AN APPLICATION OF MACKEY'S SELECTION LEMMA

MĂDĂLINA ROXANA BUNECI

Abstract. Let G be a locally compact second countable groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. Let us denote by d_F the restriction of the domain map to G^F and by r' the restriction of the range map to the isotropy group bundle of G. We shall prove that if d_F is open, then r' is open and d_F has a regular Borel cross section. Conversely, we shall prove that if r' is open and d_F admits a regular cross section (a right inverse which carries each compact subset of $G^{(0)}$ into a relatively compact subset of G^F), then d_F is open. We shall also prove that, if d_F is open, then F is a closed subset of $G^{(0)}$, and the orbit space $G^{(0)}/G$ is a proper space. If F is closed and regular (the intersection of F with the saturated of any compact subset of $G^{(0)}$ is relatively compact) and $G^{(0)}/G$ is proper, then d_F is open.

1. Introduction

We shall consider a locally compact groupoid G and a set F containing exactly one element from each orbit of G. We shall study the connection between the openness of d_F , the restriction of the domain map to G^F , and the existence of a regular cross section of d_F (a right inverse which carries each compact subset of $G^{(0)}$ into a relatively compact subset of G^F). The motivation for studying the map d_F comes from the fact that if F is closed and d_F is open, then G and G_F^F are (Morita) equivalent locally compact groupoids (in the sense of Definition 2.1/p. 6 [4]). A result of Paul Muhly, Jean Renault and Dana Williams states that the C^* -algebras associated to (Morita)

Received by the editors: 12.10.2004.

²⁰⁰⁰ Mathematics Subject Classification. 22A22, 43A05, 54D45, 37A55.

Key words and phrases. locally compact groupoid, regular cross section, orbit space.

This work is supported by the MEC-CNCSIS grant At 127/2004 (33346/29.06.2004).

MĂDĂLINA ROXANA BUNECI

equivalent locally compact second countable groupoids are strongly Morita equivalent (Theorem 2.8/p. 10 [4]). Also the notion of topological amenability is invariant under the equivalence of groupoids (Theorem 2.2.7/p. 50 [1]). Consequently, if F is closed and d_F is open, then G and the bundle group G_F^F have strongly Morita equivalent C^* -algebras. Also, the equivalence of G and G_F^F implies that G is amenable if and only if each isotropy group G_u^u is amenable.

For establishing notation, we include some definitions that can be found in several places (e.g. [5]). A groupoid is a set G, together with a distinguished subset $G^{(2)} \subset G \times G$ (called the set of composable pairs), and two maps:

$$\begin{array}{rcl} (x,y) & \to & xy \ \left[: G^{(2)} \to G\right] \ (\text{product map}) \\ \\ x & \to & x^{-1} \ \left[: G \to G\right] \ (\text{inverse map}) \end{array}$$

such that the following relations are satisfied:

(1) If $(x, y) \in G^{(2)}$ and $(y, z) \in G^{(2)}$, then $(xy, z) \in G^{(2)}$, $(x, yz) \in G^{(2)}$ and (xy) z = x (yz). (2) $(x^{-1})^{-1} = x$ for all $x \in G$. (3) For all $x \in G$, $(x, x^{-1}) \in G^{(2)}$, and if $(z, x) \in G^{(2)}$, then $(zx) x^{-1} = z$. (4) For all $x \in G$, $(x^{-1}, x) \in G^{(2)}$, and if $(x, y) \in G^{(2)}$, then $x^{-1} (xy) = y$. The maps r and d on G, defined by the formulae $r(x) = xx^{-1}$ and $d(x) = xx^{-1}$.

