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NEW INVERSE INTERPOLATION METHODS

ALEXANDRA OPRIŞAN

Abstract. The goal of this paper is to give some numerical methods for

the solution of nonlinear equations, generated by inverse interpolation of

Abel Goncharov type and a particular case of Lidstone inverse interpola-

tion.

1. Preliminars

Let Ω ⊂ R and f : Ω → R. Consider the equation

f (x) = 0, x ∈ Ω, (1)

and attach to it a mapping

F : D → D, D ⊂ Ωn.

Let x0, ...., xn−1 ∈ D. Using the mapping F and the numbers x0, ..., xn−1 we

construct iteratively the sequence

x0, x1, ..., xn−1, xn, ... (2)

where

xi = F (xi−n, ..., xi−1) , i = n, ... (3)

The problem is to choose F and the numbers x0, ..., xn−1 ∈ D such that

sequence (2) converges to a solution of equation (1).
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Definition 1. The method of approximating a solution of equation (1) by the elements

of sequence (2), computed as in (3) is called F - method attached to equation (1) and

to the values x0, ..., xn−1. Numbers x0, ..., xn−1 are called starting values, and the pth

element of sequence (2) is called pth order approximation of the solution. If the set

of the starting values consists of a single element, the corresponding F - method is

called one step method, otherwise it is called multi-step method.

Definition 2. If sequence (2) converges to a solution of equation (1), F - method is

said to be convergent, otherwise is divergent.

Definition 3. Let x∗ ∈ Ω be a solution of equation (1) and let x0, ..., xn, ... be a

sequence generated by a given F - method. Number p = p (F ) having the property

lim
xi→x∗

x∗ − F (xi−n+1, ..., xi)
(x∗ − xi)

p = C 6= 0, (4)

is called order of the F - method, and constant C is the asymptotical error.

Let x∗ ∈ Ω be a solution of the equation (1) and V (x∗) a neighborhood of

x∗. Assume that f has inverse on V (x∗) and denote q = f−1. Since f (x∗) = 0, it

follows that x∗ = g (0) . This way, the approximation of the solution x∗ is reduced

to the approximation of the g (0) . The approximation of the inverse g by means of

a certain interpolating method, and x∗ by the value of the interpolating element at

point zero is called inverse interpolation procedure. This approach generates a large

number of approximation methods for the solution of an equation (thus for the zeros

of a function), according to the employed interpolation method.

Such examples of methods, based on Taylor, Lagrange and Hermite inverse

interpolation are:

Let x∗ be a solution of f(x) = 0, V (x∗) a neighbourhood of x∗, f ∈

Cm[V (x∗)], f ′(x) 6= 0 for x ∈ V (x∗) and xi ∈ V (x∗). Using Taylor polynomial of

the degree m − 1, that interpolates the function g = f−1, one obtains the one step
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method [2]:

FT
m(xi) = xi +

m−1∑
k=1

(−1)k

k!
[f(xi)]kg(k)(f(xi)). (5)

Also, if g(m)(0) 6= 0, we have ord(FT
m) = m.

Based on Lagrange interpolation, it follows the multistep method [2]

FL
m(x0, ..., xm) =

m∑
k=0

f0...fk−1fk+1...fm

(f0 − fk).../...(fm − fk)
xk (6)

where fk = f(xk), is a multistep method based on inverse Lagrange interpo-

lation.

The order of this method is the solution of equation:

tm+1 − tm − ...− t− 1 = 0.

More general methods are generated by Hermite and Birkhoff interpolation

[2], [5]. Such, let x∗ be a solution of the equation (1), V (x∗) a neighbourhood of x∗

and x0, x1..., xm ∈ V (x∗).For n = r0+...+rm+m, where rk represents the multiplicity

order of the point xk, k = 0, ...,m, if f ∈ Cn+1(V (x∗)) and f ′(x) 6= 0 for x ∈ V (x∗),

we have the following Hermite approximation method:

FH
n (x0, ..., xm) =

m∑
k=0

rk∑
j=0

rk−j∑
υ=0

(−1)j+υ

j!υ!
f j+υ

k vk(0)(
1

vk(y)
)(υ)
y=fk

g(j)(fk) (7)

where fk = f(xk), k = 0, ...,m, g = f−1, and

vk(y) = (y − f0)r0+1...(y − fk−1)rk−1+1(y − fk+1)rk+1+1...(y − fm)rm+1

The order of FH
n , is [5] the unique real positive root of the equation:

tm+1 − rmtm − rm−1t
m−1 − ....− r1t− r0 = 0. (8)

where r0, ..., rm are permutation of the multiplicity orders of the nodes xk, k = 0, ...,m

satisfying the conditions:

(1) r0 + r1 + ... + rm > 1

(2) rm ≥ rm−1 ≥ ... ≥ r1 ≥ r0,
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respectively of the equation:

tm+1 − (r + 1)
m∑

j=0

tj = 0. (9)

if r0 = ... = rm.

