CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES

A. CHIŞ

Abstract

The continuation method is used to investigate the existence of solutions to integral equations in locally convex spaces.

1. Introduction

In this article we study the problem of the existence of solutions for the Fredholm integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{1} K(t, s, x(s)) d s, \quad t \in[0,1] . \tag{1.1}
\end{equation*}
$$

and the Volterra integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{t} K(t, s, x(s)) d s, \quad t \in[0,1] \tag{1.2}
\end{equation*}
$$

where the functions x, K have values in a locally convex space.
In paper [2] the above equations are studied using fixed point theorems for self-maps. Our approach is based on the continuation method.

The results presented in this paper extend and complement those in [2]-[5].
We finish this section by stating the main result from [1] which will be used in the next section.

[^0]A. CHIŞ

For a map $H: D \times[0,1] \rightarrow X$, where $D \subset X$, we will use the following notations:

$$
\begin{align*}
& \Sigma=\{(x, \lambda) \in D \times[0,1]: H(x, \lambda)=x\} \\
& S=\{x \in D: H(x, \lambda)=x \text { for some } \lambda \in[0,1]\} \tag{1.3}\\
& \Lambda=\{\lambda \in[0,1]: H(x, \lambda)=x \text { for some } x \in D\}
\end{align*}
$$

Theorem 1.1. Let X be a set endowed with the separating gauge structures $\mathcal{P}=$ $\left\{p_{\alpha}\right\}_{\alpha \in A}$ and $\mathcal{Q}^{\lambda}=\left\{q_{\beta}^{\lambda}\right\}_{\beta \in B}$ for $\lambda \in[0,1]$. Let $D \subset X$ be \mathcal{P}-sequentially closed, $H: D \times[0,1] \rightarrow X$ a map, and assume that the following conditions are satisfies:
(i) for each $\lambda \in[0,1]$, there exists a function $\varphi_{\lambda}: B \rightarrow B$ and $a^{\lambda} \in[0,1)^{B}$, $a^{\lambda}=\left\{a_{\beta}^{\lambda}\right\}_{\beta \in B}$ such that

$$
\begin{gather*}
q_{\beta}^{\lambda}(H(x, \lambda), H(y, \lambda)) \leq a_{\beta}^{\lambda} q_{\varphi_{\lambda}(\beta)}^{\lambda}(x, y), \tag{1.4}\\
\sum_{n=1}^{\infty} a_{\beta}^{\lambda} a_{\varphi_{\lambda}(\beta)}^{\lambda} a_{\varphi_{\lambda}^{2}(\beta)}^{\lambda} \ldots a_{\varphi_{\lambda}^{n-1}(\beta)}^{\lambda} q_{\varphi_{\lambda}^{n}(\beta)}^{\lambda}(x, y)<\infty \tag{1.5}
\end{gather*}
$$

for every $\beta \in B$ and $x, y \in D$;
(ii) there exists $\rho>0$ such that for each $(x, \lambda) \in \Sigma$, there is a $\beta \in B$ with

$$
\begin{equation*}
\inf \left\{q_{\beta}^{\lambda}(x, y): y \in X \backslash D\right\}>\rho \tag{1.6}
\end{equation*}
$$

(iii) for each $\lambda \in[0,1]$, there is a function $\psi: A \rightarrow B$ and $c \in(0, \infty)^{A}$, $c=\left\{c_{\alpha}\right\}_{\alpha \in A}$ such that

$$
\begin{equation*}
p_{\alpha}(x, y) \leq c_{\alpha} q_{\psi(\alpha)}^{\lambda}(x, y) \quad \text { for all } \alpha \in A \text { and } x, y \in X \tag{1.7}
\end{equation*}
$$

(iv) (X, \mathcal{P}) is a sequentially complete gauge space;
(v) if $\lambda \in[0,1], x_{0} \in D, x_{n}=H\left(x_{n-1}, \lambda\right)$ for $n=1,2, \ldots$, and $\mathcal{P}-\lim _{n \rightarrow \infty} x_{n}=$ x, then $H(x, \lambda)=x$;
(vi) for every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ with

$$
q_{\varphi_{\lambda}^{n}(\beta)}^{\lambda}(x, H(x, \lambda)) \leq\left(1-a_{\varphi_{\lambda}^{n}(\beta)}^{\lambda}\right) \varepsilon
$$

for $(x, \mu) \in \Sigma,|\lambda-\mu| \leq \delta$, all $\beta \in B$, and $n \in \mathbb{N}$.
In addition, assume that $H_{0}:=H(., 0)$ has a fixed point. Then, for each $\lambda \in[0,1]$, the map $H_{\lambda}:=H(., \lambda)$ has a unique fixed point.

