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ON BASIC FUZZY KOROVKIN THEORY

GEORGE A. ANASTASSIOU

Abstract. We prove the basic fuzzy Korovkin theorem via a fuzzy Shisha–

Mond inequality given here. This determines the degree of convergence

with rates of a sequence of fuzzy positive linear operators to the fuzzy unit

operator. The surprising fact is that only the real case Korovkin assump-

tions are enough for the validity of the fuzzy Korovkin theorem, along with

a natural realization condition fulfilled by the sequence of fuzzy positive

linear operators. The last condition is fulfilled by almost all operators

defined via fuzzy summation or fuzzy integration.

0. Introduction

Motivation for this work are the references [1], [2], [5], [6]. Our results Theo-

rems 3 and 4 are simple, basic and very general, directly transferring the real case of

the convergence with rates of positive linear operators to the unit, to the fuzzy one.

The same real assumptions are kept here in the fuzzy setting, and they are the only

assumptions we make along with the very natural and general realization condition

(1). Condition (1) is fulfilled by almost all example — fuzzy positive operators, that

is, by most fuzzy summation and fuzzy integration operators. At each step of our

work we provide an example to justify our method. To the best of our knowledge our

theorems are the first general fuzzy Korovkin type results.

1. Background

We start with
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Definition 1 (see [8]). Let µ : R → [0, 1] with the following properties:

(i) is normal, i.e., ∃x0 ∈ R; µ(x0) = 1.

(ii) µ(λx + (1 − λ)y) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1] (µ is called a

convex fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e., ∀x0 ∈ R and ∀ε > 0, ∃ neighborhood

V (x0): µ(x) ≤ µ(x0) + ε, ∀x ∈ V (x0).

(iv) The set supp(µ) is compact in R (where supp(µ) := {x ∈ R; µ(x) > 0}).

We call µ a fuzzy real number. Denote the set of all µ with RF .

E.g., X{x0} ∈ RF , for any x0 ∈ R, where X{x0} is the characteristic function

at x0.

For 0 < r ≤ 1 and µ ∈ RF define [µ]r := {x ∈ R: µ(x) ≥ r} and

[µ]0 := {x ∈ R : µ(x) > 0}.

Then it is well known [3] that for each r ∈ [0, 1], [µ]r is a closed and bounded interval

of R. For u, v ∈ RF and λ ∈ R, we define uniquely the sum u ⊕ v and the product

λ� u by

[u⊕ v]r = [u]r + [v]r, [λ� u]r = λ[u]r, ∀r ∈ [0, 1],

where [u]r +[v]r means the usual addition of two intervals (as subsets of R) and λ[u]r

means the usual product between a scalar and a subset of R (see, e.g., [4]). Notice

1 � u = u and it holds u ⊕ v = v ⊕ u, λ � u = u � λ. If 0 ≤ r1 ≤ r2 ≤ 1 then

[u]r2 ⊆ [u]r1 . Actually [u]r = [u(r)
− , u

(r)
+ ], where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀r ∈ [0, 1].

We denote u - v iff u
(r)
− ≤ v

(r)
− and u

(r)
+ ≤ v

(r)
+ , all r ∈ [0, 1]. Define

D : RF × RF → R+

by

D(u, v) := sup
r∈[0,1]

max{|u(r)
− − v

(r)
− |, |u(r)

+ − v
(r)
+ |},
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where [v]r = [v(r)
− , v

(r)
+ ]; u, v ∈ RF . We have that D is a metric on RF . Then (RF , D)

is a complete metric space, see [7], with the properties

D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,

D(k � u, k � v) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R,

D(u⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ RF .

Let f, g : [a, b] → RF , [a, b] ⊆ R, be fuzzy real number valued functions. The distance

between f , g is defined by

D∗(f, g) := sup
x∈[a,b]

D(f(x), g(x)).

Here
∑∗ stands for the fuzzy summation.

We use the following

Definition 2. Let f : [a, b] → RF be a fuzzy real number valued function. We define

the (first) fuzzy modulus of continuity of f by

ω
(F)
1 (f, δ) := sup

x,y∈[a,b]
|x−y|≤δ

D(f(x), f(y)),

any 0 < δ ≤ b− a.

Definition 3. Let f : [a, b] ⊆ R → RF . We say that f is fuzzy continuous at x0 ∈ [a, b]

iff whenever xn → x0, then D(f(xn), f(x0)) → 0, as n →∞, n ∈ N. We call f fuzzy

continuous iff it is fuzzy continuous ∀x ∈ [a, b] and we denote the space of fuzzy

continuous functions by CF ([a, b]).

The space CF ([a, b]) is only a cone and not a vector space, however any finite

linear combination of its elements with scalars in R belongs there.

Denote [f ]r = [f (r)
− , f

(r)
+ ] and we mean

[f(x)]r =
[
f

(r)
− (x), f (r)

+ (x)
]
, ∀x ∈ [a, b], all r ∈ [0, 1].

