NEW INVERSE INTERPOLATION METHODS

ALEXANDRA OPRIŞAN

Abstract

The goal of this paper is to give some numerical methods for the solution of nonlinear equations, generated by inverse interpolation of Abel Goncharov type and a particular case of Lidstone inverse interpolation.

1. Preliminars

Let $\Omega \subset \mathbf{R}$ and $f: \Omega \rightarrow \mathbf{R}$. Consider the equation

$$
\begin{equation*}
f(x)=0, \quad x \in \Omega, \tag{1}
\end{equation*}
$$

and attach to it a mapping

$$
F: D \rightarrow D, \quad D \subset \Omega^{n}
$$

Let $x_{0}, \ldots, x_{n-1} \in D$. Using the mapping F and the numbers x_{0}, \ldots, x_{n-1} we construct iteratively the sequence

$$
\begin{equation*}
x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}, \ldots \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{i}=F\left(x_{i-n}, \ldots, x_{i-1}\right), \quad i=n, \ldots \tag{3}
\end{equation*}
$$

The problem is to choose F and the numbers $x_{0}, \ldots, x_{n-1} \in D$ such that sequence (2) converges to a solution of equation (1).

Definition 1. The method of approximating a solution of equation (1) by the elements of sequence (2), computed as in (3) is called F - method attached to equation (1) and to the values x_{0}, \ldots, x_{n-1}. Numbers x_{0}, \ldots, x_{n-1} are called starting values, and the p th element of sequence (2) is called pth order approximation of the solution. If the set of the starting values consists of a single element, the corresponding F - method is called one step method, otherwise it is called multi-step method.

Definition 2. If sequence (2) converges to a solution of equation (1), F-method is said to be convergent, otherwise is divergent.

Definition 3. Let $x^{*} \in \Omega$ be a solution of equation (1) and let $x_{0}, \ldots, x_{n}, \ldots$ be a sequence generated by a given F - method. Number $p=p(F)$ having the property

$$
\begin{equation*}
\lim _{x_{i} \rightarrow x^{*}} \frac{x^{*}-F\left(x_{i-n+1}, \ldots, x_{i}\right)}{\left(x^{*}-x_{i}\right)^{p}}=C \neq 0 \tag{4}
\end{equation*}
$$

is called order of the F - method, and constant C is the asymptotical error.

Let $x^{*} \in \Omega$ be a solution of the equation (1) and $V\left(x^{*}\right)$ a neighborhood of x^{*}. Assume that f has inverse on $V\left(x^{*}\right)$ and denote $q=f^{-1}$. Since $f\left(x^{*}\right)=0$, it follows that $x^{*}=g(0)$. This way, the approximation of the solution x^{*} is reduced to the approximation of the $g(0)$. The approximation of the inverse g by means of a certain interpolating method, and x^{*} by the value of the interpolating element at point zero is called inverse interpolation procedure. This approach generates a large number of approximation methods for the solution of an equation (thus for the zeros of a function), according to the employed interpolation method.

Such examples of methods, based on Taylor, Lagrange and Hermite inverse interpolation are:

Let x^{*} be a solution of $f(x)=0, V\left(x^{*}\right)$ a neighbourhood of $x^{*}, f \in$ $C^{m}\left[V\left(x^{*}\right)\right], f^{\prime}(x) \neq 0$ for $x \in V\left(x^{*}\right)$ and $x_{i} \in V\left(x^{*}\right)$. Using Taylor polynomial of the degree $m-1$, that interpolates the function $g=f^{-1}$, one obtains the one step
method [2]:

$$
\begin{equation*}
F_{m}^{T}\left(x_{i}\right)=x_{i}+\sum_{k=1}^{m-1} \frac{(-1)^{k}}{k!}\left[f\left(x_{i}\right)\right]^{k} g^{(k)}\left(f\left(x_{i}\right)\right) \tag{5}
\end{equation*}
$$

Also, if $g^{(m)}(0) \neq 0$, we have $\operatorname{ord}\left(F_{m}^{T}\right)=m$.
Based on Lagrange interpolation, it follows the multistep method [2]

$$
\begin{equation*}
F_{m}^{L}\left(x_{0}, \ldots, x_{m}\right)=\sum_{k=0}^{m} \frac{f_{0} \ldots f_{k-1} f_{k+1} \ldots f_{m}}{\left(f_{0}-f_{k}\right) \ldots / \ldots\left(f_{m}-f_{k}\right)} x_{k} \tag{6}
\end{equation*}
$$

where $f_{k}=f\left(x_{k}\right)$, is a multistep method based on inverse Lagrange interpolation.