Remark 1.2. Notice that, by condition (ii) we have: for each $(x, \lambda) \in \Sigma$, there is a $\beta \in B$ such that the set

$$
\begin{equation*}
B(x, \lambda, \beta)=\left\{y \in X: q_{\varphi_{\lambda}^{n}(\beta)}^{\lambda}(x, y) \leq \rho, \forall n \in \mathbb{N}\right\} \subset D \tag{1.8}
\end{equation*}
$$

The proof of Theorem 1.1, in [1], shows that the contraction condition (1.4) given on D, can be asked only on sets of the form (1.8), more exactely for $(x, \lambda) \in \Sigma$ and $y \in B(x, \lambda, \beta)$.

2. Existence Results

This section contains existence results for the equations (1.1) and (1.2).
Theorem 2.1. Let E be a locally convex space, Hausdorff separated, complete by sequences, with the topology defined by the saturated and sufficient set of semi-norms $\left\{|\cdot|_{\alpha}, \alpha \in A\right\}$ and let $\delta>0$ be a fixed number. Assume that the following conditions are satisfied:
(1) $K:[0,1]^{2} \times E \rightarrow E$ is continuous;
(2) there exists $r=\left\{r_{\alpha}\right\}_{\alpha \in A}$ such that, any solution x of the equation

$$
\begin{equation*}
x(t)=\lambda \int_{0}^{1} K(t, s, x(s)) d s, \quad t \in[0,1] \tag{2.9}
\end{equation*}
$$

for some $\lambda \in[0,1]$ satisfies $|x(t)|_{\alpha} \leq r_{\alpha}$, for all $t \in[0,1]$ and $\alpha \in A$;
(3) there exists $\left\{L_{\alpha}\right\}_{\alpha \in A} \in[0,1)^{A}$ such that

$$
\begin{equation*}
|K(t, s, x)-K(t, s, y)|_{\alpha} \leq L_{\alpha}|x-y|_{f(\alpha)} \tag{2.10}
\end{equation*}
$$

whenever $\alpha \in A$,for all $t, s \in[0,1]$ and $x, y \in E_{r}$ where $E_{r}=\{x \in E:$ there exists $\alpha \in A$ such that $\left.|x|_{\alpha} \leq r_{\alpha}+\delta\right\} ;$

$$
\begin{equation*}
\sum_{n=0}^{\infty} L_{\alpha} L_{f(\alpha) \ldots L_{f^{n}(\alpha)}<\infty} \tag{4}
\end{equation*}
$$

for every $\alpha \in A$;
(5) for every $\alpha \in A$ and for each continuous function $g:[0,1] \rightarrow E$ one has

$$
\sup \left\{|g(t)|_{f^{n}(\alpha)}: t \in[0,1], n=0,1,2, \ldots\right\}<\infty
$$

A. CHIŞ

$$
M_{\alpha}:=\sup _{\substack{t, s \in[0,1],|x|_{f(\alpha)} \leq r_{f(\alpha)} \\ \text { Then problem (1.1) has a solution. }}}^{\text {(6) there exists } C \text { with } 0<C \leq \frac{1-L_{f^{n}(\alpha)}}{M_{f^{n}(\alpha)}} \text { for all } \alpha \in A \text { and } n \in \mathbb{N} \text {, where }}
$$

Notice that $M_{\alpha}<\infty$. Indeed, from (2.10) we have

$$
\begin{aligned}
|K(t, s, x)|_{\alpha} & \leq|K(t, s, x)-K(t, s, 0)|_{\alpha}+|K(t, s, 0)|_{\alpha} \\
& \leq L_{\alpha} r_{f(\alpha)}+\max _{t, s \in[0,1]}|K(t, s, 0)|_{\alpha}<\infty
\end{aligned}
$$

for all $t, s \in[0,1]$ and $x \in E$ with $|x|_{f(\alpha)} \leq r_{f(\alpha)}$.

Proof. We shall apply Theorem 1.1. Let $X=C([0,1], E)$. For each $\alpha \in A$ we define the $\operatorname{map} d_{\alpha}: X \times X \rightarrow \mathbb{R}_{+}$, by

$$
d_{\alpha}(x, y)=\max _{t \in[0,1]}|x(t)-y(t)|_{\alpha}
$$

It is easy to show that d_{α} is a pseudo-metric on X and the family $\left\{d_{\alpha}\right\}_{\alpha \in A}$ defines on X a gauge structure, separated and complete by sequences.

