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ANALYSIS OF AN INTEGRAL EQUATION
WITH MODIFIED ARGUMENT

MARIA DOBRIŢOIU

Abstract. This paper contains a study of the Fredholm integral equation

with modified argument

(1) x(t) =

∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds + f(t), t ∈ [a, b],

concerning:

- the existence and uniqueness of the solution using Schauder’s

theorem and Contractions Principle;

- continuous dependence on data of the solution using data de-

pendence general theorem;

- approximation of the solution using successive approximations

method with two quadrature formula: the trapezoidal rule and the rectan-

gle quadrature formula.

1. Notations and preliminaries

Let X be a nonempty set, A : X → X an operator and we shall use the

following notation:

FA := {x ∈ X| A(x) = x} - the fixed point set of A.

We consider the Banach space X = C [a, b] endowed with the Chebyshev

norm ‖ · ‖ .

In the section 2 we need the following results (see [2], [8], [9], [10] and [12]).
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Theorem 1.1. (Schauder). Let X be a Banach space and Y ⊂ X a

nonempty, bounded, convex and closed set. If A : Y → Y is a completely continuous

operator, then A has at least one fixed point.

Theorem 1.2. (Contractions Principle). Let (X, d) be a complete metric

space and A : X → X an α-contraction (α < 1). In these conditions we have:

(i) FA = {x∗};

(ii) An(x0) → x∗, as n →∞;

(iii) d(x∗, An(x0)) ≤
αn

1− α
d(x0, A(x0)) .

In the section 3 we need the following result (see [2], [8], [9], [10] and [12]).

Theorem 1.3. (Dependence on data). Let (X, d) be a complete metric space

and A,B : X → X two operators. We suppose that:

(i) A is an α-contraction (α < 1) and FA = {x∗};

(ii) x∗B ∈ FB;

(iii) there exist η > 0 such that d(A(x), B(x)) < η for all x ∈ X.

In these conditions we have

d(x∗A, x∗B) ≤ η

1− α
.

In the section 4 we need the following results (see [2], [7], [8], [9] and [12]).

We will use for the calculus of the integrals of the succesive approximations

sequence, two quadrature formulae:

1) The trapezoidal rule

∫ b

a

f(x)dx =
b− a

2n

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
+ RT (f) , (1)

with a very sharp division of the interval [a, b] through the points a = x0 < x1 <

. . . < xn = b and f ∈ C2[a, b]. We use for the rest of the formula RT (f) =
n∑

i=1

RT
i (f)

the following estimation: ∣∣RT (f)
∣∣ ≤ MT (b− a)3

12n2
. (2)

2) The rectangle quadrature formula
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(a) If we consider the intermediary points of the division of the interval [a, b]

at the left terminal point of the partial intervals [xi, xi+1], ξi = xi , we will have the

following formula:∫ b

a

f(x)dx =
b− a

n

[
f(a) +

n−1∑
i=1

f(xi)

]
+ RD(f) , (3)

or

(b) If we consider the intermediary points of the division of the interval [a, b]

at the right terminal point of the partial intervals [xi, xi+1], ξi = xi+1 , we will have

the following formula:∫ b

a

f(x)dx =
b− a

n

[
n−1∑
i=1

f(xi) + f(b)

]
+ RD(f) , (4)

with a very sharp division of the interval [a, b] through the points a = x0 < x1 < . . . <

xn = b and f ∈ C1[a, b]. We use for the rest of the formula RD(f) =
n∑

i=1

RD
i (f)

the following estimation: ∣∣RD(f)
∣∣ ≤ MD (b− a)2

n
. (5)

2. Existence of the solution

Theorems of existence of the solution for several type of integral equations

with modified argument have been presented in the papers [1], [2], [5], [9], [10], [11],

[12] .

In what follows we will establish theorems of existence of the solution of the

integral equation (1) in C[a, b] and in the B(f ;R) sphere.

A. Existence of the solution in C[a, b]

Let us consider the Fredholm integral equation with modified argument (1)

and assume that the following conditions are satisfied:

(a1) K ∈ C([a, b]× [a, b]× R4);

(a2) f ∈ C[a, b];

(a3) g ∈ C ([a, b], [a, b]).

Theorem 2.1. Suppose (a1)-(a3) are satisfied. In addition suppose
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(a4) there exist MK > 0 such that

|K(t, s, u1, u2, u3, u4)| ≤ MK , for all t ∈ [a, b], u1, u2, u3, u4 ∈ R .