The order of this method is the solution of equation:

$$
t^{m+1}-t^{m}-\ldots-t-1=0
$$

More general methods are generated by Hermite and Birkhoff interpolation [2], [5]. Such, let x^{*} be a solution of the equation (1), $V\left(x^{*}\right)$ a neighbourhood of x^{*} and $x_{0}, x_{1} \ldots, x_{m} \in V\left(x^{*}\right)$.For $n=r_{0}+\ldots+r_{m}+m$, where r_{k} represents the multiplicity order of the point $x_{k}, k=0, \ldots, m$, if $f \in C^{n+1}\left(V\left(x^{*}\right)\right)$ and $f^{\prime}(x) \neq 0$ for $x \in V\left(x^{*}\right)$, we have the following Hermite approximation method:

$$
\begin{equation*}
F_{n}^{H}\left(x_{0}, \ldots, x_{m}\right)=\sum_{k=0}^{m} \sum_{j=0}^{r_{k}} \sum_{v=0}^{r_{k}-j} \frac{(-1)^{j+v}}{j!v!} f_{k}^{j+v} v_{k}(0)\left(\frac{1}{v_{k}(y)}\right)_{y=f_{k}}^{(v)} g^{(j)}\left(f_{k}\right) \tag{7}
\end{equation*}
$$

where $f_{k}=f\left(x_{k}\right), k=0, \ldots, m, g=f^{-1}$, and

$$
v_{k}(y)=\left(y-f_{0}\right)^{r_{0}+1} \ldots\left(y-f_{k-1}\right)^{r_{k-1}+1}\left(y-f_{k+1}\right)^{r_{k+1}+1} \ldots\left(y-f_{m}\right)^{r_{m}+1}
$$

The order of F_{n}^{H}, is [5] the unique real positive root of the equation:

$$
\begin{equation*}
t^{m+1}-r_{m} t^{m}-r_{m-1} t^{m-1}-\ldots-r_{1} t-r_{0}=0 \tag{8}
\end{equation*}
$$

where r_{0}, \ldots, r_{m} are permutation of the multiplicity orders of the nodes $x_{k}, k=0, \ldots, m$ satisfying the conditions:
(1) $r_{0}+r_{1}+\ldots+r_{m}>1$
(2) $\quad r_{m} \geq r_{m-1} \geq \ldots \geq r_{1} \geq r_{0}$,
respectively of the equation:

$$
\begin{equation*}
t^{m+1}-(r+1) \sum_{j=0}^{m} t^{j}=0 . \tag{9}
\end{equation*}
$$

if $r_{0}=\ldots=r_{m}$.

2. Abel-Goncharov inverse interpolation method

On the base of Abel-Goncharov interpolation, we have the following method for the solution of equation $f(x)=0$:

Theorem 4. Let $n \in N ; a, b \in R ; a<b ; f:[a, b] \rightarrow R$ be a function having n derivatives $f^{(i)}, i=1,2, \ldots, n$. The values $x_{i} \in[a, b], i=0, \ldots, n$ and $f^{(i)}\left(x_{i}\right)$, $i=0, \ldots, n$, with $x_{i} \neq x_{j}$ for $i \neq j$ are given. Let x^{*} be the solution of the equation $f(x)=0$ and $V\left(x^{*}\right)$ a neighborhood of x^{*}. If $f \in C^{n+1}\left(V\left(x^{*}\right)\right)$ and $f^{(i)}\left(x_{i}\right) \neq 0$, $i=0, \ldots, n$ then we have the following method of Abel-Gonciarov type:

$$
\begin{equation*}
F_{n}^{A G}\left(x_{0}, \ldots, x_{n}\right)=q\left(y_{0}\right)-y_{0} \cdot q^{\prime}\left(y_{1}\right)-\sum_{k=2}^{n} \frac{q^{(k)}\left(y_{k}\right)}{k!}\left(\sum_{j=0}^{k-1} g_{j}(0)\binom{k}{j} y_{j}^{k-1}\right) \tag{10}
\end{equation*}
$$