Here $\mathcal{P}=\mathcal{Q}^{\lambda}=\left\{d_{\alpha}\right\}_{\alpha \in A}$ for every $\lambda \in[0,1]$. Let D be the closure in X of the set

$$
\left\{x \in X: d_{\alpha}(x, 0) \leq r_{\alpha}+\delta \text { for some } \alpha \in A\right\}
$$

We define $H: D \times[0,1] \rightarrow X$, by $H(x, \lambda)=\lambda A(x)$, where

$$
A(x)(t)=\int_{0}^{1} K(t, s, x(s)) d s
$$

In what follows we shall check conditions (i)-(vi) in Theorem 1.1. We shall start with condition (ii) by technical reason.

Condition (ii) becomes: there exists $\rho>0$ such that for each solution $(x, \lambda) \in$ $D \times[0,1]$, of $x=H(x, \lambda)$, there is an $\alpha \in A$ with

$$
\inf \left\{d_{\alpha}(x, y): y \in X \backslash D\right\}>\rho
$$

To prove this, let us note that if $y \in X \backslash D$, one has $d_{\alpha}(y, 0)>r_{\alpha}+\delta$ for every $\alpha \in A$. Consequently, for at least one $t \in[0,1]$,

$$
|x(t)-y(t)|_{\alpha} \geq|y(t)|_{\alpha}-|x(t)|_{\alpha}>r_{\alpha}+\delta-r_{\alpha}=\delta
$$

Then $d_{\alpha}(x, y)>\delta$. Hence (ii) holds for any $\rho \in(0, \delta)$.
Condition (i) becomes: for each $\alpha \in A$ there exists $f(\alpha) \in A$ and $L_{\alpha} \in[0,1)$ such that

$$
\begin{gather*}
d_{\alpha}(H(x, \lambda), H(y, \lambda)) \leq L_{\alpha} d_{f(\alpha)}(x, y) \tag{2.12}\\
\sum_{n=1}^{\infty} L_{\alpha} L_{f(\alpha)} \ldots L_{f^{n-1}(\alpha)} d_{f^{n}(\alpha)}(x, y)<\infty \tag{2.13}
\end{gather*}
$$

for all $x, y \in D$.
According to Remark 1.2, it suffices to have (2.12) on sets of the form (1.8). Let $(x, \lambda) \in D \times[0,1]$, such that $H(x, \lambda)=x$, and let $\beta \in A$. The set $B(x, \lambda, \beta):=$ $\left\{y \in X: d_{f^{n}(\beta)}(x, y) \leq \rho, \forall n \in \mathbb{N}\right\}$ is included in D. From the fact that $H(x, \lambda)=x$ it follows that $|x(t)|_{\alpha} \leq r_{\alpha}$, for every $t \in[0,1]$ and $\alpha \in A$; from $y \in B(x, \lambda, \beta)$ it follows that $|y(t)|_{\beta} \leq r_{\beta}+\delta$, for every $t \in[0,1]$.

Then for x with $H(x, \lambda)=x$ and $y \in B(x, \lambda, \beta)$ we have

$$
\begin{aligned}
|H(x, \lambda)(t)-H(y, \lambda)(t)|_{\alpha} & =\lambda\left|\int_{0}^{1}(K(t, s, x(s))-K(t, s, y(s))) d s\right|_{\alpha} \\
& \leq \lambda \int_{0}^{1}|K(t, s, x(s))-K(t, s, y(s))|_{\alpha} d s \\
& \leq \lambda \int_{0}^{1} L_{\alpha}|x(s)-y(s)|_{f(\alpha)} d s \\
& \leq \lambda L_{\alpha} \max _{t \in[0,1]}|x(s)-y(s)|_{f(\alpha)} \\
& =\lambda L_{\alpha} d_{f(\alpha)}(x, y) \\
& \leq L_{\alpha} d_{f(\alpha)}(x, y)
\end{aligned}
$$

Then $\max _{t \in[0,1]}|H(x, \lambda)(t)-H(y, \lambda)(t)|_{\alpha} \leq L_{\alpha} d_{f(\alpha)}(x, y)$, that is (2.12).
Now (2.13) follows from (4) and (5).
Condition (iii) is trivial since $\mathcal{P}=\mathcal{Q}^{\lambda}$.

> A. CHIŞ

Condition (iv): $\left(X,\left\{d_{\alpha}\right\}_{\alpha \in A}\right)$ is a sequentially complete gauge space since E is complete by sequences.

Condition $(v):$ Let $\lambda \in[0,1], x_{0} \in D, x_{n}=H\left(x_{n-1}, \lambda\right)$ for $n=1,2, \ldots$ and assume \mathcal{P} - $\lim _{n \rightarrow \infty} x_{n}=x$. We wish to obtain that $H(x, \lambda)=x$.