Then the integral equation (1) has at least one solution x∗ ∈ C[a, b].

Proof. We attach to the integral equation (1), the operator A : C[a, b] →

C[a, b], defined by

A(x)(t) :=
∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds + f(t), (6)

for all t ∈ [a, b].

We have

‖A(x)‖C[a,b] ≤ ‖f‖C[a,b] + MK(b− a) , for all x ∈ C[a, b] .

Let Y ⊂ C[a, b] be a nonempty, bounded subset. Then A(Y ) is also a bounded

subset. From the uniform continuity of K with respect to t, it follows that the operator

A is continuous and that the subset A(Y ) is equicontinuous. Therefore A(Y ) is a

compact subset.

Let be Y = convA(C[a, b]) and now Y is a nonempty, bounded, convex and

closed subset. We consider the operator A : Y → Y also noted with A and defined

by same relation (7). Y is an invariant subset by A.

On the other hand, by Arzela-Ascoli theorem, A is completely continuous.

The conditions of the Schauder’s theorem are satisfied. �

We have the following theorem of existence and uniqueness of the solution of

the integral equation (1) in C[a, b]:

Theorem 2.2. Suppose (a1)-(a3) are satisfied. In addition suppose

(a5) there exist L > 0 such that

|K(t, s, u1, u2, u3, u4)−K(t, s, v1, v2, v3, v4)| ≤

≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|+ |u4 − v4|) ,

for all t, s ∈ [a, b], ui, vi ∈ R , i = 1, 4;

(a6) 4L(b− a) < 1 .
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Then the integral equation (1) has a unique solution x∗ ∈ C[a, b] .

Proof. We attach to the integral equation (1), the operator A : C[a, b] →

C[a, b], defined by the relation (7). The set of the solutions of the integral equation

(1) coincide with the set of fixed points of the operator A. By (a5) and using the

Chebyshev norm, we have

‖A(x1)−A(x2)‖C[a,b] ≤ 4L (b− a) ‖x1 − x2‖C[a,b]

and therefore, by (a6) it result that the operator A is an α-contraction with the

coefficient α = 4L (b− a). The conclusion result from the Contractions Principle. �

B. Existence of the solution in the B(f ;R) sphere

We suppose the following conditions are satisfied:

(a′1) K ∈ C([a, b]× [a, b]× J4), J ⊂ R closed interval;

and (a2), (a3).

In addition, we denote MK a positive constant such that, for the restriction

K|[a,b]×[a,b]×J4 , J ⊂ R compact, we have

|K(t, s, u1, u2, u3, u4)| ≤ MK , for all t ∈ [a, b], u1, u2, u3, u4 ∈ J . (7)

We have the following theorem of existence of the solution of the integral

equation (1) in B(f ;R)⊂ C[a, b] :

Theorem 2.3. Suppose (a′1), (a2), (a3) are satisfied. In addition suppose

(b1)MK(b− a) ≤ R (the invariability condition of the B(f ;R) sphere).

Then the integral equation (1) has at least one solution x∗ ∈ B(f ;R) ⊂

C[a, b].

Proof. We attach to the integral equation (1), the operator A : B(f ;R) →

C[a, b], defined by the relation (7), where R is a real positive number which satisfies

the condition below: [
x ∈ B(f ;R)

]
=⇒ [x(t) ∈ J ⊂ R]

and we suppose that there exist at least one number R with this property.
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We establish under what conditions, the B (f ;R) sphere is an invariant set

for the operator A . We have

|A(x)(t)− f(t)| =

∣∣∣∣∣
∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds

∣∣∣∣∣ ≤
≤

∫ b

a

|K(t, s, x(s), x(g(s)), x(a), x(b))| ds

and by (8) we have

|A(x)(t)− f(t)| ≤ MK(b− a), for all t ∈ [a, b] ,

and then by (b1) it result that the B(f ;R) sphere is an invariant set for the operator

A. Now we have the operator A : B(f ;R) → B(f ;R), also noted with A, defined by

same relation, where B(f ;R) is a closed subset of the Banach space C[a, b].

Next we assure the conditions of the Schauder’s theorem.

We have

‖A(x)‖C[a,b] ≤ ‖f‖C[a,b] + R , for all x ∈ B(f ;R)

and it follows that the subset A(B(f ;R)) is bounded. From the uniform continuity

of K with respect to t, it follows that the subset A(B(f ;R)) is equicontinuous. Now

it result that A(B(f ;R)) is a compact subset.