Proof. Suppose that $\exists q=f^{-1}$. Then

$$
q=P_{n} q+R_{n} q
$$

with

$$
\left(P_{n} q\right)(y)=\sum_{k=0}^{n} g_{k}(y) q^{(k)}\left(y_{k}\right)
$$

and

$$
\begin{gathered}
g_{0}(y)=1 \\
g_{1}(y)=y-y_{0} \\
g_{k}(y)=\frac{1}{k!}\left[y^{k}-\sum_{j=0}^{k-1} g_{j}(y)\binom{k}{j} y_{j}^{k-1}\right]
\end{gathered}
$$

$$
\text { Because } x^{*}=q(0), q \simeq P_{n} q \Longrightarrow x^{*} \simeq\left(P_{n} q\right)
$$

$$
\left(P_{n} q\right)(0)=\sum_{k=0}^{n} g_{k}(0) q^{(k)}\left(y_{k}\right)
$$

$$
\begin{gathered}
\left(P_{n} q\right)(0)=q\left(y_{0}\right)-y_{0} \cdot q^{\prime}\left(y_{1}\right)-\sum_{k=2}^{n} \frac{q^{(k)}\left(y_{k}\right)}{k!}\left(\sum_{j=0}^{k-1} g_{j}(0)\binom{k}{j} y_{j}^{k-1}\right) \\
\Longrightarrow x^{*} \simeq q\left(y_{0}\right)-y_{0} \cdot q^{\prime}\left(y_{1}\right)-\sum_{k=2}^{n} \frac{q^{(k)}\left(y_{k}\right)}{k!}\left(\sum_{j=0}^{k-1} g_{j}(0)\binom{k}{j} y_{j}^{k-1}\right):= \\
:=F_{n}^{A G}\left(x_{0}, \ldots, x_{n}\right) .
\end{gathered}
$$

Particular cases.

1). $n=1$ (nodes x_{0}, x_{1} and $f\left(x_{0}\right), f^{\prime}\left(x_{1}\right)$ given)

$$
\begin{align*}
& F_{1}^{A G}\left(x_{0}, x_{1}\right)=q\left(y_{0}\right)-y_{0} \cdot q^{\prime}\left(y_{1}\right) \\
& F_{1}^{A G}\left(x_{0}, x_{1}\right)=q\left(y_{0}\right)-y_{0} \frac{1}{f^{\prime}\left(x_{1}\right)} \\
& \Longrightarrow F_{1}^{A G}\left(x_{0}, x_{1}\right)=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{1}\right)} \tag{11}
\end{align*}
$$

$\Longrightarrow F_{1}^{A G}\left(x_{0}, x_{1}\right)=F_{1}^{B}\left(x_{0}, x_{1}\right)$ and the method $F_{1}^{A G}$ coincide with the method F_{1}^{B} generated by the Birkhoff inverse interpolation.

Remark 5. If $x_{0}=x_{1}:=x_{i}$ (the nodes coincide), then:

$$
F_{1}^{A G}\left(x_{i}\right)=x_{i}-\frac{f(x i)}{f^{\prime}\left(x_{i}\right)} \Longrightarrow
$$

$F_{1}^{A G}\left(x_{i}\right)=F_{2}^{T}\left(x_{i}\right)$ and the method coincide with the method F_{2}^{T} generated by inverse interpolation Taylor for two nodes.

The order of this method is the solution of the equation:

$$
t^{2}-t-1=0
$$

so

$$
\operatorname{ord}\left(F_{1}^{A G}\right)=\frac{1+\sqrt{5}}{2}
$$

2). $n=2$. $\left(x_{0}, f\left(x_{0}\right), x_{1}, f^{\prime}\left(x_{1}\right), x_{2}, f^{\prime \prime}\left(x_{2}\right)\right.$ given $)$