 $x^{-1}x$, are called the range and the source maps. It follows easily from the definition that they have a common image called the unit space of G, which is denoted $G^{(0)}$. Its elements are units in the sense that xd(x) = r(x)x = x. It is useful to note that a pair (x, y) lies in $G^{(2)}$ precisely when d(x) = r(y), and that the cancellation laws hold (e.g. xy = xz iff y = z). The fibers of the range and the source maps are denoted $G^u = r^{-1}(\{u\})$ and $G_v = d^{-1}(\{v\})$, respectively. More generally, given the subsets $A, B \subset G^{(0)}$, we define $G^A = r^{-1}(A), G_B = d^{-1}(B)$ and $G^A_B = r^{-1}(A) \cap d^{-1}(B)$. G^A_A becomes a groupoid (called the reduction of G to A) with the unit space A, if we define $(G^A_A)^{(2)} = G^{(2)} \cap (G^A_A \times G^A_A)$. For each unit u, G^u_u is a group, called isotropy 24 group at u. The group bundle

$$\{x \in G : r(x) = d(x)\}\$$

is denoted G', and is called the isotropy group bundle of G. The relation u v iff $G_v^u \neq \phi$ is an equivalence relation on $G^{(0)}$. Its equivalence classes are called orbits and the orbit of a unit u is denoted [u]. Let

$$R = (r, d) (G) = \{ (r(x), d(x)), x \in G \}$$

be the graph of the equivalence relation induced on $G^{(0)}$. The quotient space for this equivalence relation is called the orbit space of G and denoted $G^{(0)}/G$.

A topological groupoid consists of a groupoid G and a topology compatible with the groupoid structure. We are exclusively concerned with topological groupoids which are locally compact Hausdorff. The Borel sets of a topological space are taken to be the σ -algebra generated by the open sets.

2. Necessary and sufficient conditions for the openness of d_F .

Definition 1. Let X, Y be two topological spaces. A cross section of a map $f : X \to Y$ is a function $\sigma : Y \to X$ such that $f(\sigma(y)) = y$ for all $y \in Y$. We shall say that the cross section σ is regular if $\sigma(K)$ has compact closure in X for each compact set Kin Y.

We shall need the following lemma proved by Mackey (Lemma 1.1/p. 102 [3]):

Lemma 1. If X and Y are second countable, locally compact spaces, and $f: X \to Y$ is a continuous open function onto Y, then f has a Borel regular cross section.

Proposition 1. Let G be a locally compact groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. Let us define the function $e: G^{(0)} \to G^{(0)}$ by

$$e(u) = F \cap [u], u \in G^{(0)}$$

If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, is open, then the function *e* is continuous and *F* is a closed subset of $G^{(0)}$.

25

MĂDĂLINA ROXANA BUNECI

Proof. Let $(u_i)_i$ be a net converging to u in $G^{(0)}$. Let $x \in G$ be such that r(x) = e(u)and d(x) = u. Since $(u_i)_i$ converges to $d_F(x)$ and d_F is an open map, we may pass to a subnet and assume that there is a net $(x_i)_i$ converging to x in G^F such that $d_F(x_i) = u_i$. It is easy to see that $r(x_i) = e(u_i)$ ($r(x_i) \in F$ and $r(x_i) \in [d(x_i)] =$ $[u_i]$). Thus $e(u_i) = r(x_i)$ converges to r(x) = e(u). Since $G^{(0)}$ is Hausdorff, F is closed in $G^{(0)}$, being the image of the map e whose square is itself.

Proposition 2. Let G be a locally compact groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, is open, then graph

$$R = \{ (r(x), d(x)), x \in G \}$$

of the equivalence relation induced on $G^{(0)}$ is closed in $G^{(0)} \times G^{(0)}$, and the map $(r,d): G \to R, (r,d)(x) = (r(x), d(x))$ is open, where R is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$.

Proof. Let us define the function $e: G^{(0)} \to G^{(0)}$ by

$$e(u) = F \cap [u], \ u \in G^{(0)}.$$

By Proposition 1, the function e is continuous. Let $((u_i, v_i))_i$ be a net in R which converges to (u, v) in $G^{(0)} \times G^{(0)}$ (with respect to with the product topology). Then $(u_i)_i$ converges to u, $(v_i)_i$ converges to v, and $u_i \sim v_i$ for all i. We have

$$\lim_{i} e(u_{i}) = e(u)$$
$$\lim_{i} e(v_{i}) = e(v)$$

because e is continuous. On the other hand, the fact that $u_i \sim v_i$ for all i implies that $e(u_i) = e(v_i)$ for all i. Hence e(u) = e(v), or equivalently, $u \sim v$. Therefore $(u, v) \in R$.

