A STABILITY RESULT OF A PARAMETRIZED MINIMUM PROBLEM

M. BOGDAN

Abstract

This paper considers variational inequalities with pseudomonotone maps depending on a parameter and studies the behaviour of their solutions. The main result gives sufficient conditions for the stability of the initial minimum problem under small perturbation of the parameter.

1. Introduction

The parametrization is a welcome concept for almost every minimizing problem with solution and for the behaviour under perturbation.

The aim of this paper is to apply the result obtained in [5] for a particular type of parametric variational inequalities.

A lot of problems are reduced to looking for

$$
\begin{equation*}
\inf \{I(u): u \in C\} \tag{M}
\end{equation*}
$$

where C is a nonempty subset of a real Banach space X and $I: C \rightarrow \mathbb{R}$ is given.
Some papers deal with the existence of the solution or with their regularity. Other papers study the "path" of the solution function provided by a family of parametrized problems, i.e. if it is single-valued, multivalued, continuous or not and so on.

For our purpose, let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain and the minimizing problem in discussion

```
Received by the editors: 25.10 .2005 .
2000 Mathematics Subject Classification. 49J93D.
```

Key words and phrases. Parametric optimization, consistency, stability.
The author thanks Prof. Dr. Kolumbán Iosif for suggesting the topic and for the helpful comments.
$(M)_{0}$

$$
\min \left\{I(u)=\int_{\Omega} f(t, \nabla u(t)) d t: u \in v_{0}+X\right\}
$$

where $X=H_{0}^{1, q}(\Omega), 1<q<+\infty, v_{0} \in X$ given with $I\left(v_{0}\right)<+\infty$, the integrand $f: \bar{\Omega} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.

For I differentiable it is known that a (local) solution u_{0} of $(M)_{0}$ has to satisfy the equilibrum equation $I^{\prime}(u)=0$.

For the real Banach space X, X^{*} denotes the dual space and $\langle x, u\rangle$ the duality pairing between $x \in X$ and $u \in X^{*}$. If the admissible set C is a closed convex subset of X then u_{0} has to satisfy the variational inequality

$$
\begin{equation*}
<I^{\prime}(u), v-u>\geq 0, \quad \text { for each } v \in C . \tag{VI}
\end{equation*}
$$

The parametric form for the problem (VI) requires the following data. Let P be a topological space - the set of parameters, $K: P \rightarrow 2^{X}$ and $J: P \times X \rightarrow 2^{X^{*}}$ be given set-valued maps so that $K(p) \subseteq \operatorname{Dom} J(p, \cdot)$ for each $p \in P$, where $\operatorname{Dom} J(p, \cdot)$ denotes the domain of the $\operatorname{map} J(p, \cdot): X \rightarrow 2^{X^{*}}$, i.e. the set $\{u \in X \mid J(p, u) \neq \emptyset\}$.

For a given $p \in P$ we consider the following problem: find an element $u_{p} \in$ $K(p)$ and $x \in J\left(p, u_{p}\right)$ so that
$(V I P)_{p} \quad<x, v-u_{p}>\geq 0, \quad$ for each $u \in K(p)$.

For a fixed $p_{0} \in P$ suppose that $u_{0} \in K\left(p_{0}\right)$ is the unique solution for $(V I P)_{p_{0}}$.

Then, the problem $(V I P)_{p_{0}}$ is called stable under perturbations if there exist a neighborhood U_{0} of p_{0} and a mapping $\bar{u}: U_{0} \rightarrow X$ so that:
i) $\bar{u}(p)$ is a solution for $(V I P)_{p}$, for any $p \in U_{0}$;
ii) $\bar{u}\left(p_{0}\right)=u_{0}$;
iii) \bar{u} is continuous at p_{0}.

Section 3 deals with sufficient conditions for the stability under perturbations of the initial problem $(M)_{p_{0}}$.