Also, from the uniform continuity of K with respect to t, it follows that

the operator A is continuous. On the other hand, by Arzela-Ascoli theorem, A is

completely continuous. The proof follows the Schauder’s theorem. �

Theorem 2.4. Suppose the conditions (a′1), (a2), (a3), (b1) and (a6) are

satisfied. In addition suppose

(b2) there exist L > 0 such that

|K(t, s, u1, u2, u3, u4)−K(t, s, v1, v2, v3, v4)| ≤

≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|+ |u4 − v4|) ,

for all t, s ∈ [a, b], ui, vi ∈ J , i = 1, 4;

Then the integral equation (1) has a unique solution x∗ ∈ B(f ;R) ⊂ C[a, b].
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Proof. We attach to the integral equation (1), the operator A : B(f ;R) →

C[a, b], defined by the relation (7), where R is a real positive number which satisfies

the condition below: [
x ∈ B(f ;R)

]
=⇒ [x(t) ∈ J ⊂ R]

and we suppose that there exist at least one number R with this property.

If we use a reasoning as the one used in the proof of theorem 2.3, we will obtain

that the B(f ;R) sphere is an invariant set for the operator A, and the invariability

condition (b1), of the B(f ;R) sphere is hold.

Now we have the operator A : B(f ;R) → B(f ;R), also noted with A, defined

by same relation, where B(f ;R) is a closed subset of the Banach space C[a, b]. The

set of the solutions of the integral equation (1) coincide with the set of fixed points

of the operator A.

By a similar reasoning as in the proof of theorem 2.2 and using the condition

(b2) it result that the operator A is an α-contraction with the coefficient α = 4L (b− a)

.

Now the proof result from the Contractions Principle. �

3. Dependence on data

Theorems of dependence on data for several type of integral equations with

modified argument have been presented in the papers [5], [6], [9], [12].

In what follows we consider the integral equation (1) and we will study the

dependence of the solution of the integral equation (1) with respect to K and f .

Now we consider the perturbed integral equation

y(t) =
∫ b

a

H(t, s, y(s), y(g(s)), y(a), y(b))ds + h(t) , t ∈ [a, b] (8)

and we have the following theorem of dependence on data of the solution of the

integral equation (1):

Theorem 3.1. Suppose

(i) the conditions of the theorem 2.2 are satisfied and denote x∗ the unique

solution of the integral equation (1).
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(ii) H ∈ C([a, b]× [a, b]× R4) and h ∈ C[a, b] ;

(iii) there exist η1, η2 > 0 such that

|K(t, s, u1, u2, u3, u4)−H(t, s, u1, u2, u3, u4)| ≤ η1 ,

for all t, s ∈ [a, b], u1, u2, u3, u4 ∈ R and

|f(t)− h(t)| ≤ η2 for all t ∈ [a, b] .

In these conditions, if y∗ is a solution of the integral equation (9), then we

have:

‖x∗ − y∗‖ ≤ η1(b− a) + η2

1− 4L(b− a)
.

Proof. We consider the operator A which appear in the proof of the theorem

2.2.

Let B : C[a, b] → C[a, b] be an operator defined by

B(y)(t) =
∫ b

a

H(t, s, y(s), y(g(s)), y(a), y(b))ds + h(t) , t ∈ [a, b] .

By the condition (iii) we have

‖A(x)−B(x)‖ ≤ η1(b− a) + η2 .

The proof result from data dependence general theorem. �

4. Approximation of the solution

Approximative methods for various type of integral equations with modified

argument have been presented in the papers [1], [2], [3], [4], [7], [8], [9] .

We will determine as follows, a method for the approximation of the solution

of the integral equation (1).

We suppose that the conditions of one of the two existence and uniqueness

theorems from section 2 are satisfied. In order to lay down the ideas we consider the

case of the integral equation (1) with a unique solution in the sphere B(f ;R) ⊂ C[a, b]
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(theorem 2.4), called x∗ and established using the successive approximation method.

We have the sequence of the successive approximations:

x0(t) = f(t)

x1(t) =
∫ b

a

K(t, s, x0(s), x0(g(s)), x0(a), x0(b))ds + f(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

xm(t) =
∫ b

a

K(t, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))ds + f(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

and we consider a division of the interval [a, b] through the points a = x0 < x1 <

. . . < xn = b .