Let us prove that the map $(r, d) : G \to R$, (r, d) (x) = (r(x), d(x)) is open, where R is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$. Let $x \in G$, and let $((u_i, v_i))_i$ be a net in R converging to (r, d) (x). Then $(u_i)_i$ converges to r(x), $(v_i)_i$ converges to d(x), and $u_i \ v_i$ for all i. Let $s \in G$ be such that r(s) = e(r(x))26 and d(s) = r(x) and let t = sx. Obviously, $s, t \in G^F$ and

$$\lim_{i} u_{i} = r(x) = d(s)$$
$$\lim_{i} v_{i} = d(x) = d(sx) = d(t)$$

Since d_F is an open map, we may pass to subnets and assume that there is a net $(s_i)_i$ converging to s in G^F and there is a net $(t_i)_i$ converging to t in G^F such that $d_F(s_i) = u_i$ and $d_F(t_i) = v_i$. The fact that $e(u_i)$ is the only element of F, which is equivalent to $u_i \, v_i$, implies that $r(s_i) = e(u_i) = e(v_i) = r(t_i)$. We have

$$\lim_{i} s_{i}^{-1} t_{i} = s^{-1} t = x$$

$$r(s_{i}^{-1} t_{i}) = d(s_{i}) = u_{i}, d(s_{i}^{-1} t_{i}) = d(t_{i}) = v_{i}$$

Therefore the map (r, d) is open

Corollary 1. Let G be a locally compact groupoid having open range map. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, is open, then the orbit space $G^{(0)}/G$ is proper.

Proof. The fact that $G^{(0)}/G$ is a proper space means that $G^{(0)}/G$ is Hausdorff and the map $(r, d) : G \to R$, (r, d)(x) = (r(x), d(x)) is open, where R is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$. Let us note that the quotient map $\pi : G^{(0)} \to G^{(0)}/G$ is open (because the range map of G is open). Since the graph R of the equivalence relation is closed in $G^{(0)} \times G^{(0)}$, it follows that $G^{(0)}/G$ is Hausdorff. \Box

Lemma 2. Let G be a locally compact groupoid having open range map. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, is open, then F and $G^{(0)}/G$ are homeomorphic spaces.

Proof. Let $\pi : G^{(0)} \to G^{(0)}/G$ be the quotient map. We prove that the map $\pi_F : F \to G^{(0)}/G, \pi_F(x) = \pi(x)$ is a homeomorphism. It suffices to prove that π_F is an open map (because π_F is one-to-one from F onto $G^{(0)}/G$). Let $u \in F$ and $(\dot{u}_i)_i$ be a net converging to $\pi(u)$ in $G^{(0)}/G$. Since $\pi \circ d_F$ is open, we may pass to a subnet

MĂDĂLINA ROXANA BUNECI

and assume that there is a net $(x_i)_i$ converging to u in G^F such that $\pi(d_F(x_i)) = \dot{u}_i$. Then $(r(x_i))_i$ is a net in F which converges to u.

Remark 1. Let G be a locally compact groupoid. If the map $(r, d) : G \to R$ is open (where $R = \{(r(x), d(x)), x \in G\}$ is endowed with the product topology induced from $G^{(0)} \times G^{(0)}$), then the map $r' : G' \to G^{(0)}, r'(x) = r(x)$, is open, where

$$G' = \{x \in G : r(x) = d(x)\},\$$

is the isotropy group bundle of G.

Proposition 3. Let G be a locally compact second countable groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, is open, then d_F has Borel regular cross section.

Proof. If d_F is open, then according to Proposition 1, F is a closed subset of $G^{(0)}$. Therefore G^F is a locally compact space, and we may apply Lemma 1.

We shall need a system of measures

$$\{\beta_v^u, (u,v) \in (r,d)(G)\}\$$

satisfying the following conditions:

- 1. $supp(\beta_v^u) = G_v^u$ for all $u \, \tilde{v}$.
- 2. $\sup_{u,v} \beta_v^u(K) < \infty$ for all compact $K \subset G$.
- 3. $\int f(y) d\beta_v^{r(x)}(y) = \int f(xy) d\beta_v^{d(x)}(y) \text{ for all } x \in G \text{ and } v \tilde{r}(x).$

