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DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA
WEAKLY PICARD OPERATORS

ION MARIAN OLARU

Abstract. In this paper we study data dependence for the following inte-

gral equation:

u(x) = h(x, u(0)) +

x1∫
0

· · ·
xm∫
0

K(x, s, u(θ1s1, · · · , θmsm))ds,

x ∈
m∏

i=1

[0, bi], θi ∈ (0, 1), (∀)i = 1, m

by using c-WPOs.

1. Introduction

Let (X, d) be a metric space and A : X → X an operator. We shall use the

following notations:

FA := {x ∈ X | A(x) = x} the fixed points set of A.

I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y } the family of the nonempty invariant subsets of A.

An+1 = A ◦An, A0 = 1X , A1 = A,n ∈ N.

Definition 1.1. [1] An operator A is weakly Picard operator (WPO) if the sequence

(An(x))n∈N

converges, for all x ∈ X and the limit (which depend on x ) is a fixed point of A.

Definition 1.2. [1] If the operator A is WPO and FA = {x∗} then by definition A

is Picard operator.
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Definition 1.3. [1] If A is WPO, then we consider the operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x).

We remark that A∞(X) = FA.

Definition 1.4. [1] Let be A an WPO and c > 0. The operator A is c-WPO if

d(x,A∞(x)) ≤ c · d(x,A(x)).

We have the following characterization of the WPOs:

Theorem 1.1. [1]Let (X, d) be a metric space and A : X → X an operator. The

operator A is WPO (c-WPO) if and only if there exists a partition of X,

X =
⋃
λ∈Λ

Xλ

such that

(a) Xλ ∈ I(A)

(b) A | Xλ : Xλ → Xλ is a Picard (c-Picard) operator, for all λ ∈ Λ.

For the class of c-WPOs we have the following data dependence result:

Theorem 1.2. [1] Let (X, d) be a metric space and Ai : X → X, i = 1, 2 operators.

We suppose that:

(i) the operator Ai is ci −WPO, i = 1, 2.

(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, (∀)x ∈ X.

Then

H(FA1 , FA2) ≤ η max{c1, c2}.

Here stands for Hausdorff-Pompeiu functional.

We have:
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Lemma 1.1. [1], [3] Let (X, d,≤) be an ordered metric space and A : X → X an

operator such that:

a) A is monotone increasing.

b) A is WPO.

Then the operator A∞ is monotone increasing.

Lemma 1.2. [1], [3] Let (X, d,≤) be an ordered metric space and A,B,C : X → X

such that :

(i) A ≤ B ≤ C.

(ii) the operators A,B,C are WPOs.

(iii) the operator B is monotone increasing.

Then

x ≤ y ≤ z =⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

2. Main results

Data dependence for functional integral equations was studied [1], [2], [3]. In

what follows we consider the integral equation

u(x) = h(x, u(0)) +

x1∫
0

· · ·
xm∫
0

K(x, s, u(θ1s, · · · , θms))ds, (1)

where

x ∈
m∏

i=1

[0, bi], θi ∈ (0, 1), (∀)i = 1,m.

We denote D =
m∏

i=1

[0, bi] .

Theorem 2.1. We suppose that:

(i) h ∈ C(D ×R) and K ∈ C(D ×D ×R).

(ii) h(0, α) = α, (∀)α ∈ R.

(iii) there exists LK > 0 such that

|K(x, s, u1)−K(x, s, u2)| ≤ LK |u1 − u2|,
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for all x, s ∈ D and u1, u2 ∈ R.

In these conditions the equation (1) has in C(D) an infinity of solutions.

Moreover if

(iv) h(x, ·) and K(x, s, ·) are monotone increasing for all x, s ∈ D

then if u and v are solutions of the equation (1) such that u(0) ≤ v(0) we have u ≤ v.

Proof. Consider the operator

A : (C(D), ‖·‖B) → (C(D), ‖·‖B),

A(u)(x) := h(x, u(0)) +

x1∫
0

· · ·
xm∫
0

K(x, s, u(θ1s, · · · , θms))ds.

Here ‖u‖B = max
x∈D

|u(x)|e
−

m∑
i=1

xi

.

Let λ ∈ R and Xλ = {u ∈ C(D) | u(0) = λ}. Then

C(D) =
⋃

λ∈R

Xλ.

is a partition of C(D) and Xλ ∈ I(A), for all λ ∈ R.