2. Definitions and auxiliary results

Consider $\alpha:(0,+\infty) \rightarrow(0,+\infty)$ a nondecreasing function.
The map $I: P \times X \rightarrow \mathbb{R}$ is called uniformly α-pseudoconvex on $U \subseteq P$, if for each $p \in U$ and $u, v \in X, u \neq v$ and $0 \leq s \leq 1$ one has

$$
<I^{\prime}(p, u), v-u>\geq 0 \Rightarrow I(p, v) \leq I(p, v+s(u-v))+s(1-s) \alpha(\|v-u\|)\|v-u\|
$$

where $I^{\prime}(p, u)$ denotes the gradient of $I(p, \cdot)$ at the point u.
The map $J: P \times X \rightarrow 2^{X^{*}}$ is called uniformly α-pseudomonotone on $U \subseteq P$, if for each $p \in U$ and $u, v \in X, u \neq v, x \in J(p, u), y \in J(p, v)$ one has

$$
<x, v-u>\geq 0 \Rightarrow<y, v-u>\geq \alpha(\|v-u\|) \cdot\|v-u\| .
$$

An important notion for some parametric problems is consistency. For the sequential case one can consult Grave's Theorem [2, pg. 95] while for the continuous case see [1], [5].

Definition 1. Let $p_{0} \in P, u_{0} \in K\left(p_{0}\right)$ and $\gamma>1$ be fixed. The map $J: P \times X \rightarrow 2^{X^{*}}$ is called consistent in p at $\left(p_{0}, u_{0}\right)$ if for each $0<r \leq 1$, there exist a neighborhood U_{r} of p_{0} and a function $\beta: U_{r} \rightarrow \mathbb{R}$ continuous at p_{0} with $\beta\left(p_{0}\right)=0$ so that, for every $p \in U_{r}$, there exist $u_{p} \in K(p)$ and $x \in J\left(p, u_{p}\right)$ such that

$$
\left\|u_{p}-u_{0}\right\| \leq \beta(p)
$$

and

$$
<x, v-u_{p}>+\beta(p) \cdot\left\|v-u_{p}\right\| \geq 0
$$

for all $v \in K(p)$ with $r<\left\|v-u_{p}\right\| \leq \gamma$.
Note that for $p=p_{0}, u_{p_{0}}$ is u_{0}.
The mapping $A: X \rightarrow 2^{X^{*}}$ is said to be upper semicontinuous (usc) at $u_{0} \in X$ if, for any open set V containing $A\left(u_{0}\right)$, there exist a neighborhood Δ of u_{0} so that $A(\Delta) \subset V$.
Theorem 1. ([5]) Let P be a topological space, X be a real Banach space, $K: P \rightarrow 2^{X}$ be with values closed convex sets in X and $J: P \times X \rightarrow 2^{X^{*}}$ be a set valued map. Let $p_{0} \in P$ and $u_{0} \in K\left(p_{0}\right)$ be fixed. Suppose that:
i) u_{0} is a solution of $(V I P)_{p_{0}}$;
ii) J is consistent in p at $\left(p_{0}, u_{0}\right)$;
iii) there exists a neighborhood U of p_{0} so that the mappings $J(p, \cdot)$ are uniformly α-pseudomonotone and $J(p, \cdot)$ is usc from the line segments in X to X^{*} for each $p \in U$;
iv) for each p, u the set $J(p, u)$ is compact.

Then, the problem $(V I P)_{p_{0}}$ is stable under perturbations.

3. Main Result

In this section we are going to apply Theorem 1 to the solutions of $(M)_{p}$ in particular
$(M)_{p}$

$$
\min \{I(p, u): u \in K(p)\}
$$

where the functionals involving the parameter are given by

$$
I(p, u)=\int_{\Omega} f_{p}(t, \nabla u(t)) d t
$$

Now, for $p_{0} \in P$ fixed suppose that $u_{0} \in K\left(p_{0}\right)$ is the unique solution of $(M)_{p_{0}}$.

In this case, the problem $(M)_{p_{0}}$ is called stable under perturbations if there exist a neighborhood U_{0} of p_{0} and a mapping $\bar{u}: U_{0} \rightarrow X$ so that:
i) $\bar{u}(p)$ is a solution for $(M)_{p}$, for any $p \in U_{0}$;
ii) $\bar{u}\left(p_{0}\right)=u_{0}$;
iii) \bar{u} is continuous at p_{0}.