A. Approximation of the solution using the trapezoidal rule

We suppose that:

(h11) K ∈ C2([a, b]× [a, b]× J4), J ⊂ R closed interval ;

(h12) f ∈ C2[a, b] ;

(h13) g ∈ C2([a, b], [a, b])

and we will approximate the terms of the successive approximations sequence

using the trapezoidal rule (2) with the rest from (3). Generally, for the term xm(tk)

we have

xm(tk) =
b− a

2n
[K(tk, a, xm−1(a), xm−1(g(a)), xm−1(a), xm−1(b))+ (9)

+2
n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(g(ti)), xm−1(a), xm−1(b))+

+K(tk, b, xm−1(b), xm−1(g(b)), xm−1(a), xm−1(b))] + f(tk) + RT
m,k ,

k = 0, n , m ∈ N , with the estimation of the rest

∣∣RT
m,k

∣∣ ≤ (b− a)3

12n2
· max

s∈[a,b]

∣∣∣[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s

∣∣∣ .
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According to (h11) it result that the derivative of the function K from the

expression of the rest RT
m,k exist and has the following form:

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s =
∂2K

∂s2
+

+2
∂2K

∂s∂xm−1
· x

′

m−1(s) + 2
∂2K

∂s∂xm−1
· ∂xm−1

∂g
· g

′
(s)+

+
∂2K

∂x2
m−1

(
x

′

m−1(s)
)2

+ 2
∂2K

∂x2
m−1

· ∂xm−1

∂g
· x

′

m−1(s) · g
′
(s)+

+
∂K

∂xm−1
· x

′′

m−1(s) +
∂2K

∂x2
m−1

·
(

∂xm−1

∂g

)2

·
(
g

′
(s)

)2

+

+
∂K

∂xm−1
· ∂2xm−1

∂g∂s
· x

′

m−1(s) · g
′
(s) +

∂K

∂xm−1
· ∂xm−1

∂g
· g

′′

(s) ,

where

x
(α)
m−1(t) =

∫ b

a

∂(α)K(t, s, xm−2(s), xm−2(g(s)), xm−2(a), xm−2(b))
∂t(α)

ds + f (α)(t) ,

α = 1, 2 .

If we denote

MT
1 = max

|α|≤2,t,s∈[a,b]

∣∣∣∣ ∂|α|K

∂tα1∂sα2∂uα3
1 ∂uα4

2 ∂uα5
3 ∂uα6

4

∣∣∣∣ ,

MT
2 = max

α≤2,t∈[a,b]

∣∣∣f (α)(t)
∣∣∣ , MT

3 = max
α≤2,t∈[a,b]

∣∣∣g(α)(t)
∣∣∣ ,

then we obtain for xm−1(t) and its derivative, the following estimations:∣∣∣x(α)
m−1(t)

∣∣∣ ≤ MT
1 (b− a) + MT

2 , α = 0, 2

while for the derivative of function K, we have

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s ≤ MT
1

{
1 + 3

[
MT

1 (b− a)+

+MT
2

] (
1 + MT

3

)
+

[
MT

1 (b− a) + MT
2

]2 [
1 + 3MT

3 +
(
MT

3

)2
]}

= MT
0 .

It is obvious that MT
0 doesn’t depend on m and k, so the estimation of the

rest is ∣∣RT
m,k

∣∣ ≤ MT
0 · (b− a)3

12n2
, (10)
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where MT
0 = MT

0

(
K, D(α)K, f, D(α)f, g,D(α)g

)
, |α| ≤ 2 , and we obtain a formula

for the approximative calculus of the integrals of the successive approximations se-

quence. Using the method of successive approximations and the formula (10) with

the estimation of the rest resulted from (11), we suggest further on an algorithm in

order to solve the integral equation (1) approximately. To this end, we will calcu-

late approximately the terms of the successive approximations sequence and through

induction we obtain

xm(tk) =
b− a

2n
[K(tk, a, x̃m−1(a), x̃m−1(g(a)), x̃m−1(a), x̃m−1(b))+

+2
n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(g(ti)), x̃m−1(a), x̃m−1(b))+

+K(tk, b, x̃m−1(b), x̃m−1(g(b)), x̃m−1(a), x̃m−1(b))]+

+f(tk) + R̃T
m,k = x̃m(tk) + R̃T

m,k , k = 0, n

where ∣∣∣R̃T
m,k

∣∣∣ ≤ (b− a)3

12n2
MT

0

[
4m−1Lm−1(b− a)m−1 + . . . + 1

]
, k = 0, n .

Since the conditions of theorem 2.4 are satisfied we have 4L(b − a) < 1, and

it result the estimation: ∣∣∣R̃T
m,k

∣∣∣ ≤ (b− a)3

12n2 [1− 4L(b− a)]
MT

0 .