Let f, g ∈ CF ([a, b]) we say that f is fuzzy larger than g pointwise and we denote

it by f % g iff f(x) % g(x) iff f
(r)
− (x) ≥ g

(r)
− (x) and f

(r)
+ (x) ≥ g

(r)
+ (x), ∀x ∈ [a, b],

∀r ∈ [0, 1], iff f
(r)
− ≥ g

(r)
− , f

(r)
+ ≥ g

(r)
+ , ∀r ∈ [0, 1].
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Let L be a map from CF ([a, b]) into itself, we call it a fuzzy linear operator

iff

L
(
c1 � f1 ⊕ c2 � f2

)
= c1 � L(f1)⊕ c2 � L(f2),

for any c1, c2 ∈ R, f1, f2 ∈ CF ([a, b]). We say that L is a fuzzy positive linear operator

iff for f, g ∈ CF ([a, b]) with f % g we get L(f) % L(g) iff (L(f))(r)− ≥ (L(g))(r)− and

(L(f))(r)+ ≥ (L(g))(r)+ on [a, b] for all r ∈ [0, 1].

Example 1. Let f ∈ CF ([0, 1]), we define the fuzzy Bernstein operator

(
B(F)

n (f)
)
(x) =

n∑∗

k=0

(
n

k

)
xk(1− x)n−k � f

(
k

n

)
, ∀x ∈ [0, 1], n ∈ N.

This is a fuzzy positive linear operator.

We mention the very interesting with rates approximation motivating this

work.

Theorem 1 (see p. 642, [2], S. Gal). If f ∈ CF ([0, 1]), then

D∗(B(F)
n (f), f

)
≤ 3

2
ω

(F)
1

(
f,

1√
n

)
, ∀n ∈ N

i.e.

lim
n→∞

D∗(B(F)
n (f), f

)
= 0,

that is B
(F)
n f → f , n →∞ in fuzzy uniform convergence.

The last fact comes by the property that ω
(F)
1 (f, δ) → 0 as δ → 0, whenever

f ∈ CF ([a, b]).

We need to use

Theorem 2 (Shisha and Mond (1968), [6]). Let [a, b] ⊆ R. Let (L̃n)n∈N be a sequence

of positive linear operators from C([a, b]) into itself. For n = 1, 2, . . ., suppose L̃n(1)

is bounded. Let f ∈ C([a, b]). Then for n = 1, 2, . . ., we have

‖L̃nf − f‖∞ ≤ ‖f‖∞‖L̃n1− 1‖∞ + ‖L̃n(1) + 1‖∞ω1(f, µn),

where ω1 is the standard real modulus of continuity and

µn :=
∥∥(L̃n((t− x)2))(x)

∥∥1/2

∞ ,
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and ‖ · ‖∞ stands for the sup-norm over [a, b]. In particular, if Ln(1) = 1 then

‖L̃nf − f‖∞ ≤ 2ω1(f, µn).

Note. One can easily see ([6]), for n = 1, 2, . . .,

µ2
n ≤

∥∥(L̃n(t2))(x)− x2
∥∥
∞ + 2c

∥∥(L̃n(t))(x)− x
∥∥
∞ + c2

∥∥(L̃n(1))(x)− 1
∥∥
∞,

where c := max(|a|, |b|).

Assuming that L̃n(1) u−→ 1, L̃n(id) u−→ id, L̃n(id2) u−→ id2 (id is the identity

map), n →∞, uniformly, then from Theorem 2’s main inequality we get L̃n(f) u−→ f ,

∀f ∈ C([a, b]), that is the famous Korovkin theorem (see [5]) in the real case.

We finally need

Lemma 1. Let f ∈ CF ([a, b]), [a, b] ⊆ R. Then it holds

ω
(F)
1 (f, δ) = sup

r∈[0,1]

max
{
ω1(f

(r)
− , δ), ω1(f

(r)
+ , δ)

}
,

for any 0 < δ ≤ b− a.

Proof. Let x, y ∈ [a, b] : |x− y| ≤ δ, 0 < δ ≤ b− a. Then we have

D(f(x), f(y)) = sup
r∈[0,1]

max
{
|(f(x))(r)− − (f(y))(r)− |, |(f(x))(r)+ − (f(y))(r)+ |

}
≤ sup

r∈[0,1]

max
{
ω1(f

(r)
− , δ), ω1(f

(r)
+ , δ)

}
.

Thus

ω
(F)
1 (f, δ) ≤ sup

r∈[0,1]

max
{
ω1(f

(r)
− , δ), ω1(f

(r)
+ , δ)

}
.

For any r ∈ [0, 1] and any x, y ∈ [a, b] : |x− y| ≤ δ we see that

ω
(F)
1 (f, δ) ≥ D(f(x), f(y)) ≥

∣∣(f(x))(r)− − (f(y))(r)−
∣∣, ∣∣(f(x))(r)+ − (f(y))(r)+

∣∣.
Therefore

ω1(f
(r)
± , δ) ≤ ω

(F)
1 (f, δ), ∀r ∈ [0, 1].