In Section 1 of [6] Jean Renault constructs a Borel Haar system for G'. One way to do this is to choose a function F_0 continuous with conditionally support, which is nonnegative and equal to 1 at each $u \in G^{(0)}$. Then for each $u \in G^{(0)}$ choose a left Haar measure β_u^u on G_u^u so the integral of F_0 with respect to β_u^u is 1. Renault defines $\beta_v^u = x\beta_v^v$ if $x \in G_v^u$ (where $x\beta_v^v(f) = \int f(xy) d\beta_v^v(y)$ as usual). If z is another element in G_v^u , then $x^{-1}z \in G_v^v$, and since β_v^v is a left Haar measure on G_v^v , it follows that β_v^u is independent of the choice of x. If K is a compact subset of G, then $\sup_{u,v} \beta_v^u(K) < \infty$. We obtain another construction of a system a measures with the above properties if in the proof of Theorem 8/p. 331[2] we replace the regular cross section of $G^u \xrightarrow{d} G^{(0)}$ (in the transitive case) with a regular cross section of $G^F \xrightarrow{d} G^{(0)}$, where F is a subset of $G^{(0)}$ meeting each orbit exactly once.

Lemma 3. Let G be a locally compact groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once and let us denote e(u) the unique element of F equivalent to u. If the map

$$u \mapsto \int f(y) d\beta_u^{e(u)}(y) \left[: G^{(0)} \to \mathbf{C}\right]$$

is continuous for any continuous function with compact support, $f: G \to \mathbb{C}$, then the map

$$d_F: G^F \to G^{(0)}, \ d_F(x) = d(x)$$

is open.

Proof. Let $x_0 \in G^F$ and let U be a nonempty compact neighborhood of x_0 . Choose a nonnegative continuous function, f on G, with $f(x_0) > 0$ and $supp(f) \subset U$. Let W be the set of units u with the property that $\beta_u^{e(u)}(f) > 0$. Then W is an open neighborhood of $u_0 = d(x_0)$ contained in $d_F(U)$.

Proposition 4. Let G be a locally compact second countable groupoid. Let F be a subset of $G^{(0)}$ containing exactly one element from each orbit of G, and let us denote e(u) the unique element of F equivalent to u. Let us assume that the map $r': G' \to G^{(0)}, r'(x) = r(x)$ is open, where G' is the isotropy group bundle of G. If the map $d_F: G^F \to G^{(0)}, d_F(x) = d(x)$, has a regular cross section σ , then for each continuous with compact support function $f: G \to \mathbf{C}$, the map

$$u \to \int f(y) d\beta_u^{e(u)}(y)$$

is continuous on G.

Proof. By Lemma 1.3/p. 6 [6], for each $f : G \to \mathbf{C}$ continuous with compact support, the function $u \to \int f(y) d\beta_u^u(y)$ [: $G^{(0)} \to \mathbf{C}$] is continuous. Let $(u_i)_i$ be a sequence in $G^{(0)}$ converging to u. Let $x_i = \sigma (u_i)^{-1}$. Since σ is regular, it follows that $(x_i)_i$ has a convergent subsequence in G^F . Let x be the limit of this subsequence. Let $f : G \to \mathbf{C}$ be a continuous function with compact support and let g be

a continuous extension on G of $y \to f(xy)$ [: $G^{d(x)} \to \mathbf{C}$]. Let K be the compact set $(\{x, x_i, i = 1, 2, ..\}^{-1} supp(f) \cup supp(g)) \cap r^{-1}(\{d(x), d(x_i), i = 1, 2, ...\})$. We have