We have

$$
\begin{aligned}
|H(x, \lambda)(t)-x(t)|_{\alpha} & =\left|H(x, \lambda)(t)-x_{n}(t)+x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq\left|H(x, \lambda)(t)-x_{n}(t)\right|_{\alpha}+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& =\left|H(x, \lambda)(t)-H\left(x_{n-1}, \lambda\right)(t)\right|_{\alpha}+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq \int_{0}^{1} L_{\alpha}\left|x(s)-x_{n-1}(s)\right|_{f(\alpha)} d s+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq L_{\alpha} \max _{s \in[0,1]}\left|x(s)-x_{n-1}(s)\right|_{f(\alpha)}+\sup _{t \in[0,1]}\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& =L_{\alpha} d_{f(\alpha)}\left(x_{n-1}, x\right)+d_{\alpha}\left(x_{n}, x\right)
\end{aligned}
$$

Passing to the supremum we obtain

$$
d_{\alpha}(H(x, \lambda), x) \leq L_{\alpha} d_{f(\alpha)}\left(x_{n-1}, x\right)+d_{\alpha}\left(x_{n}, x\right)
$$

Letting $n \rightarrow \infty$, we deduce $d_{\alpha}(H(x, \lambda), x)=0$. Since this equality is true for all $\alpha \in A$ and $\left\{d_{\alpha}\right\}_{\alpha \in A}$ is separated, we have $H(x, \lambda)=x$ as we wished.

Condition (vi) becomes: for every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that

$$
d_{f^{n}(\alpha)}(x, H(x, \lambda)) \leq\left(1-L_{f^{n}(\alpha)}\right) \varepsilon
$$

whenever $(x, \mu) \in D \times[0,1], H(x, \mu)=x,|\lambda-\mu| \leq \delta, \alpha \in A$ and $n \in \mathbb{N}$.

Indeed, using (2) and (6) we obtain

$$
\begin{aligned}
|x(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} & =|H(x, \mu)(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} \\
& =|\mu-\lambda|\left|\int_{0}^{1} K(t, s, x(s)) d s\right|_{f^{n}(\alpha)} \\
& \leq|\mu-\lambda| \int_{0}^{1}|K(t, s, x(s))|_{f^{n}(\alpha)} d s \\
& \leq|\mu-\lambda| M_{f^{n}(\alpha)} \\
& \leq|\mu-\lambda| \frac{1-L_{f^{n}(\alpha)}}{C} .
\end{aligned}
$$

So condition (vi) is true with $\delta(\varepsilon)=C \varepsilon$.
In addition $H(., 0)=0 \cdot A()=$.0 . Hence $H(., 0)$ has a fixed point.
Thus all the assumptions of Theorem 1.1 are satisfied and the proof is completed.

In Banach space, Theorem 2.1 becomes the following well-known result.
Corollary 2.2. Let $(E,||$.$) be a Banach space. Assume that the following conditions$ are satisfied:
(1) $K:[0,1]^{2} \times E \rightarrow E$ is continuous;
(2) there exists $r>0$ such that, any solution x of the equation

$$
\begin{equation*}
x(t)=\lambda \int_{0}^{1} K(t, s, x(s)) d s, \quad t \in[0,1], \tag{2.14}
\end{equation*}
$$

for some $\lambda \in[0,1]$ satisfies $|x(t)|<r$, for all $t \in[0,1]$ and any $\lambda \in[0,1]$;
(3) there exists $L \in[0,1)$ such that

$$
\begin{equation*}
|K(t, s, x)-K(t, s, y)| \leq L|x-y| \tag{2.15}
\end{equation*}
$$

for all $t, s \in[0,1]$ and $x, y \in E$ with $|x|,|y| \leq r$.
Then problem (1.1) has a solution.

Notice that an analogue result is true for Volterra integral equation (1.2).

> A. CHIŞ

In particular, we obtain an existence principle for the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=K(t, x(t)) \quad t \in[0,1] \tag{2.16}\\
x(0)=0
\end{array}\right.
$$

is equivalent to the integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{t} K(s, x(s)) d s, \quad t \in[0,1] \tag{2.17}
\end{equation*}
$$

for which the following result holds.
Theorem 2.3. Let E be a locally convex space, Hausdorff separated, complete by the sequences, with the topology defined by the saturated and sufficient set of semi-norms $\left\{|\cdot|_{\alpha}, \alpha \in A\right\}$ and let $\delta>0$ be a fixed number. Assume that the following conditions are satisfied:
(1) $K:[0,1] \times E \rightarrow E$ is continuous;
(2) there exists $r=\left\{r_{\alpha}\right\}_{\alpha \in A}$ such that, any solution x of the equation

$$
x(t)=\lambda \int_{0}^{t} K(s, x(s)) d s \quad t \in[0,1]
$$

for some $\lambda \in[0,1]$ satisfies $|x(t)|_{\alpha} \leq r_{\alpha}$, for all $t \in[0,1]$ and $\alpha \in A$;
(3) there exists $\left\{L_{\alpha}\right\}_{\alpha \in A} \in[0,1)^{A}$ such that

$$
|K(t, x)-K(t, y)|_{\alpha} \leq L_{\alpha}|x-y|_{f(\alpha)}
$$

whenever $\alpha \in A$, for all $t \in[0,1]$ and $x, y \in E_{r}$;