Hence

sup
r∈[0,1]

max
{
ω1(f

(r)
− , δ), ω1(f

(r)
+ , δ)

}
≤ ω

(F)
1 (f, δ),

proving the claim. �
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Note. For f ∈ CF ([a, b]) we get that f is fuzzy bounded and ω
(F)
1 (f, δ) is finite for

all 0 < δ ≤ b − a. Also f
(r)
± are continuous on [a, b] and ω1(f

(r)
± , δ) are finite too, all

r ∈ [0, 1].

2. Main Results

We present the fuzzy analog of Shisha–Mond inequality of Theorem 2.

Theorem 3. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from

CF ([a, b]) into itself, [a, b] ⊆ R. We assume that there exists a corresponding se-

quence {L̃n}n∈N of positive linear operators from C([a, b]) into itself with the property

(
Ln(f)

)(r)

± = L̃n(f (r)
± ), (1)

respectively, ∀r ∈ [0, 1], ∀f ∈ CF ([a, b]). We assume that {L̃n(1)}n∈N is bounded.

Then for n ∈ N we have

D∗(Lnf, f) ≤ ‖L̃n1− 1‖∞D∗(f, õ) + ‖L̃n(1) + 1‖∞ω
(F)
1 (f, µn), (2)

where

µn :=
(∥∥(L̃n((t− x)2))(x)

∥∥
∞

)1/2
, (3)

∀f ∈ CF ([a, b]), õ := X{0} the neutral element for ⊕. If L̃n1 = 1, n ∈ N, then

D∗(Lnf, f) ≤ 2ω
(F)
1 (f, µn). (4)

Note. The fuzzy Bernstein operators B
(F)
n and the real corresponding ones Bn acting

on CF ([0, 1]) and C([0, 1]), respectively, fulfill assumption (1).

We present now the Fuzzy Korovkin Theorem.

Theorem 4. Let {Ln}n∈N be a sequence of fuzzy positive linear operators from

CF ([a, b]) into itself, [a, b] ⊆ R. We assume that there exists a corresponding se-

quence {L̃n}n∈N of positive linear operators from C([a, b]) into itself with the property

(
Ln(f)

)(r)

± = L̃n(f (r)
± ), (1)
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respectively, ∀r ∈ [0, 1], ∀f ∈ CF ([a, b]). Furthermore assume that

L̃n(1) u−→ 1, L̃n(id) u−→ id, L̃n(id2) u−→ id2,

as n →∞, uniformly. Then

D∗(Lnf, f) −→ 0, as n →∞,

for any f ∈ CF ([a, b]), i.e. Lnf
D∗

−→ f , that is Ln → I unit operator in the fuzzy

sense, as n →∞.

Proof. Use of (2), property of (3), etc. �

Example for Theorem 4 the fuzzy Bernstein operators B
(F)
n .

Proof of Theorem 3. We would like to estimate

D∗(Lnf, f) = sup
x∈[a,b]

D
(
(Lnf)(x), f(x)

)
= sup

x∈[a,b]

sup
r∈[0,1]

max
{
|(Lnf)(r)− (x)− (f)(r)− (x)|, |(Lnf))(r)+ (x)− (f)(r)+ (x)|

}
= sup

x∈[a,b]

sup
r∈[0,1]

max
{
|L̃n(f (r)

− (x)− (f)(r)− (x)|, |L̃n(f (r)
+ )(x)− (f)(r)+ (x)|

}
= sup

r∈[0,1]

max
{
‖L̃nf

(r)
− − f

(r)
− ‖∞, ‖L̃nf

(r)
+ − f

(r)
+ ‖∞

}
(by Theorem 2)

≤ sup
r∈[0,1]

max
{(
‖f (r)
− ‖∞‖L̃n1− 1‖∞ + ‖L̃n(1) + 1‖∞ω1(f

(r)
− , µn)

)
,

(
‖f (r)

+ ‖∞‖L̃n1− 1‖∞ + ‖L̃n(1) + 1‖∞ω1(f
(r)
+ , µn)

)}
≤ ‖L̃n1− 1‖∞ sup

r∈[0,1]

max
(
‖f (r)
− ‖∞, ‖f (r)

+ ‖∞
)

+ ‖L̃n(1) + 1‖∞ sup
r∈[0,1]

max
{
ω1(f

(r)
− , µn), ω1(f

(r)
+ , µn)

}
(by Lemma 1)

= ‖L̃n1− 1‖∞D∗(f, õ) + ‖L̃n(1) + 1‖∞ω
(F)
1 (f, µn),

proving (2). �
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Application 1. Let f ∈ CF ([0, 1]) then by applying (2) we obtain

D∗(B(F)
n f, f) ≤ 2ω

(F)
1

(
f,

1
2
√

n

)
, ∀n ∈ N. (5)
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