For all u, v ∈ Xλ, we have have

|A(u)(x)−A(v)(x)| ≤ LK

τmθ1 · · · θm
e
τ

m∑
i=1

xi

‖u− v‖B .

So the restriction of the operator A on Xλ is a c-Picard operator with c = (1 −
LK

τmθ1 · · · θm
)−1, for a suitable choices of τ such that

LK

τmθ1 · · · θm
< 1.

If u ∈ R then we denote by ũ the constant operator

ũ : C(D) → C(D)

defined by

ũ(t) = u.

If u, v ∈ C(D) are the solutions of ( 1) with u(0) ≤ v(0) then ũ(0) ∈

Xu(0), ṽ(0) ∈ Xv(0).
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By lema 1.1 we have that

ũ(0) ≤ ṽ(0) =⇒ A∞(ũ(0)) ≤ A∞(ṽ(0)).

But

u = A∞(ũ(0)), v = A∞(ṽ(0)).

So, u ≤ v.

Theorem 2.2. Let hi ∈ C(D × R) and Ki ∈ C(D × D × R), i = 1, 3 satisfy the

conditions (i), (ii), (iii) from the Theorem 2.1. We suppose that

(a) h2(x, ·) and K2(x, s, ·) are monotone increasing, for all x, s ∈ D.

(b) h1 ≤ h2 ≤ h3 and K1 ≤ K2 ≤ K3.

Let ui be a solution of the equation (1) corresponding to hi and Ki.

Then

u1(0) ≤ u2(0) ≤ u3(0) imply u1 ≤ u2 ≤ u3.

Proof. The proof follows from Lemma 1.2.

For studding of data dependence we consider the following equations:

u(x) = h1(x, u(0)) +

x1∫
0

· · ·
xm∫
0

K1(x, s, u(θ1s1, · · · , θmsm))ds (2)

u(x) = h2(x, u(0)) +

x1∫
0

· · ·
xm∫
0

K2(x, s, u(θ1s1, · · · , θmsm))ds (3)

Theorem 2.3. We consider (2), (3) under the following conditions:

(i) hi ∈ C(D ×R) and Ki ∈ C(D ×D ×R), i = 1, 2.

(ii) hi(0, α) = α, (∀)α ∈ R , i = 1, 2.

(iii) there exists LKi > 0 , i = 1, 2 such that

|Ki(x, s, u1)−Ki(x, s, u2)| ≤ LKi |u1 − u2|, i = 1, 2
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for all x, s ∈ D and u1, u2 ∈ R.

(iv) (∃)η1, η2 > 0 such that

|h1(x, u)− h2(x, u)| ≤ η1,

|K1(x, s, u)−K2(x, s, u)| ≤ η2,

(∀)x, s ∈ D,u ∈ R.

If S1, S2 are the solutions sets of the equations (2), (3), then we have:

H(S1, S2) ≤ (η1 + η2

m∏
i=1

bi) max
i=1,2

{
1

1− LKi

τmθ1 · · · θm

}
,

for τ > max
i=1,2

{
m

√
LKi

θ1 · · · θm

}
.

Proof. We consider the following operators:

Ai : (C(D), ‖ · ‖B) → (C(D), ‖ · ‖B)),

Aiu(x) := hi(x, u(0)) +

x1∫
0

· · ·
xm∫
0

Ki(x, s, u(θ1s, · · · , θms))ds, i = 1, 2

From:

|A1(u)(x)−A2(u)(x)| ≤ |h1(x, u(0))− h2(x, u(0))|+
x1∫
0

· · ·
xm∫
0

‖K1(x, s, u(θ1s · θms))−K2(x, s, u(θ1s, · · · θms))‖ds ≤

≤ η1 + η2

m∏
i=1

bi.

we have that ‖A(u)−A(v)‖B ≤ η1 + η2

m∏
i=1

bi

Like in the proof of Theorem 1.2 we obtain that the operators Ai, i = 1, 2 are

ci-WPOs with ci =
(

1− LKi

τmθ1 · · · θm

)−1

, τ > max
i=1,2

{
m

√
LKi

θ1 · · · θm

}
.

From this and by Theorem 1.2. we have conclusion.
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