ON SOME INTEGRAL EQUATIONS WITH DEVIATING ARGUMENT

OLARU ION MARIAN

Abstract

The purpose of this paper is to study the following functional equation with modified argument: $$
x(t)=g(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K(t, s, x(s)) d s
$$ where $\theta \in(0,1), t \in[-T, T], T>0$.

1. Introduction

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations:
$F_{A}:=\{x \in X \mid A x=x\}$ the fixed points set of A.
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$ the family of the nonempty invariant subsets of A.
$A^{n+1}=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in N$.

Definition 1.1. [4] An operator A is weakly Picard operator(WPO) if the sequence

$$
\left(A^{n} x\right)_{n \in N}
$$

converges, for all $x \in X$ and the limit(which depend on x) is a fixed point of A.
Definition 1.2. [4],[1] If the operator A is WPO and $F_{A}=\left\{x^{*}\right\}$ then by definition A is Picard operator.

Received by the editors: 15.09.2005.
2000 Mathematics Subject Classification. 34K05, 47H10.
Key words and phrases. Picard operators, weakly Picard operators,functional-integral equations, fixed
points, data dependence.

Definition 1.3. [4] If A is $W P O$, then we consider the operator

$$
A^{\infty}: X \rightarrow X, A^{\infty}(x)=\lim _{n \rightarrow \infty} A^{n} x
$$

We remark that $A^{\infty}(X)=F_{A}$.
Definition 1.4. [1] Let be A an $W P O$ and $c>0$. The operator A is $c-W P O$ if $d\left(x, A^{\infty} x\right) \leq d(x, A x)$.

We have the following characterization of the WPOs
Theorem 1.1. [4]Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. The operator A is WPO ($c-W P O$) if and only if there exists a partition of X,

$$
X=\bigcup_{\lambda \in \Lambda} X_{\lambda}
$$

such that
(a) $X_{\lambda} \in I(A)$
(b) $A \mid: X_{\lambda} \rightarrow X_{\lambda}$ is a Picard(c-Picard) operator,for all $\lambda \in \Lambda$.

For the class of c-WPOs we have the following data dependence result.

Theorem 1.2. [4] Let (X, d) be a metric space and $A_{i}: X \rightarrow X, i=1,2$ an operator. We suppose that :
(i)the operator A_{i} is $c_{i}-W P O i=1,2$.
(ii)there exists $\eta>o$ such that

$$
d\left(A_{1} x, A_{2} x\right) \leq \eta,(\forall) x \in X
$$

Then

$$
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \max \left\{c_{1}, c_{2}\right\} .
$$

Here stands for Hausdorff-Pompeiu functional
We have

Lemma 1.1. [4],[1] $\operatorname{Let}(X, d, \leq)$ be an ordered metric space and $A: X \rightarrow X$ an operator such that:
a) A is monotone increasing.
b) A is WPO.

Then the operator A^{∞} is monotone increasing.

2. Main results

Data dependence for functional-integral equations was study in [2], [3],[4], [1].
$\operatorname{Let}(X,\|\cdot\|)$ a Banach space and the space $C([-T, T], X)$ endowed with the Bieleski norm $\|\cdot\|_{\tau}$ defined by

$$
\|x\|_{\tau}=\max _{t \in[-T, T]}\|x(t)\| e^{-\tau(t+T)}
$$

$\operatorname{In}[1]$ Viorica Muresan was study the following functional integral equation:

$$
x(t)=g(t, h(x)(t), x(t), x(0))+\int_{0}^{t} K(t, s, x(\theta s)) d s, t \in[0, b], \theta \in[0,1]
$$

by the weakly Picard operators technique.
We consider the following functional-integral equations with modified argument:

$$
\begin{equation*}
x(t)=g(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K(t, s, x(s)) d s \tag{1}
\end{equation*}
$$

where:
i) $t \in[-T, T],, T>0$.
ii) $h: C([-T, T], X) \longrightarrow C([-T, T], X), g \in C\left([-T, T] \times X^{3}, X\right), K \in C([-T, T] \times$ $\left.[-T, T] \times X^{2}, X\right)$.