We have thus obtained the sequence (x̃m(tk))m∈N , k = 0, n , that estimates

the successive approximations sequence (xm)m∈N using a division of the interval [a, b],

a = x0 < x1 < . . . < xn = b , with the following error in calculus:

|xm(tk)− x̃m(tk)| ≤ (b− a)3

12n2 [1− 4L(b− a)]
MT

0 .

B. Approximation of the solution using the rectangle quadrature

formula

We suppose that:

(h21) K ∈ C1([a, b]× [a, b]× J4), J ⊂ R closed interval ;
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(h22) f ∈ C1[a, b] ;

(h23) g ∈ C1([a, b], [a, b])

and we will approximate the terms of the successive approximations sequence using

the rectangle quadrature formula (4) with the rest from (5). Generally, for the term

xm(tk) we have

xm(tk) =
b− a

2n
[K(tk, a, xm−1(a), xm−1(g(a)), xm−1(a), xm−1(b))+ (11)

+
n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(g(ti)), xm−1(a), xm−1(b))

]
+

+f(tk) + RD
m,k , k = 0, n, m ∈ N

with the estimation of the rest∣∣RD
m,k

∣∣ ≤ (b− a)2

n
· max

s∈[a,b]

∣∣∣[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s

∣∣∣ .

According to (h21) it result that the derivative of the function K from the

expression of the rest RD
m,k exist and has the following form:

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s =
∂K

∂s
+

+
∂K

∂xm−1
· x

′

m−1(s) +
∂K

∂xm−1
· ∂xm−1

∂g
· g

′
(s) ,

where

x
′

m−1(t) =
∫ b

a

∂K(t, s, xm−2(s), xm−2(g(s)), xm−2(a), xm−2(b))
∂t

ds + f
′
(t) .

If we denote

MD
1 = max

|α|≤1,t,s∈[a,b]

∣∣∣∣ ∂|α|K

∂tα1∂sα2∂uα3
1 ∂uα4

2 ∂uα5
3 ∂uα6

4

∣∣∣∣ ,

MD
2 = max

α≤1,t∈[a,b]

∣∣∣f (α)(t)
∣∣∣ , MD

3 = max
α≤1,t∈[a,b]

∣∣∣g(α)(t)
∣∣∣

then we obtain for x
′

m−1(t) the following estimation:∣∣∣x′

m−1(t)
∣∣∣ ≤ MD

1 (b− a) + MD
2 ,

while for the derivative of function K, we have

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s ≤
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≤ MD
1

{
1 +

[
MD

1 (b− a) + MD
2

] (
1 + MD

3

)}
= MD

0 .

It is obvious that MD
0 doesn’t depend on m and k, so the estimation of the

rest is ∣∣RD
m,k

∣∣ ≤ MD
0 · (b− a)2

n
, (12)

where MD
0 = MD

0

(
K, D(α)K, f, D(α)f, g,D(α)g

)
, α = 1, and we obtain a formula

for the approximative calculus of the integrals of the successive approximations se-

quence. Using the method of successive approximations and the formula (12) with

the estimation of the rest resulted from (13), we suggest further on an algorithm in

order to solve the integral equation (1) approximately. To this end, we will calcu-

late approximately the terms of the successive approximations sequence and through

induction we obtain

xm(tk) =
b− a

n
[K(tk, a, x̃m−1(a), x̃m−1(g(a)), x̃m−1(a), x̃m−1(b))+

+
n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(g(ti)), x̃m−1(a), x̃m−1(b))

]
+

+f(tk) + R̃D
m,k = x̃m(tk) + R̃D

m,k , k = 0, n ,

where ∣∣∣R̃D
m,k

∣∣∣ ≤ (b− a)2

n
MD

0

[
4m−1Lm−1(b− a)m−1 + . . . + 1

]
, k = 0, n .

Since the conditions of theorem 2.4 are satisfied we have 4L(b− a) < 1, and

it result the estimation: ∣∣∣R̃D
m,k

∣∣∣ ≤ (b− a)2

n [1− 4L(b− a)]
MD

0 ,

and we have thus obtained the sequence (x̃m(tk))m∈N , k = 0, n , that estimates the

successive approximations sequence (xm)m∈N using a division of the interval [a, b],

a = x0 < x1 < . . . < xn = b , with the following error in calculus:

|xm(tk)− x̃m(tk)| ≤ (b− a)2

n [1− 4L(b− a)]
MD

0 .
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36-39.
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