Let P be a topological space, let X be a reflexive Banach space and Y a normed space. Let $C \subseteq X$ and $D \subseteq Y$ be nonempty closed convex sets and consider the mappings $a: P \rightarrow Y, L: P \rightarrow(X, Y)^{*}$ continuous, where $(X, Y)^{*}$ denotes the space of all linear, continuous mappings defined on X with values in Y.

The admissible set of the problem $(M)_{p}$ is considered the set

$$
K(p)=\{u \in C \mid a(p)+L(p)(u) \in D\} .
$$

For a $p \in P$ the admissible set $K(p)$ is called regular if

$$
0 \in \operatorname{int}\{a(p)+L(p)(u)-y: u \in C, y \in D\}
$$

Lemma 1. ([7]) Suppose that $K(p)$ is regular and $u_{0} \in K\left(p_{0}\right)$. Then, for each $d>0$, there exists a neighborhood U_{d} of p_{0} such that $K(p) \cap B\left(u_{0} ; d\right) \neq \emptyset$ for each $p \in U_{d}$. Moreover, there exists a constant $c_{d}>0$ such that, for every $p_{1}, p_{2} \in U_{d}$ one has

$$
\operatorname{dist}\left(u, K\left(p_{2}\right) \cap B\left(u_{0} ; d\right)\right) \leq c_{d}\left[\left\|L\left(p_{1}\right)-L\left(p_{2}\right)\right\|+\left\|a\left(p_{1}\right)-a\left(p_{2}\right)\right\|\right]
$$

for each $u \in K\left(p_{1}\right) \cap B\left(u_{0} ; d\right)$.
Now, considering an initial problem and a small displacement of the data we state the stability under perturbation.

Theorem 2. Suppose that $K\left(p_{0}\right)$ is regular and that:
i) u_{0} is a solution of $(M)_{p_{0}}$;
ii) the map $(p, u) \longmapsto I^{\prime}(p, u)$ is weakly continuous at $\left(p_{0}, u_{0}\right)$;
iii) there exists a neighborhood U of p_{0} such that for each $p \in U, t \in \Omega$, $\frac{\partial f_{p}}{\partial \nabla u}(t, \cdot)$ is continuous from $X=H^{1, q}(\Omega)$ to the weak* topology of X^{*} and $f_{p}(t, \cdot)$ are strictly convex on U;
iv) for each $p \in U, t \in \Omega, \frac{\partial f_{p}}{\partial \nabla u}(t, \cdot)$ is locally bounded around u_{0}.

Then, the problem $(M)_{p_{0}}$ is stable under perturbations.

Proof. Since u_{0} is a minimum point of the functional $I\left(p_{0}, \cdot\right)$ on the set $K\left(p_{0}\right)$ we have

$$
<I^{\prime}\left(p_{0}, u_{0}\right), u-u_{0}>\geq 0, \quad \text { for each } u \in K\left(p_{0}\right)
$$

Define $J: P \times X \rightarrow 2^{X^{*}}$ by $J(p, u)=\left\{I^{\prime}(p, u)\right\}$, for each $p \in P$ and $u \in X$.
Let U_{1} be the neighborhood of p_{0}, provided by Lemma 1 . For each $p \in U_{1}$ let $u_{p} \in K(p) \cap B\left(u_{0} ; 1\right)$ be the element such that

$$
\left\|u_{p}-u_{0}\right\| \leq c_{1}\left[\left\|L(p)-L\left(p_{0}\right)\right\|+\left\|a(p)-a\left(p_{0}\right)\right\|\right]
$$

Put $x=I^{\prime}\left(p, u_{p}\right)$ (by Definition 1) and take the neighborhood U_{γ} and the constant c_{γ} given also by Lemma 1. Denote $c:=\max \left\{c_{1}, c_{\gamma}\right\}$ and $U_{0}:=U_{1} \cap U_{\gamma}$. For $v \in K(p)$ with $r<\left\|v-u_{p}\right\| \leq \gamma$ define the control function

$$
\begin{gathered}
\beta(p)=\max \left\{-2 \frac{1}{\left\|v-u_{0}\right\|+\left\|u_{p}-u_{0}\right\|} \cdot<I^{\prime}\left(p, u_{p}\right)-I^{\prime}\left(p_{0}, u_{0}\right), v-u_{0}>,\right. \\
\left.\sqrt{c\left[\left\|L(p)-L\left(p_{0}\right)\right\|+\left\|a(p)-a\left(p_{0}\right)\right\|\right]}\right\} .
\end{gathered}
$$

