DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA WEAKLY PICARD OPERATORS

ION MARIAN OLARU

$$
\begin{aligned}
& \text { Abstract. In this paper we study data dependence for the following inte- } \\
& \text { gral equation: } \\
& \qquad \begin{array}{c}
u(x)=h(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K\left(x, s, u\left(\theta_{1} s_{1}, \cdots, \theta_{m} s_{m}\right)\right) d s \\
x \in \prod_{i=1}^{m}\left[0, b_{i}\right], \theta_{i} \in(0,1),(\forall) i=\overline{1, m}
\end{array}
\end{aligned}
$$

by using c-WPOs.

1. Introduction

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations:
$F_{A}:=\{x \in X \mid A(x)=x\}$ the fixed points set of A.
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$ the family of the nonempty invariant subsets of A.
$A^{n+1}=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in N$.

Definition 1.1. [1] An operator A is weakly Picard operator (WPO) if the sequence

$$
\left(A^{n}(x)\right)_{n \in N}
$$

converges, for all $x \in X$ and the limit (which depend on x) is a fixed point of A.
Definition 1.2. [1] If the operator A is $W P O$ and $F_{A}=\left\{x^{*}\right\}$ then by definition A is Picard operator.

ION MARIAN OLARU

Definition 1.3. [1] If A is $W P O$, then we consider the operator

$$
A^{\infty}: X \rightarrow X, A^{\infty}(x)=\lim _{n \rightarrow \infty} A^{n}(x)
$$

We remark that $A^{\infty}(X)=F_{A}$.
Definition 1.4. [1] Let be A an $W P O$ and $c>0$. The operator A is $c-W P O$ if

$$
d\left(x, A^{\infty}(x)\right) \leq c \cdot d(x, A(x))
$$

We have the following characterization of the WPOs:
Theorem 1.1. [1] Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. The operator A is WPO (c-WPO) if and only if there exists a partition of X,

$$
X=\bigcup_{\lambda \in \Lambda} X_{\lambda}
$$

such that
(a) $X_{\lambda} \in I(A)$
(b) $A \mid X_{\lambda}: X_{\lambda} \rightarrow X_{\lambda}$ is a Picard (c-Picard) operator, for all $\lambda \in \Lambda$.

For the class of c-WPOs we have the following data dependence result:
Theorem 1.2. [1] Let (X, d) be a metric space and $A_{i}: X \rightarrow X, i=\overline{1,2}$ operators. We suppose that:
(i) the operator A_{i} is $c_{i}-W P O, i=\overline{1,2}$.
(ii) there exists $\eta>0$ such that

$$
d\left(A_{1}(x), A_{2}(x)\right) \leq \eta,(\forall) x \in X .
$$

Then

$$
H\left(F_{A_{1}}, F_{A_{2}}\right) \leq \eta \max \left\{c_{1}, c_{2}\right\} .
$$

Here stands for Hausdorff-Pompeiu functional.
We have:

DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA WEAKLY PICARD OPERATORS
Lemma 1.1. [1], [3] Let (X, d, \leq) be an ordered metric space and $A: X \rightarrow X$ an operator such that:
a) A is monotone increasing.
b) A is WPO.

Then the operator A^{∞} is monotone increasing.
Lemma 1.2. [1], [3] Let (X, d, \leq) be an ordered metric space and $A, B, C: X \rightarrow X$ such that:
(i) $A \leq B \leq C$.
(ii) the operators A, B, C are WPOs.
(iii) the operator B is monotone increasing.

Then

$$
x \leq y \leq z \Longrightarrow A^{\infty}(x) \leq B^{\infty}(y) \leq C^{\infty}(z) .
$$

2. Main results

Data dependence for functional integral equations was studied [1], [2], [3]. In what follows we consider the integral equation

$$
\begin{equation*}
u(x)=h(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K\left(x, s, u\left(\theta_{1} s, \cdots, \theta_{m} s\right)\right) d s \tag{1}
\end{equation*}
$$

where

$$
x \in \prod_{i=1}^{m}\left[0, b_{i}\right], \theta_{i} \in(0,1),(\forall) i=\overline{1, m} .
$$