We suppose that the following conditions are satisfied:
$\left(c_{1}\right)$ there exists $l>0$ such that

$$
\|h x(t)-h y(t)\| \leq l\|x(t)-y(t)\|
$$

for all $x, y \in C([-T, T], X), t \in[-T, T]$.
$\left(c_{2}\right)$ There exists $l_{1}>0, l_{2}>0$ such that

$$
\left\|g\left(t, u_{1}, v_{1}, w\right)-g\left(t, u_{2}, v_{2}, w\right)\right\| \leq l_{1}\left\|u_{1}-u_{2}\right\|+l_{2}\left\|v_{1}-v_{2}\right\|
$$

for all $t \in[-T, T], u_{i}, v_{i}, w \in X, i=1,2$.
$\left(c_{3}\right)$ There exists $l_{3}>0$ such that

$$
\left\|K(t, s, u)-K\left(t, s, u_{1}\right)\right\| \leq l_{3}\left\|u-u_{1}\right\|,
$$

for all $t, s \in[-T, T], u, u_{1} \in X$.
$\left(c_{4}\right) l_{1} l+l_{2}<1$.
$\left(c_{5}\right) g(0, h(x)(0), x(0), x(0))=x(0)$ for any $x \in C([-T, T], X)$.
Let $A: C([-T, T], X) \longrightarrow C([-T, T], X)$ be defined by

$$
\begin{equation*}
A x(t)=g(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K(t, s, x(s)) d s \tag{2}
\end{equation*}
$$

Let $\lambda \in X$ and $X_{\lambda}=\{x \in C([-T, T], X) \mid x(0)=\lambda\}$. Then $C([-T, T], X)=$ $\bigcup_{\lambda \in X} X_{\lambda}$ is a partition of $C([-T, T], X)$.From c_{5} we have that $X_{\lambda} \in I(A)$.

For studding of data dependence we consider the following equations

$$
\begin{align*}
& x(t)=g_{1}(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K_{1}(t, s, x(s)) d s \tag{3}\\
& x(t)=g_{2}(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K_{2}(t, s, x(s)) d s \tag{4}
\end{align*}
$$

Theorem 2.1. We consider the equation (1) under following conditions:
(i)The conditions $c_{1}-c_{5}$ are satisfied.
(ii) The operators $h(\cdot), g(t, \cdot, \cdot, \cdot), K(t, s, \cdot, \cdot)$ are monotone increasing.
(iii)There exists $\eta_{1}, \eta_{2}>0$ such that

$$
\begin{gathered}
\left\|g_{1}(t, u, v, w)-g_{2}(t, u, v, w)\right\|<\eta_{1} \\
\left\|K_{1}(t, s, u)-K_{2}(t, s,)\right\| \leq \eta_{2}
\end{gathered}
$$

for all $t \in[-T, T], u, v, w \in X$.Then:
(a)For all x, y solutions of (1) with $x(0) \leq y(0)$ we have $x(t) \leq y(t)$, for all $t \in[-T, T]$.
(b) $H\left(S_{1}, S_{2}\right) \leq \frac{\eta_{1}+2 \eta_{2} T}{\left(1-l_{1} l-l_{2}-\frac{l_{3}}{\tau}\right)}$, where S_{1}, S_{2} is the solutions set of(3),(4).

Proof We denote with A_{λ} the restriction of the operator A at X_{λ}. First we show that A_{λ} is a contraction map on X_{λ}.From $c_{1}-c_{5}$ we have that

$$
\begin{gathered}
\left\|A_{\lambda} x(t)-A_{\lambda} y(t)\right\| \leq\left(l_{1} l+l_{2}\right)\|x(t)-y(t)\|+\int_{-\theta t}^{\theta t}\|K(t, s, x(s))-K(t, s, y(s))\| d s l e q \\
\leq\left(l_{1} l+l_{2}\right)\|x-y\|_{\tau} e^{\tau(t+T)}+l_{3}\|x-y\|_{\tau} \int_{-\theta t}^{\theta t} e^{\tau(t+T)} d s
\end{gathered}
$$