(5)for every $\alpha \in A$ and for each continuous function $g:[0,1] \rightarrow E$, one has

$$
\sup \left\{|g(t)|_{f^{n}(\alpha)}: t \in[0,1], n=0,1,2, \ldots\right\}<\infty
$$

(6) there exists C with $0<C \leq \frac{1-L_{f^{n}(\alpha)}}{M_{f^{n}(\alpha)}}$, for all $\alpha \in A$ and $n \in \mathbb{N}$, where $M_{\alpha}:=\sup _{\substack{t \in[0,1],|x|_{f(\alpha)} \leq r_{f(\alpha)}}}|K(t, x)|_{\alpha}$.

Then, the problem (2.17) has a solution.
The next theorem is concerning with the "a priori" boundedness condition (2).

Theorem 2.4. Assume $K:[0,1] \times E \rightarrow E$ is continuous. In addition assume that for each $\alpha \in A$, there exists $\beta_{\alpha} \in C\left([0,1], \mathbb{R}_{+}\right)$and $\psi_{\alpha}: \mathbb{R}_{+} \rightarrow(0, \infty)$ nondecreasing with $\frac{1}{\psi_{\alpha}} \in L_{l o c}^{1}\left(\mathbb{R}_{+}\right)$such that

$$
\begin{equation*}
|K(t, x)|_{\alpha} \leq \beta_{\alpha}(t) \psi_{\alpha}\left(|x|_{\alpha}\right), \text { for } x \in E, t \in[0,1] \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d \tau}{\psi_{\alpha}(\tau)}>\int_{0}^{1} \beta_{\alpha}(s) d s \tag{2.19}
\end{equation*}
$$

Then condition (2) in Theorem 2.3 is satisfied..

Proof. Let x be any solution of the problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=\lambda K(t, x(t)), \quad t \in[0,1] \\
x(0)=0
\end{array}\right.
$$

for some $\lambda \in[0,1]$, and let $\alpha \in A$ by arbitrary. Then

$$
x(t)=\lambda \int_{0}^{t} K(s, x(s)) d s, \quad t \in[0,1]
$$

and so

$$
|x(t)|_{\alpha} \leq \lambda \int_{0}^{t}|K(s, x(s))|_{\alpha} d s=\lambda \int_{0}^{t}\left|x^{\prime}(s)\right|_{\alpha} d s
$$

Let $w_{\alpha}(t)=\int_{0}^{t}\left|x^{\prime}(s)\right|_{\alpha} d s$. Then $|x(t)|_{\alpha} \leq w_{\alpha}(t)$ on [0,1]. Using (2.18) we obtain

$$
w_{\alpha}^{\prime}(t)=\left|x^{\prime}(t)\right|_{\alpha}=\lambda|K(t, x(t))|_{\alpha} \leq \lambda \beta_{\alpha}(t) \psi_{\alpha}\left(|x(t)|_{\alpha}\right) \leq \lambda \beta_{\alpha}(t) \psi_{\alpha}\left(w_{\alpha}(t)\right)
$$

on $[0,1]$. Next

$$
\frac{w_{\alpha}^{\prime}(t)}{\psi_{\alpha}\left(w_{\alpha}(t)\right)} \leq \lambda \beta_{\alpha}(t) \leq \beta_{\alpha}(t)
$$

and

$$
\int_{0}^{t} \frac{w_{\alpha}^{\prime}(s)}{\psi_{\alpha}\left(w_{\alpha}(s)\right)} d s \leq \int_{0}^{t} \beta_{\alpha}(s) d s \leq \int_{0}^{1} \beta_{\alpha}(s) d s
$$

Make the following change of variable $w_{\alpha}(s)=\tau$ and use (2.19) to derive

$$
\int_{0}^{w_{\alpha}(t)} \frac{d \tau}{\psi_{a}(\tau)} \leq \int_{0}^{1} \beta_{\alpha}(s) d s<\int_{0}^{\infty} \frac{d \tau}{\psi_{\alpha}(\tau)}
$$

The last inequality implies that there exists $r_{\alpha}<\infty$ such that $w_{\alpha}(t) \leq r_{\alpha}$ for every $t \in[0,1]$. Hence $|x(t)|_{\alpha} \leq r_{\alpha}$, for every $t \in[0,1]$. Therefore (2) holds.