We denote $D=\prod_{i=1}^{m}\left[0, b_{i}\right]$.
Theorem 2.1. We suppose that:
(i) $h \in C(D \times R)$ and $K \in C(D \times D \times R)$.
(ii) $h(0, \alpha)=\alpha,(\forall) \alpha \in R$.
(iii) there exists $L_{K}>0$ such that

$$
\left|K\left(x, s, u_{1}\right)-K\left(x, s, u_{2}\right)\right| \leq L_{K}\left|u_{1}-u_{2}\right|,
$$

for all $x, s \in D$ and $u_{1}, u_{2} \in R$.
In these conditions the equation (1) has in $C(D)$ an infinity of solutions.
Moreover if
(iv) $h(x, \cdot)$ and $K(x, s, \cdot)$ are monotone increasing for all $x, s \in D$
then if u and v are solutions of the equation (1) such that $u(0) \leq v(0)$ we have $u \leq v$.
Proof. Consider the operator

$$
\begin{gathered}
A:\left(C(D),\|\cdot\|_{B}\right) \rightarrow\left(C(D),\|\cdot\|_{B}\right) \\
A(u)(x):=h(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K\left(x, s, u\left(\theta_{1} s, \cdots, \theta_{m} s\right)\right) d s
\end{gathered}
$$

Here $\|u\|_{B}=\max _{x \in D}|u(x)| e^{-\sum_{i=1}^{m} x_{i}}$.
Let $\lambda \in R$ and $X_{\lambda}=\{u \in C(D) \mid u(0)=\lambda\}$. Then

$$
C(D)=\bigcup_{\lambda \in R} X_{\lambda}
$$

is a partition of $C(D)$ and $X_{\lambda} \in I(A)$, for all $\lambda \in R$.
For all $u, v \in X_{\lambda}$, we have have

$$
|A(u)(x)-A(v)(x)| \leq \frac{L_{K}}{\tau^{m} \theta_{1} \cdots \theta_{m}} e^{\tau \sum_{i=1}^{m} x_{i}}\|u-v\|_{B}
$$

So the restriction of the operator A on X_{λ} is a c-Picard operator with $c=(1-$ $\left.\frac{L_{K}}{\tau^{m} \theta_{1} \cdots \theta_{m}}\right)^{-1}$, for a suitable choices of τ such that $\frac{L_{K}}{\tau^{m} \theta_{1} \cdots \theta_{m}}<1$. If $u \in R$ then we denote by \widetilde{u} the constant operator

$$
\widetilde{u}: C(D) \rightarrow C(D)
$$

defined by

$$
\widetilde{u}(t)=u .
$$

If $u, v \in C(D)$ are the solutions of (1) with $u(0) \leq v(0)$ then $\widetilde{u(0)} \in$ $X_{u(0)}, \widetilde{v(0)} \in X_{v(0)}$.

By lema 1.1 we have that

$$
\widetilde{u(0)} \leq \widetilde{v(0)} \Longrightarrow A^{\infty}(\widetilde{u(0)}) \leq A^{\infty}(\widetilde{v(0)}) .
$$

But

$$
u=A^{\infty}(\widetilde{u(0)}), v=A^{\infty}(\widetilde{v(0)}) .
$$

So, $u \leq v$.
Theorem 2.2. Let $h_{i} \in C(D \times R)$ and $K_{i} \in C(D \times D \times R), i=\overline{1,3}$ satisfy the conditions (i), (ii), (iii) from the Theorem 2.1. We suppose that
(a) $h_{2}(x, \cdot)$ and $K_{2}(x, s, \cdot)$ are monotone increasing, for all $x, s \in D$.
(b) $h_{1} \leq h_{2} \leq h_{3}$ and $K_{1} \leq K_{2} \leq K_{3}$.

Let u_{i} be a solution of the equation (1) corresponding to h_{i} and K_{i}.
Then

$$
u_{1}(0) \leq u_{2}(0) \leq u_{3}(0) \quad \text { imply } \quad u_{1} \leq u_{2} \leq u_{3} .
$$

Proof. The proof follows from Lemma 1.2.
For studding of data dependence we consider the following equations:

$$
\begin{align*}
& u(x)=h_{1}(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K_{1}\left(x, s, u\left(\theta_{1} s_{1}, \cdots, \theta_{m} s_{m}\right)\right) d s \tag{2}\\
& u(x)=h_{2}(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K_{2}\left(x, s, u\left(\theta_{1} s_{1}, \cdots, \theta_{m} s_{m}\right)\right) d s \tag{3}
\end{align*}
$$