2. Abel-Goncharov inverse interpolation method

On the base of Abel-Goncharov interpolation, we have the following method

for the solution of equation f (x) = 0 :

Theorem 4. Let n ∈ N ; a, b ∈ R; a < b; f : [a, b] → R be a function having

n derivatives f (i), i = 1, 2, ..., n. The values xi ∈ [a, b], i = 0, ..., n and f (i) (xi) ,

i = 0, ..., n, with xi 6= xj for i 6= j are given. Let x∗ be the solution of the equation

f (x) = 0 and V (x∗) a neighborhood of x∗. If f ∈ Cn+1 (V (x∗)) and f (i) (xi) 6= 0,

i = 0, ..., n then we have the following method of Abel-Gonciarov type:

FAG
n (x0, ..., xn) = q (y0)− y0.q

′ (y1)−
n∑

k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j

 (10)

Proof. Suppose that ∃ q = f−1. Then

q = Pnq + Rnq

with

(Pnq) (y) =
n∑

k=0

gk (y) q(k) (yk)

and

g0 (y) = 1

g1 (y) = y − y0

gk (y) =
1
k!

yk −
k−1∑
j=0

gj (y)
(
k
j

)
yk−1

j


Because x∗ = q (0) , q ' Pnq =⇒ x∗ ' (Pnq) (0)

(Pnq) (0) =
n∑

k=0

gk (0) q(k) (yk)
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(Pnq) (0) = q (y0)− y0.q
′ (y1)−

n∑
k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j


=⇒ x∗ ' q (y0)− y0.q

′ (y1)−
n∑

k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j

 :=

:= FAG
n (x0, ..., xn) .

Particular cases.

1). n = 1 (nodes x0, x1 and f (x0) , f ′ (x1) given)

FAG
1 (x0, x1) = q (y0)− y0.q

′ (y1)

FAG
1 (x0, x1) = q (y0)− y0

1
f ′ (x1)

=⇒ FAG
1 (x0, x1) = x0 −

f (x0)
f ′ (x1)

(11)

=⇒ FAG
1 (x0, x1) = FB

1 (x0, x1) and the method FAG
1 coincide with the

method FB
1 generated by the Birkhoff inverse interpolation.

Remark 5. If x0 = x1 := xi (the nodes coincide), then:

FAG
1 (xi) = xi −

f (xi)
f ′ (xi)

=⇒

FAG
1 (xi) = FT

2 (xi) and the method coincide with the method FT
2 generated

by inverse interpolation Taylor for two nodes.

The order of this method is the solution of the equation:

t2 − t− 1 = 0

so

ord(FAG
1 ) =

1 +
√

5
2

2). n = 2. (x0, f (x0) , x1, f
′ (x1) , x2, f

′′ (x2) given)

g0 (0) = 1

g1 (0) = −y0
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g2 (0) =
1
2
[2y0y1 − y2

0 ]

=⇒ (P2q) (0) = q (y0)− y0.q
′ (y1)− 1

2 [2y0y1 − y2
0 ].q′′ (y2) =

= x0 −
f (x0)
f ′ (x1)

− 1
2

f ′′ (x2)
[f ′ (x2)]

3 [2f (x0) f (x1)− f (x0)
2] =⇒

FAG
2 (x0, x1, x2) = x0 −

f (x0)
f ′ (x1)

− 1
2

f ′′ (x2)
[f ′ (x2)]

3 [2f (x0) f (x1)− f (x0)
2]. (12)

Remark 6. For x0 = x1 = x2 := xi, the method coincide with the method generated

by Taylor inverse interpolation, for n = 3.

FT
3 (xi) = xi −

f (xi)
f ′ (xi)

− 1
2

[
f (xi)
f ′ (xi)

]2
f ′′ (xi)
f ′ (xi)

.

The order of this method is the solution of the equation:

t3 − t2 − t− 1 = 0

so

ord(FAG
2 ) = 1.839

3. Lidstone inverse interpolation method

For the particular case of Lidstone interpolation, on [x0, x1], x0 6= x1, i =

0, 1,m = 2, and  L2i+1f = f (2i) (x0)

L2i+2f = f (2i) (x1)

it follows that(
L∆

2 f
) ∣∣

[x0,x1] (x) =
1∑

k=0

[
Λk

(
x1 − x

h

)
f (2k) (x0) + Λk

(
x− x0

h

)
f (2k) (x1) h2k

]
where 

Λ0 (x) = x

Λ
′′

1 (x) = Λ0 (x) = x

Λ1 (0) = Λ1 (1) = 0

The interpolation polynomial is:

(
LΛ

2 f
)
(x) =

1∑
i=0

1∑
j=0

rm,i,j (x) f (2j) (xi)
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=⇒
(
LΛ

2 f
)
(x) = r2,0,0 (x) f (x0) + r2,0,1 (x) f ′′ (x0) + r2,1,0 (x) f (x1) +

r2,1,1 (x) f ′′ (x1) where

r2,0,j (x) = Λj

(
x1 − x

h

)
h2j , 0 ≤ x ≤ x1; i = 0

r2,1,j (x) = Λj

(
x− x0

h

)
h2j , x0 ≤ x ≤ x1; i = 1

r2,0,0 (x) = Λ0

(
x1−x

h

)
h = x1 − x

r2,0,1 (x) = Λ1

(
x1−x

h

)
h2

r2,1,0 (x) = Λ0

(
x−x0

h

)
h = x− x0

r2,1,1 (x) = Λ1

(
x−x0

h

)
h2 but

Λ1 (x) =
∫ 1

0

g1 (x, s) sds =
∫ x

0

(x− 1) s2sds +
∫ 1

x

(s− 1) xssds =
x3 − x

6
+ c

Λ1 (0) = Λ1 (1) = 0 =⇒ c = 0

and

r2,0,1 (x) = Λ1

(
x1 − x

h

)
h2 =

1
6h

(x1 − x) (x1 − x− h) (x1 − x + h)

r2,1,1 (x) = Λ1

(
x− x0

h

)
h2 =

1
6h

(x− x0) (x− x0 − h) (x− x0 + h)

We know that for g = f−1,

g = LΛ
2 g + RΛ

2 g

and x∗ = g (0) , g ' LΛ
2 g =⇒ x∗ ' LΛ

2 g (0) .

LΛ
2 g (0) = x1g (x0) +

x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)

=⇒ x∗ = x1g (x0) +
x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)

and so we have the following method:

FΛ
2 (x0, x1) = x1g (x0) +

x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)
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