$$
\begin{gathered}
g_{0}(0)=1 \\
g_{1}(0)=-y_{0}
\end{gathered}
$$

ALEXANDRA OPRIŞAN
$g_{2}(0)=\frac{1}{2}\left[2 y_{0} y_{1}-y_{0}^{2}\right]$
$\Longrightarrow\left(P_{2} q\right)(0)=q\left(y_{0}\right)-y_{0} \cdot q^{\prime}\left(y_{1}\right)-\frac{1}{2}\left[2 y_{0} y_{1}-y_{0}^{2}\right] \cdot q^{\prime \prime}\left(y_{2}\right)=$
$=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{1}\right)}-\frac{1}{2} \frac{f^{\prime \prime}\left(x_{2}\right)}{\left[f^{\prime}\left(x_{2}\right)\right]^{3}}\left[2 f\left(x_{0}\right) f\left(x_{1}\right)-f\left(x_{0}\right)^{2}\right] \Longrightarrow$
$F_{2}^{A G}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{1}\right)}-\frac{1}{2} \frac{f^{\prime \prime}\left(x_{2}\right)}{\left[f^{\prime}\left(x_{2}\right)\right]^{3}}\left[2 f\left(x_{0}\right) f\left(x_{1}\right)-f\left(x_{0}\right)^{2}\right]$.
Remark 6. For $x_{0}=x_{1}=x_{2}:=x_{i}$, the method coincide with the method generated by Taylor inverse interpolation, for $n=3$.

$$
F_{3}^{T}\left(x_{i}\right)=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}-\frac{1}{2}\left[\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}\right]^{2} \frac{f^{\prime \prime}\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} .
$$

The order of this method is the solution of the equation:

$$
t^{3}-t^{2}-t-1=0
$$

so

$$
\operatorname{ord}\left(F_{2}^{A G}\right)=1.839
$$

3. Lidstone inverse interpolation method

For the particular case of Lidstone interpolation, on $\left[x_{0}, x_{1}\right], x_{0} \neq x_{1}, i=$ $\overline{0,1}, m=2$, and

$$
\left\{\begin{array}{l}
L_{2 i+1} f=f^{(2 i)}\left(x_{0}\right) \\
L_{2 i+2} f=f^{(2 i)}\left(x_{1}\right)
\end{array}\right.
$$

it follows that

$$
\left.\left(L_{2}^{\Delta} f\right)\right|_{\left[x_{0}, x_{1}\right]}(x)=\sum_{k=0}^{1}\left[\Lambda_{k}\left(\frac{x_{1}-x}{h}\right) f^{(2 k)}\left(x_{0}\right)+\Lambda_{k}\left(\frac{x-x_{0}}{h}\right) f^{(2 k)}\left(x_{1}\right) h^{2 k}\right]
$$

where

$$
\left\{\begin{array}{l}
\Lambda_{0}(x)=x \\
\Lambda_{1}^{\prime \prime}(x)=\Lambda_{0}(x)=x \\
\Lambda_{1}(0)=\Lambda_{1}(1)=0
\end{array}\right.
$$

The interpolation polynomial is:

$$
\left(L_{2}^{\Lambda} f\right)(x)=\sum_{i=0}^{1} \sum_{j=0}^{1} r_{m, i, j}(x) f^{(2 j)}\left(x_{i}\right)
$$

$$
\Longrightarrow\left(L_{2}^{\Lambda} f\right)(x)=r_{2,0,0}(x) f\left(x_{0}\right)+r_{2,0,1}(x) f^{\prime \prime}\left(x_{0}\right)+r_{2,1,0}(x) f\left(x_{1}\right)+
$$ $r_{2,1,1}(x) f^{\prime \prime}\left(x_{1}\right)$ where

$$
\begin{gathered}
r_{2,0, j}(x)=\Lambda_{j}\left(\frac{x_{1}-x}{h}\right) h^{2 j}, 0 \leq x \leq x_{1} ; i=0 \\
r_{2,1, j}(x)=\Lambda_{j}\left(\frac{x-x_{0}}{h}\right) h^{2 j}, x_{0} \leq x \leq x_{1} ; i=1 \\
r_{2,0,0}(x)=\Lambda_{0}\left(\frac{x_{1}-x}{h}\right) h=x_{1}-x \\
r_{2,0,1}(x)=\Lambda_{1}\left(\frac{x_{1}-x}{h}\right) h^{2} \\
r_{2,1,0}(x)=\Lambda_{0}\left(\frac{x-x_{0}}{h}\right) h=x-x_{0} \\
r_{2,1,1}(x)=\Lambda_{1}\left(\frac{x-x_{0}}{h}\right) h^{2} \text { but } \\
\Lambda_{1}(x)=\int_{0}^{1} g_{1}(x, s) s d s=\int_{0}^{x}(x-1) s^{2} s d s+\int_{x}^{1}(s-1) x s s d s=\frac{x^{3}-x}{6}+c \\
\Lambda_{1}(0)=\Lambda_{1}(1)=0 \Longrightarrow c=0
\end{gathered}
$$

