ≤ K |θ1 − θ2|L2(Ω)M , where K is a constant > 0

Since (m− α) > 0, then there exists a constant C > 0 such that

(39): |u1 − u2|H1
≤ C |θ1 − θ2|L2(Ω)M

Other way, we have:

|σ1 − σ2|H1
= |σ1 − σ2|H = |F (ε(u1), θ1)− F (ε(u2), θ2)|H

Using (H1)(b) and (34) we obtain that

(40): |σ1 − σ2|H1
≤ C |θ1 − θ2|L2(Ω)M

26



FRICTIONAL CONTACT PROBLEMS

The wanted inequality is now a consequence of (39) and (40)

This theorem prove well the dependence of the solution on the parameter θ

and this result is very important from the mechanical point of view because it prove

that small perturbations on the parameter θ gives small perturbations on the solution

(u, σ) of the problem without frisher.
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d’Etat en Mathématiques Appliquées, 2000.

[3] Drabla, S., Analyse variationnelle de quelques problèmes aux limites en élasticité et en
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