> A. Chiş

A better existence result is true for the Volterra integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{t} K(t, s, x(s)) d s, \quad t \in[0,1] \tag{2.20}
\end{equation*}
$$

Theorem 2.5. Let E be a locally convex space, Hausdorff separated, complete by the sequences, with the topology defined by the saturated and sufficient set of semi-norms $\left\{|\cdot|_{\alpha}: \alpha \in A\right\}$ and let $\delta>0$ a fixed number. Assume that the following conditions are satisfied:
(1) $K:[0,1]^{2} \times E \rightarrow E$ is continuous;
(2) there exists $r=\left\{r_{\alpha}\right\}_{\alpha \in A}$ such that each solution x of the equation

$$
x(t)=\lambda \int_{0}^{t} K(t, s, x(s)) d s, \quad t \in[0,1]
$$

for some $\lambda \in[0,1]$ satisfies $|x(t)|_{\alpha} \leq r_{\alpha}$, for all $t \in[0,1]$ and $\alpha \in A$;
(3) there exists $\left\{L_{\alpha}\right\}_{\alpha \in A} \in(0, \infty)^{A}$ such that

$$
|K(t, s, x)-K(t, s, y)|_{\beta} \leq L_{\alpha}|x-y|_{f(\beta)} \quad \text { for every } \beta \in \mathcal{O}_{\alpha}
$$

whenever $\alpha \in A ; t, s \in[0,1]$ and $x, y \in E_{r} ;$ here $\mathcal{O}_{\alpha}:=\left\{\alpha, f(\alpha), f^{2}(\alpha), \ldots\right\} ;$
(4) for every $\alpha \in A$ and for each continuos function $g:[0,1] \rightarrow E$ one has

$$
\sup \left\{|g(t)|_{f^{n}(\alpha)}: t \in[0,1], n=0,1,2, \ldots\right\}<\infty
$$

(5) $\sup _{n} M_{f^{n}(\alpha)}<\infty$, for every $\alpha \in A$.

Then problem (2.20) has a solution.
Proof. We also apply Theorem 1.1. Let $X=C([0,1], E)$. We define the applications $\|\cdot\|_{\alpha}: X \rightarrow \mathbb{R}_{+}$by

$$
\|x\|_{\alpha}=\max _{t \in[0,1]}\left(|x(t)|_{\alpha} e^{-\theta_{\alpha} t}\right)
$$

where $\theta_{\alpha}>0$ will we precised in what follows. This applications are semi-norms on the linear space X, and the family $\left\{\|\cdot\|_{\alpha}\right\}_{\alpha \in A}$ defines on X a structure of a locally convex space, separated, complete by sequences.

Let $a<1$. For each $\alpha \in A$ and $\theta_{\alpha}>0$, we define the pseudo-metric d_{α} : $X \times X \rightarrow \mathbb{R}_{+}$, by

$$
d_{\alpha}(x, y)=\|x-y\|_{\alpha}
$$

Here again $\mathcal{P}=\mathcal{Q}^{\lambda}=\left\{d_{\alpha}\right\}_{\alpha \in A}$ for all $\lambda \in[0,1]$. Let D be the closure of

$$
\left\{x \in X: \text { there is } \alpha \in A \text { with } d_{\alpha}(x, 0) \leq r_{\alpha}+\delta\right\} .
$$

We define $H: D \times[0,1] \rightarrow X$, by $H(x, \lambda)=\lambda A(x)$, where

$$
A(x)(t)=\int_{0}^{t} K(t, s, x(s)) d s
$$

Now we check conditions (i)-(vi) from Theorem 1.1.
First we check condition (ii): For any $y \in X \backslash D$ one has $d_{\alpha}(y, 0)>r_{\alpha}+\delta$ for every $\alpha \in A$. Then for at least one $t \in[0,1]$, we have

$$
\begin{aligned}
|x(t)-y(t)|_{\alpha} e^{-\theta_{\alpha} t} & \geq\left(|y(t)|_{\alpha}-|x(t)|_{\alpha}\right) e^{-\theta_{\alpha} t} \\
& =|y(t)|_{\alpha} e^{-\theta_{\alpha} t}-|x(t)|_{\alpha} e^{-\theta_{\alpha} t} \\
& \geq d_{\alpha}(y, 0)-d_{\alpha}(x, 0) \\
& >r_{\alpha}+\delta-r_{\alpha}=\delta .
\end{aligned}
$$

Then $d_{\alpha}(x, y)>\delta$ for all $y \in X \backslash D$. So $\inf \left\{d_{\alpha}(x, y): y \in X \backslash D\right\}>\rho$ for any $\rho \in(0, \delta)$.