and

$$
\begin{aligned}
& r_{2,0,1}(x)=\Lambda_{1}\left(\frac{x_{1}-x}{h}\right) h^{2}=\frac{1}{6 h}\left(x_{1}-x\right)\left(x_{1}-x-h\right)\left(x_{1}-x+h\right) \\
& r_{2,1,1}(x)=\Lambda_{1}\left(\frac{x-x_{0}}{h}\right) h^{2}=\frac{1}{6 h}\left(x-x_{0}\right)\left(x-x_{0}-h\right)\left(x-x_{0}+h\right)
\end{aligned}
$$

We know that for $g=f^{-1}$,

$$
g=L_{2}^{\Lambda} g+R_{2}^{\Lambda} g
$$

and $x^{*}=g(0), g \simeq L_{2}^{\Lambda} g \Longrightarrow x^{*} \simeq L_{2}^{\Lambda} g(0)$.

$$
\begin{aligned}
& L_{2}^{\Lambda} g(0)=x_{1} g\left(x_{0}\right)+\frac{x_{1}}{6 h}\left(x_{1}^{2}-h^{2}\right) g^{\prime \prime}\left(x_{0}\right)-x_{0} g\left(x_{1}\right)+\frac{x_{0}}{6 h}\left(h^{2}-x_{0}^{2}\right) g^{\prime \prime}\left(x_{1}\right) \\
& \Longrightarrow x^{*}=x_{1} g\left(x_{0}\right)+\frac{x_{1}}{6 h}\left(x_{1}^{2}-h^{2}\right) g^{\prime \prime}\left(x_{0}\right)-x_{0} g\left(x_{1}\right)+\frac{x_{0}}{6 h}\left(h^{2}-x_{0}^{2}\right) g^{\prime \prime}\left(x_{1}\right)
\end{aligned}
$$

and so we have the following method:

$$
F_{2}^{\Lambda}\left(x_{0}, x_{1}\right)=x_{1} g\left(x_{0}\right)+\frac{x_{1}}{6 h}\left(x_{1}^{2}-h^{2}\right) g^{\prime \prime}\left(x_{0}\right)-x_{0} g\left(x_{1}\right)+\frac{x_{0}}{6 h}\left(h^{2}-x_{0}^{2}\right) g^{\prime \prime}\left(x_{1}\right)
$$

References

[1] Agarwal, R., Wong, P., Explicit error bounds for the derivatives of piecewise Lidstone interpolation, Journal of Computational and Applied Mathematics, 58 (1995), 67-81.
[2] Agratini, O., Chiorean, I., Coman, Gh., Trîmbiţaş, R., Analiza Numerica si Teoria Aproximarii, vol. III, Presa Universitara Clujeana, Cluj Napoca, 2002.
[3] Cătinaş, T., The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal. Numer. Theor. Approx., 32 (2003), no. 1, pp.11-20
[4] Coman, Gh., Cătinaş, T., Birou, M., Oprişan, A., Oşan, C., Pop, I., Somogyi, I., Todea, I., Interpolation Operators, Ed. Casa Cartii de Stiinta, Cluj Napoca, 2004.
[5] Oprişan, A., About convergence order of the iterative methods generated by inverse interpolation, Seminar on Numerical and Statistical Calculus, 2004, pp. 97-109.
[6] Sendov, B., Andreev, A., Approximation and Interpolation Theory, Handbook of Numerical Analysis, vol. III, ed. P.G. Ciarlet and J.L. Lions, North Holland, Amsterdam, 1994.
[7] Traub, J.F., Iterativ methods for the solutions of equations, Prentia Hall, Inc. Englewood Cliffs, 1964

Babeg-Bolyai University, Kogălniceanu 1, Cluj-Napoca, Romania

E-mail address: sachaoprisan@yahoo.com