So A is c-WPO with

$$
c=\frac{1}{1-l_{1} l-l_{2}-\frac{l_{3}}{\tau}} .
$$

Using the theorem 1.2 we obtain (b).
For proof of (a) let be x, y solutions for(1) with $x(0) \leq y(0)$.Then $x \in$ $X_{x(0)}, y \in X_{y(0)}$. We define

$$
\begin{aligned}
& \widetilde{x}(t)=x(0), t \in[0, b] \\
& \widetilde{y}(t)=y(0), t \in[0, b]
\end{aligned}
$$

We have

$$
\widetilde{x}(0) \in X_{x(0)}, \widetilde{y}(0) \in X_{y(0)}, \widetilde{x}(0) \leq \widetilde{y}(0)
$$

From lemma 1.1 we obtain that the operator A^{∞} is increasing.It follows that

$$
A^{\infty}(\widetilde{x}(0)) \leq A^{\infty}(\widetilde{x}(0))
$$

i.e $x \leq y$

Next we define φ-contraction notion and use this for estimate distance between two weakly Picard operators.

Let $\varphi: R_{+} \longrightarrow R_{+}$.

Definition 2.1. [5] φ is a strict comparison function if φ satisfies the following:
i) φ is continuous.
ii) φ is monotone increasing.
iii) $\varphi^{n}(t) \longrightarrow 0$, for all $t>0$.
iv) $t-\varphi(t) \longrightarrow \infty$, for $t \longrightarrow \infty$

Let (X, d) be a metric space and $f: X \longrightarrow X$ an operator.
Definition 2.2. [5] The operator f is called a strict φ-contraction if:
(i) φ is a strict comparison function.
(ii) $d(f(x), f(y)) \leq \varphi(d(x, y))$, for all $x, y \in X$.

Theorem 2.2. [5] Let (X, d) be a complete metric space, $\varphi: R_{+} \longrightarrow R_{+}$a strict comparison and $f, g: X \longrightarrow X$ two orbitally continuous operators. We suppose that:
(i) $d\left(f(x), f^{2}(x)\right) \leq \varphi(d(x, f(x)))$ for any $x \in X$ and $d\left(g(x), g^{2}(x)\right) \leq \varphi(d(x, g(x)))$ for any $x \in X$.
(ii)there exists $\eta>0$ such that $d(f(x), g(x)) \leq \eta$, for any $x \in X$

Then:
(a) f,g are weakly Picard operators.
(b) $H\left(F_{f}, F_{g}\right) \leq \tau_{\eta}$ where $\tau_{\eta}=\sup \{t \mid t-\varphi(t) \leq \eta\}$.

Theorem 2.3. We suppose that condition $\left(c_{5}\right)$ is verified and the following conditions are satisfied:
$\left(H_{1}\right)$ there exists φ a strict comparison function such that

$$
(i)\|h x(t)-h y(t)\| \leq\|x(t)-y(t)\|,
$$

for all $x, y \in C([-T, T], X), t \in[-T, T]$.
(ii) $g\left(t, u_{1}, v_{1}, w\right)-g\left(t, u_{2}, v_{2}, w\right) \| \leq a \varphi\left(\left\|u_{1}-u_{2}\right\|\right)+b \varphi\left(\left\|v_{1}-v_{2}\right\|\right)$.
for all $t \in[-T, T], u_{i}, v_{i}, w \in X, i=1,2$

$$
(i i i)\left\|K(t, s, u)-K\left(t, s, u_{1}\right)\right\| \leq l(t, s) \varphi\left(\left\|u-u_{1}\right\|\right)
$$

for all $t, s \in[-T, T], u, u_{1}, \in X$, where $l(t, \cdot) \in L^{1}[-T, T]$.
$\left(H_{2}\right)$ There exists $\eta_{1}, \eta_{2}>0$ such that