$$\begin{split} \left| \int f\left(y\right) d\beta_{u}^{e(u)}\left(y\right) - \int f\left(y\right) d\beta_{u_{i}}^{e(u_{i})}\left(y\right) \right| \\ &= \left| \int f\left(xy\right) d\beta_{d(x)}^{d(x)}\left(y\right) - \int f\left(x_{i}y\right) d\beta_{d(x_{i})}^{d(x_{i})}\left(y\right) \right| \\ &= \left| \int g\left(y\right) d\beta_{d(x)}^{d(x)}\left(y\right) - \int f\left(x_{i}y\right) d\beta_{d(x_{i})}^{d(x_{i})}\left(y\right) \right| \\ &\leq \left| \int g\left(y\right) d\beta_{d(x)}^{d(x)}\left(y\right) - \int g\left(y\right) d\beta_{d(x_{i})}^{d(x_{i})}\left(y\right) \right| + \\ &+ \left| \int g\left(y\right) d\beta_{d(x_{i})}^{d(x_{i})}\left(y\right) - \int f\left(x_{i}y\right) d\beta_{d(x_{i})}^{d(x_{i})}\left(y\right) \right| \\ &\leq \left| \int g\left(y\right) d\beta_{u}^{u}\left(y\right) - \int g\left(y\right) d\beta_{u_{i}}^{u_{i}}\left(y\right) \right| + \\ &+ \sup_{y \in G_{u_{i}}^{u_{i}}} \left| g\left(y\right) - f\left(x_{i}y\right) \right| \beta_{u_{i}}^{u_{i}}\left(K\right) \end{split}$$

A compactness argument shows that $\sup_{y \in G_{u_i}^{u_i}} |g(y) - f(x_iy)|$ converges to 0. Also $\left| \int g(y) \, d\beta_{d(x_i)}^{d(x_i)}(y) - \int f(x_iy) \, d\beta_{d(x_i)}^{d(x_i)}(y) \right|$ converges to 0, because the function $u \to \int f(y) \, d\beta_u^u(y)$ is continuous on $G^{(0)}$. Hence

$$\left|\int f(y) d\beta_{u}^{e(u)}(y) - \int f(y) d\beta_{u_{i}}^{e(u_{i})}(y)\right|$$

converges to 0.

Corollary 2. Let G be a locally compact second countable groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once. If the restriction r' of the range map to the isotropy group bundle G' of G is open, and if the map $d_F : G^F \to G^{(0)}, d_F(x) = d(x)$, has a regular cross section, then d_F is an open map.

Theorem 1. Let G be a locally compact second countable groupoid. Let F be a subset of $G^{(0)}$ meeting each orbit exactly once, and let $d_F : G^F \to G^{(0)}$ be the map defined by $d_F(x) = d(x)$ for all $x \in G^F$. If d_F is open then d_F admits a Borel regular cross section. If the restriction r' of the range map to the isotropy group bundle G' of G is open and if d_F admits a regular cross section, then d_F is an open map. *Proof.* If d_F is an open map, then, according Proposition 3, d_F has a regular cross section. Conversely, if d_F admits a regular cross section, then applying Proposition 4 and Lemma 3, it follows that d_F is open.

Remark 2. Let us assume that $G^{(0)}/G$ is **proper**. There is a regular Borel cross section σ_0 of the quotient map $\pi : G^{(0)} \to G^{(0)}/G$. Let us assume that $F = \sigma_0 (G^{(0)}/G)$ is **closed** in $G^{(0)}$. Then the function $e : G^{(0)} \to G^{(0)}$ defined by $e(u) = F \cap [u]$ is continuous. If $\sigma_1 : R \to G$ is regular Borel cross section of (r, d), then $\sigma : G^{(0)} \to G^F$, $\sigma(u) = \sigma_1 (e(u), u)$ is a Borel regular cross section of d_F . Therefore is that case d_F is open.

References

- Anantharaman-Delaroche, C., Renault, J., Amenable groupoids, Monographie de L'Enseignement Mathematique No 36, Geneve, 2000.
- [2] Buneci, M., Consequences of Hahn structure theorem for the Haar measure, Math. Reports, 4(54) (2002), no. 4, 321-334.
- [3] Mackey, G., Induced representations of locally compact groups. I, Ann. of Math., 55(1952), 101-139.
- [4] Muhly, P., Renault, J., Williams, D., Equivalence and isomorphism for groupoid C*algebras, J. Operator Theory 17(1987), 3-22.
- [5] Renault, J., A groupoid approach to C^{*}- algebras, Lecture Notes in Math., Springer-Verlag, 793, 1980.
- [6] Renault, J., The ideal structure of groupoid crossed product algebras, J. Operator Theory, 25(1991), 3-36.

UNIVERSITY CONSTANTIN BRÂNCUȘI OF TÂRGU-JIU, BULEVARDUL REPUBLICII, NR. 1, 210152 TÂRGU-JIU, ROMANIA *E-mail address*: ada@utgjiu.ro