From iv) $I^{\prime}\left(p, u_{p}\right)$ is also locally bounded. Let $C_{v}>0$ for which $\left\|I^{\prime}\left(p, u_{p}\right)\right\| \leq$ C_{v}.

Choose $U_{r} \subset U_{0}$ a neighborhood of p_{0} such that the restriction of the control function to U_{r} satisfies the following conditions:

$$
\begin{aligned}
& \beta(p) \leq 1, \text { for each } p \in U_{r} \\
& \frac{1}{2}\left\|v-u_{0}\right\|-\beta(p)\left(C_{v}+3\left\|I^{\prime}\left(p_{0}, u_{0}\right)\right\|+\frac{3}{2} \beta(p)\right) \geq 0, \text { for each } p \in U_{r} .
\end{aligned}
$$

Observe that

$$
\left\|u_{p}-u_{0}\right\| \leq \beta^{2}(p) \leq \beta(p)
$$

By $i i) \beta$ is continuous at p_{0} and $\beta\left(p_{0}\right)=0$.
Now, let $v \in K(p)$ for which $r<\left\|v-u_{p}\right\| \leq \gamma$. We have

$$
\left\|v-u_{0}\right\| \leq\left\|v-u_{p}\right\|+\left\|u_{p}-u_{0}\right\| \leq \gamma+1
$$

Again by Lemma 1 there exists $v_{0} \in K\left(p_{0}\right) \cap B\left(u_{0} ; \gamma+1\right)$ such that

$$
\left\|v-v_{0}\right\| \leq \beta^{2}(p)
$$

The relationship we must verify is

$$
<I^{\prime}\left(p, u_{p}\right), v-u_{p}>+\beta(p) \cdot\left\|v-u_{p}\right\| \geq 0 .
$$

For simplicity denote by $I_{p}^{\prime}:=I^{\prime}\left(p, u_{p}\right)$ and $I_{0}^{\prime}:=I^{\prime}\left(p_{0}, u_{0}\right)$. We will use

$$
<I_{0}^{\prime}, v_{0}-u_{0}>\geq 0
$$

due to the fact that $v_{0} \in K\left(p_{0}\right)$.
So, we have

$$
\begin{aligned}
& <I_{p}^{\prime}, v-u_{p}>+\beta(p) \cdot\left\|v-u_{p}\right\|= \\
= & <I_{p}^{\prime}-I_{0}^{\prime}, v-u_{p}>+<I_{0}^{\prime}, v-u_{p}>+\beta(p)\left\|v-u_{p}\right\|= \\
= & <I_{p}^{\prime}-I_{0}^{\prime}, v-u_{0}>+<I_{p}^{\prime}-I_{0}^{\prime}, u_{0}-u_{p}>+ \\
& +<I_{0}^{\prime}, v-v_{0}>+<I_{0}^{\prime}, v_{0}-u_{0}>+<I_{0}^{\prime}, u_{0}-u_{p}>+\beta(p)\left\|v-u_{p}\right\| \geq \\
\geq \quad & -\frac{1}{2}\left(\left\|v-u_{0}\right\|+\left\|u_{0}-u_{p}\right\|\right) \cdot \beta(p)-\left\|u_{0}-u_{p}\right\| \cdot\left\|I_{p}^{\prime}-I_{0}^{\prime}\right\|+ \\
+ & <I_{0}^{\prime}, v-v_{0}>+<I_{0}^{\prime}, u_{0}-u_{p}>+\beta(p)\left(\left\|v-u_{0}\right\|-\left\|u_{0}-u_{p}\right\|\right) \geq \\
\geq & \frac{1}{2}\left\|v-u_{0}\right\| \cdot \beta(p)-\left\|u_{0}-u_{p}\right\| \cdot\left\|I_{p}^{\prime}-I_{0}^{\prime}\right\|-\left\|v-v_{0}\right\| \cdot\left\|I_{0}^{\prime}\right\|- \\
& -\left\|u_{0}-u_{p}\right\| \cdot\left\|I_{0}^{\prime}\right\|-\frac{3}{2} \beta(p)\left\|u_{0}-u_{p}\right\|= \\
= & \frac{1}{2}\left\|v-u_{0}\right\| \cdot \beta(p)-\left\|u_{0}-u_{p}\right\|\left(\left\|I_{p}^{\prime}-I_{0}^{\prime}\right\|+\left\|I_{0}^{\prime}\right\|+\frac{3}{2} \beta(p)\right)- \\
& -\beta^{2}(p) \cdot\left\|I_{0}^{\prime}\right\| \geq \\
\geq & \frac{1}{2}\left\|v-u_{0}\right\| \cdot \beta(p)-\beta^{2}(p)\left(C_{v}+3\left\|I_{0}^{\prime}\right\|+\frac{3}{2} \beta(p)\right)= \\
= & \beta(p)\left[\frac{1}{2}\left\|v-u_{0}\right\|-\beta(p)\left(C_{v}+3\left\|I_{0}^{\prime}\right\|+\frac{3}{2} \beta(p)\right)\right] \geq 0,
\end{aligned}
$$