Condition (i): Using the statements made in Remark 1.2, we will check the condition (1.4) on sets of the form (1.8). Let $(x, \lambda) \in D \times[0,1]$, such that $H(x, \lambda)=x$, and let $\beta \in A$. The set $B(x, \lambda, \beta):=\left\{y \in X: d_{f^{n}(\beta)}(x, y) \leq \rho, \forall n \in \mathbb{N}\right\}$ is included in D. From the fact that $H(x, \lambda)=x$ it follows that $|x(t)|_{\alpha} e^{-\theta_{\alpha} t} \leq r_{\alpha}$, for every $t \in[0,1]$, every $\alpha \in A$ and $\theta_{\alpha}>0$; from $y \in B(x, \lambda, \beta)$ it follows that $|y(t)|_{\beta} e^{-\theta_{\beta} t} \leq r_{\beta}+\delta$, for every $t \in[0,1]$ and $\theta_{\beta}>0$.

> A. CHIŞ

Let x with $H(x, \lambda)=x$ and $y \in B(x, \lambda, \beta)$. Then for $\gamma \in \mathcal{O}_{\beta}$ we have

$$
\begin{aligned}
|H(x, \lambda)(t)-H(y, \lambda)(t)|_{\gamma} & =\lambda\left|\int_{0}^{t}(K(t, s, x(s))-K(t, s, y(s))) d s\right|_{\gamma} \\
& \leq \lambda \int_{0}^{t}|K(t, s, x(s))-K(t, s, y(s))|_{\gamma} d s \\
& \leq \lambda \int_{0}^{t} L_{\beta}|x(s)-y(s)|_{f(\gamma)} e^{-\theta_{\beta} s} e^{\theta_{\beta} s} d s \\
& \leq \lambda L_{\beta} \max _{t \in[0,1]}\left(|x(s)-y(s)|_{f(\gamma)} e^{-\theta_{\beta} s}\right) \int_{0}^{t} e^{\theta_{\beta} s} d s \\
& =\lambda L_{\beta} d_{f(\gamma)}(x, y) \int_{0}^{t} e^{\theta_{\beta} s} d s \\
& \leq \frac{L_{\beta}}{\theta_{\beta}} d_{f(\gamma)}(x, y) e^{\theta_{\beta} t} .
\end{aligned}
$$

So we have

$$
|H(x, \lambda)(t)-H(y, \lambda)(t)|_{\beta} e^{-\theta_{\beta} t} \leq \frac{L_{\beta}}{\theta_{\beta}} d_{f(\gamma)}(x, y)
$$

Consequently

$$
d_{\gamma}(H(x, \lambda), H(y, \lambda)) \leq \frac{L_{\beta}}{\theta} d_{f(\gamma)}(x, y)
$$

We choose $\theta_{\alpha}>0$ large enough that

$$
\frac{L_{\alpha}}{\theta_{\alpha}} \leq a
$$

and

$$
\begin{equation*}
L_{\alpha}+\sup _{n} M_{f^{n}(\alpha)} \leq \theta_{\alpha} \tag{2.21}
\end{equation*}
$$

for all $\alpha \in A$.
For each $\alpha \in A$ series (1.5) is dominated by the convergent series $\sum_{n=0}^{\infty} a^{n}$ which obviously is convergent. This together with condition (4) guarantees condition (i) from Theorem 1.1.

For condition (iii) and condition (iv) see the proff of Theorem 2.1.

Condition (v): We have

$$
\begin{aligned}
|H(x, \lambda)(t)-x(t)|_{\alpha} & =\left|H(x, \lambda)(t)-x_{n}(t)+x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq\left|H(x, \lambda)(t)-x_{n}(t)\right|_{\alpha}+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& =\left|H(x, \lambda)(t)-H\left(x_{n-1}, \lambda\right)(t)\right|_{\alpha}+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq \int_{0}^{t} L_{\alpha}\left|x(s)-x_{n-1}(s)\right|_{f(\alpha)} e^{-\theta_{\alpha} s} e^{\theta_{\alpha} s} d s+\left|x_{n}(t)-x(t)\right|_{\alpha} \\
& \leq L_{\alpha} \max _{s \in[0,1]}\left(\left|x(s)-x_{n-1}(s)\right|_{f(\alpha)} e^{-\theta_{\alpha} s}\right) \int_{0}^{t} e^{\theta_{\alpha} s} d s+ \\
& +\left|x_{n}(t)-x(t)\right|_{\alpha} \leq \frac{L_{\alpha}}{\theta_{\alpha}} d_{f(\alpha)}\left(x_{n-1}, x\right) e^{\theta_{\alpha} t}+\left|x_{n}(t)-x(t)\right|_{\alpha}
\end{aligned}
$$