$$
\begin{gathered}
\left\|g_{1}(t, u, v, w)-g_{2}(t, u, v, w)\right\| \leq \eta_{1} \\
\left\|K_{1}(t, s, u)-K_{2}(t, s,)\right\| \leq \eta_{2}
\end{gathered}
$$

for all $t \in[-T, T], u, v, w \in X$.
$\left(H_{3}\right)$

$$
a+b+\max _{t \in[-T, T]} \int_{-T}^{T} l(t, s) d s \leq 1
$$

Then:
(i)the equation (1) has at least solution.
(ii) $H\left(S_{1}, S_{2}\right) \leq \tau_{\eta}$ where $\eta=\eta_{1}+2 T \eta_{2}, S_{1}, S_{2}$ is the solutions set of(3),(4).

ProofLet be $A_{1}, A_{2}: C([-T, T], X) \longrightarrow C([-T, T], X)$,

$$
\begin{aligned}
& A_{1} x(t)=g_{1}(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K_{1}(t, s, x(s)) d s \\
& A_{2} x(t)=g_{2}(t, h x(t), x(t), x(0))+\int_{-\theta t}^{\theta t} K_{2}(t, s, x(s)) d s
\end{aligned}
$$

From

$$
\begin{gathered}
\left\|A_{i} x(t)-A_{i}^{2} x(t)\right\| \leq\left\|g_{i}(t, h x(t), x(t), x(0))-g_{i}\left(t, h A_{i} x(t), A_{i} x(t), A_{i} x(0)\right)\right\|+ \\
+\int_{-\theta t}^{\theta t}\left\|K_{i}(t, s, x(s))-K_{i}\left(t, s, A_{i} x(s)\right)\right\| d s \\
\leq a \varphi\left(\left\|h x(t)-h A_{i} x(t)\right\|\right)+b \varphi\left(\left\|x(t)-A_{i} x(t)\right\|\right)+ \\
+\int_{-\theta t}^{\theta t} l(t, s) \varphi\left(\| x(s)-A_{i} x(s)\right) \| d s \leq a \varphi\left(\left\|x(t)-A_{i} x(t)\right\|\right)+b \varphi\left(\left\|x(t)-A_{i} x(t)\right\|\right)+ \\
\int_{-\theta t}^{\theta t} l(t, s) \varphi\left(\| x(s)-A_{i} x(s)\right) \| d s \leq\left(a+b+\max _{t \in[-T, T]}^{-T} \int_{-T}^{T} l(t, s) d s\right) \varphi\left(\left\|x-A_{i} x\right\|_{C}\right) \leq
\end{gathered}
$$

$$
\leq \varphi\left(\left\|x-A_{i} x\right\|_{C}\right)
$$

we have that

$$
\left\|A_{i} x-A_{i}^{2} x\right\|_{C} \leq \varphi\left(\left\|x-A_{i} x\right\|_{C}\right), i=\overline{1,2} .
$$

Here $\|\cdot\|_{C}$ is the Chebyshev norm on $C([-T, T], X)$.
We note that $\left\|A_{1} x-A_{2} x\right\|_{C} \leq \eta_{1}+2 T \eta_{2}$. From this, using the theorem 2.2 we have the conclusions.

References

[1] Muresan, V., On some functional-integral equations with liniar modification of the argument, Seminar on fixed point theory, Cluj-Napoca, No.3, 2002, 297-304.
[2] Rus, I.A., Generalized contractions, Seminar on fixed point theory, No.3, 1983, 1-130.
[3] Rus, I.A., Functional-Differential equation of mixed point, via weakly Picard operator, Seminar on mixed point theory Cluj-Napoca, vol. 3, 2002, 335-346.
[4] Rus, I.A., Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2001, 41-58
[5] Rus, I.A., Muresan, S., Data dependence of the fixed points set of weakly Picard operators, Studia Univ. "Babes-Bolyai", Mathematica, Volume XLIII, Number 1, March 1998, 79-83.

Department of Mathematics, University "Lucian Blaga" Sibiu, Romania
E-mail address: olaruim@yahoo.com