therefore $J \equiv I^{\prime}$ is consistent in p at $\left(p_{0}, u_{0}\right)$.
By iii) $I(p, \cdot)$ is strictly convex for each $p \in U$ so that $I(p, \cdot)$ is uniformly α-pseudoconvex, thus $J(p, \cdot)=I^{\prime}(p, \cdot)$ are uniformly α-pseudomonotone (see [5], [3]). The conclusion follows by Theorem 1.

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with Lipshitz frontier, and $f_{p}(t, \nabla u(t))=$ $g(t, p) \cdot h(t, \nabla u(t))$, for each $p \in P$ and each $t \in \Omega$.

Proposition 1. If $h \in C^{1}$ and $g(t, \cdot)$ is continuous at p_{0} for each $t \in \Omega$, then the mapping $(p, u) \longmapsto I^{\prime}(p, u)$ is weakly continuous at $\left(p_{0}, u_{0}\right)$.

Proof. We estimate $\left|I_{p}^{\prime}(u)(v)-I_{0}^{\prime}\left(u_{0}\right)(v)\right| \leq$

$$
\begin{aligned}
& \leq \int_{\Omega}\left|g(t, p) \cdot \frac{\partial h}{\partial \nabla u}(t, \nabla u(t))-g\left(t, p_{0}\right) \cdot \frac{\partial h}{\partial \nabla u}\left(t, \nabla u_{0}(t)\right)\right| \cdot|\nabla v| d t \leq \\
\leq & \int_{\Omega}\left|g(t, p)-g\left(t, p_{0}\right)\right| \cdot\left|\frac{\partial h}{\partial \nabla u}(t, \nabla u(t))\right| \cdot|\nabla v| d t+ \\
& +\int_{\Omega}\left|g\left(t, p_{0}\right)\right| \cdot\left|\frac{\partial h}{\partial \nabla u}(t, \nabla u(t))-\frac{\partial h}{\partial \nabla u}\left(t, \nabla u_{0}(t)\right)\right| \cdot|\nabla v| d t \leq \\
\leq & \|v\|_{X} \cdot\left(\int_{\Omega}\left|g(t, p)-g\left(t, p_{0}\right)\right|^{q^{\prime}} \cdot\left|\frac{\partial h}{\partial \nabla u}\left(t, \nabla u_{0}(t)\right)\right|^{q^{\prime}} d t\right)^{1 / q^{\prime}}+ \\
& +\|v\|_{X} \cdot\left(\int_{\Omega}\left|g\left(t, p_{0}\right)\right|^{q^{\prime}} \cdot\left|\frac{\partial h}{\partial \nabla u}(t, \nabla u(t))-\frac{\partial h}{\partial \nabla u}\left(t, \nabla u_{0}(t)\right)\right|^{q^{\prime}} d t\right)^{1 / q^{\prime}} \rightarrow 0
\end{aligned}
$$

once that $p \rightarrow p_{0}$ and $u \rightarrow u_{0}$, for each $v \in X$. Here q^{\prime} is the dual of q, i.e $\frac{1}{q}+\frac{1}{q^{\prime}}=1$.
For the existence and unicity of the solution problem $(M)_{p}$ we refer to $[4, \mathrm{pg}$. 87].