Theorem 2.3. We consider (2), (3) under the following conditions:
(i) $h_{i} \in C(D \times R)$ and $K_{i} \in C(D \times D \times R), i=\overline{1,2}$.
(ii) $h_{i}(0, \alpha)=\alpha,(\forall) \alpha \in R, i=\overline{1,2}$.
(iii) there exists $L_{K_{i}}>0, i=\overline{1,2}$ such that

$$
\left|K_{i}\left(x, s, u_{1}\right)-K_{i}\left(x, s, u_{2}\right)\right| \leq L_{K_{i}}\left|u_{1}-u_{2}\right|, \quad i=\overline{1,2}
$$

for all $x, s \in D$ and $u_{1}, u_{2} \in R$.
(iv) $(\exists) \eta_{1}, \eta_{2}>0$ such that

$$
\begin{gathered}
\left|h_{1}(x, u)-h_{2}(x, u)\right| \leq \eta_{1} \\
\left|K_{1}(x, s, u)-K_{2}(x, s, u)\right| \leq \eta_{2}
\end{gathered}
$$

$(\forall) x, s \in D, u \in R$.
If S_{1}, S_{2} are the solutions sets of the equations (2), (3), then we have:

$$
H\left(S_{1}, S_{2}\right) \leq\left(\eta_{1}+\eta_{2} \prod_{i=1}^{m} b_{i}\right) \max _{i=1,2}\left\{\frac{1}{1-\frac{L_{K_{i}}}{\tau^{m} \theta_{1} \cdots \theta_{m}}}\right\}
$$

for $\tau>\max _{i=1,2}\left\{\sqrt[m]{\frac{L_{K_{i}}}{\theta_{1} \cdots \theta_{m}}}\right\}$.
Proof. We consider the following operators:

$$
\begin{gathered}
\left.A_{i}:\left(C(D),\|\cdot\|_{B}\right) \rightarrow\left(C(D),\|\cdot\|_{B}\right)\right), \\
A_{i} u(x):=h_{i}(x, u(0))+\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}} K_{i}\left(x, s, u\left(\theta_{1} s, \cdots, \theta_{m} s\right)\right) d s, i=\overline{1,2}
\end{gathered}
$$

From:

$$
\begin{gathered}
\left|A_{1}(u)(x)-A_{2}(u)(x)\right| \leq\left|h_{1}(x, u(0))-h_{2}(x, u(0))\right|+ \\
\int_{0}^{x_{1}} \cdots \int_{0}^{x_{m}}\left\|K_{1}\left(x, s, u\left(\theta_{1} s \cdot \theta_{m} s\right)\right)-K_{2}\left(x, s, u\left(\theta_{1} s, \cdots \theta_{m} s\right)\right)\right\| d s \leq \\
\leq \eta_{1}+\eta_{2} \prod_{i=1}^{m} b_{i}
\end{gathered}
$$

we have that $\|A(u)-A(v)\|_{B} \leq \eta_{1}+\eta_{2} \prod_{i=1}^{m} b_{i}$
Like in the proof of Theorem 1.2 we obtain that the operators $A_{i}, i=\overline{1,2}$ are c_{i}-WPOs with $c_{i}=\left(1-\frac{L_{K_{i}}}{\tau^{m} \theta_{1} \cdots \theta_{m}}\right)^{-1}, \tau>\max _{i=\overline{1,2}}\left\{\sqrt[m]{\frac{L_{K_{i}}}{\theta_{1} \cdots \theta_{m}}}\right\}$.

From this and by Theorem 1.2. we have conclusion.

DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA WEAKLY PICARD OPERATORS

References

[1] I. A. Rus, Weakly Picard operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, vol. 2, 2001, 41-57.
[2] I.A.Rus, Generalized contractions, Seminar on Fixed Point Theory, No. 3, 1983, 1-130.
[3] I. A. Rus, Functional-Differential equation of mixed type, via weakly Picard operator, Seminar on Fixed Point Theory Cluj-Napoca, vol. 3, 2002, 335-345.

Department of Mathematics,
University "Lucian Blaga" ,
Sibiu, Romania
E-mail address: olaruim@yahoo.com