Hence

$$
|H(x, \lambda)(t)-x(t)|_{\alpha} \leq \frac{L_{\alpha}}{\theta_{\alpha}} d_{f(\alpha)}\left(x_{n-1}, x\right) e^{\theta_{\alpha} t}+\left|x_{n}(t)-x(t)\right|_{\alpha}
$$

If we multiply by $e^{-\theta_{\alpha} t}$, we obtain

$$
|H(x, \lambda)(t)-x(t)|_{\alpha} e^{-\theta_{\alpha} t} \leq d_{f(\alpha)}\left(x_{n-1}, x\right)+\left|x_{n}(t)-x(t)\right|_{\alpha} e^{-\theta_{\alpha} t}
$$

Taking the supremum into the above inequality, we obtain

$$
d_{\alpha}(H(x, \lambda), x) \leq d_{f(\alpha)}\left(x_{n-1}, x\right)+d_{\alpha}\left(x_{n}, x\right)
$$

Letting $n \rightarrow \infty$, we deduce that $d_{\alpha}(H(x, \lambda), x)=0$ and so $H(x, \lambda)=x$.
Condition (vi) From

$$
\begin{aligned}
|x(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} & =|H(x, \mu)(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} \\
& =|\mu-\lambda|\left|\int_{0}^{t} K(t, s, x(s)) d s\right|_{f^{n}(\alpha)} \\
& \leq|\mu-\lambda| \int_{0}^{t}|K(t, s, x(s))|_{f^{n}(\alpha)} e^{-\theta_{\alpha} s} e^{\theta_{\alpha} s} d s \\
& \leq|\mu-\lambda| M_{f^{n}(\alpha)} \int_{0}^{t} e^{\theta_{\alpha} s} d s
\end{aligned}
$$

we obtain

$$
|x(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} \leq|\mu-\lambda| \frac{M_{f^{n}(\alpha)}}{\theta_{\alpha}} e^{\theta_{\alpha} t}
$$

> A. CHIŞ
and using (2.21) we deduce

$$
|x(t)-H(x, \lambda)(t)|_{f^{n}(\alpha)} e^{-\theta_{\alpha} t} \leq|\mu-\lambda| \frac{M_{f^{n}(\alpha)}}{\theta_{\alpha}} \leq|\mu-\lambda|\left(1-\frac{L_{\alpha}}{\theta_{\alpha}}\right)
$$

So condition(vi) is true for $\delta=\varepsilon$.
In addition $H(., 0)=0 \cdot A()=$.0 . Hence $H(., 0)$ has a fixed point. Thus Theorem (1.1), applies.

In case that $f: A \rightarrow A$ is the identity map, Theorem 2.5 reduces to the following result.

Theorem 2.6. Let E be a locally convex space, Hausdorff separated, complete by the sequences, with the topology defined by the saturated and sufficient set of semi-norms $\left\{|\cdot|_{\alpha}, \alpha \in A\right\}$ and $\delta>0$ a fixed number. Assume that the following conditions are satisfied:
(1) $K:[0,1]^{2} \times E \rightarrow E$ is continuous;
(2) there exists $r=\left\{r_{\alpha}\right\}_{\alpha \in A}$ such that, each solution x of the problems

$$
x(t)=\lambda \int_{0}^{t} K(t, s, x(s)) d s
$$

has the property $|x(t)|_{\alpha} \leq r_{\alpha}$, for all $t \in[0,1], \alpha \in A$ and every $\lambda \in[0,1]$;
(3)there exists $L_{\alpha}>0$ such that

$$
|K(t, s, x)-K(t, s, y)|_{\alpha} \leq L_{\alpha}|x-y|_{f \alpha}
$$

whenever $\alpha \in A$, for all $t, s \in[0,1]$, and $x, y \in E_{r}$;
Then, the problem (2.20) has a solution.

References

[1] A. Chis and R. Precup, Continuation theory for general contractions in gauge spaces, Fixed Point Theory and Applications 2004:3 (2004), 173-185.
[2] N. Gheorghiu and M. Turinici, Equation intégrales dans les espaces localment convexes, Rev. Roumaine Math Pures Appl. 23 (1978), no. 1, 33-40 (French).
[3] M. Frigon, Fixed point results for generalized contractions in gauge space and applications, Proc. Amer. Math. Soc. 128 (2000), 2957-2965.
[4] M. Frigon et A. Granas, Resultats du type de Leray-Schauder pour des contractions multivoques, Topological Methods Nonlinear Anal. 4 (1994), 197-208.
[5] D. O'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.

Department of Mathematics
Technical University
Cluj-Napoca, Romania
E-mail address: Adela.Chis@math.utcluj.ro

[^0]: Received by the editors: 8.09.2005
 2000 Mathematics Subject Classification. 45B05, 45D05.
 Key words and phrases. Integral equations, locally convex spaces, Banach spaces, Volterra integral equa-