Proposition 2. If g and h satisfy the following conditions:
i) $g(t, p)>0$ and $h(t, \cdot)$ is strictly convex for each $t \in \Omega$;
ii) there exists $c>0$ such that $h(t, \xi) \geq c\left(|\xi|^{q}-1\right)$ for each $(t, \xi) \in \Omega \times \mathbb{R}^{n}$, then the problem $(M)_{p}$ has a unique solution in $H^{1, q}(\Omega)$ for each $p \in P$.

Example 1. Let $X=H^{1}(\Omega)$ with $\Omega=(0,1), 0<p_{0}<1$ fixed, $P=\left[p_{0}, 1\right)$ the set of parameters, and the initial problem
$(M)_{p_{0}}$

$$
\min \left\{I\left(p_{0}, u\right): u \in C\right\}
$$

where $I\left(p_{0}, u\right)=\int_{0}^{1}\left(t+p_{0}\right) \cdot u^{\prime 2}(t) d t$ and $C=\left\{u \in X: u^{\prime}\left(p_{0}\right)=1, u(1)=0\right\}$. The solution u_{0} is given by $u_{0}(t)=2 p_{0} \ln \left(t+p_{0}\right) / \ln \left(1+p_{0}\right)$.

The parametrized problem is
$(M)_{p}$

$$
\min \{I(p, u): u \in K(p)\},
$$

where $I(p, u)=\int_{0}^{1}(t+p) \cdot u^{\prime 2}(t) d t$ and $K(p)=\left\{u \in X: u^{\prime}(p)=1, u(1)=0\right\} .(M)_{p_{0}}$ is stable under perturbations and the solution function \bar{u} can be obtained explicitly $\bar{u}(p)(t)=u_{p}(t)=2 p \ln (t+p) / \ln (1+p)$.

Remark 1. The following problem

$$
\min \left\{\int_{0}^{1} t \cdot u^{\prime 2}(t) d t: u^{\prime}(0)=1, u(1)=0\right\}
$$

has no solution in $X=H^{1,1}(\Omega)$ because $h(t, \xi)=t \cdot \xi^{2}$ does not satisfy the hypotheses of Proposition 2 namely the existence of $c>0$ (the proof is similar to [4, pg. 56].

References

[1] Alt, W., and Kolumbán, J., Implicit-Function Theorems for Monotone Mappings, Hamburger Beiträge zur Angewandten Mathematik, Reihe A., Preprint 54, Juni, 23 pp., 1992.
[2] Aubin, J.P., and Frankowska, H., Set-Valued Analysis, Birkhäuser, Boston, Massachusetts, 1990.
[3] Bogdan, M., Stability Under Perturbations for Parametric Variational Inequalities involving Functionals, Volum omagial dedicat Profesorului Gheorghe Fărcaş la vârsta de 70 de ani, Editura Universităţii "Petru Maior", Târgu Mureş, 153-158, 2004.
[4] Dacorogna, B., Introduction au Calcul des Variations, Presses Polytechniques et Universitaires Romandes, CH-1015 Lausanne, 1992.
[5] Kassay, G., and Kolumbán, J., Multi-Valued Parametric Variational Inequalities with α-Pseudomonotone Maps, Journal of Optimization Theory and Applications, Vol. 107, No.1, pp. 35-50, 2000.
[6] Kinderlehrer, D., and Stampacchia, G., An Introduction to Variational Inequalities and their Applications, Academic Press, New-York, NY, 1980.
[7] Robinson, S. M., Regularity and Stability for Convex Multivalued Functions, Mathematics of Operations Research, Vol. 1, pp. 130-143, 1976.
"Petru Maior" University, Tg. Murȩ̧, Romania

