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CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN
LOCALLY CONVEX SPACES

A. CHIS

Abstract. The continuation method is used to investigate the existence

of solutions to integral equations in locally convex spaces.

1. Introduction

In this article we study the problem of the existence of solutions for the

Fredholm integral equation

x(t):/o K(ts,2(s))ds,  te01] (1.1)

and the Volterra integral equation

z(t) = /0 K(t,s,z(s))ds, te0,1] (1.2)

where the functions x, K have values in a locally convex space.
In paper [2] the above equations are studied using fixed point theorems for
self-maps. Our approach is based on the continuation method.
The results presented in this paper extend and complement those in [2]-[5].
We finish this section by stating the main result from [1] which will be used

in the next section.
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For a map H : D x [0,1] — X, where D C X, we will use the following
notations:
Y={(z,\) € Dx[0,1]: H(z,\) = x},
S={zxeD:H(z,\) =z for some X € [0,1]}, (1.3)
A={\e€[0,1]: H(z,\) = z for some z € D}.
Theorem 1.1. Let X be a set endowed with the separating gauge structures P =
{pataca and Q» = {qé‘}geB for A € [0,1]. Let D C X be P-sequentially closed,
H:D x[0,1] - X a map, and assume that the following conditions are satisfies:
(i) for each X\ € [0,1], there exists a function ¢y : B — B and a* € [0,1)5,

at = {ag}geg such that

QE(H(x7/\)’H(y7/\)) < a?ﬁqzx(ﬁ)('xay)v (14)

A

oo
A A A A A
D G35 (8)052 () U ()G () (3 Y) < 00 (1.5)
n=1
for every B € B and x,y € D,
(ii) there exists p > 0 such that for each (x,\) € X, there is a § € B with
inf{qj(z,y) : y € X\D} > p; (1.6)
(i4i) for each X € [0,1], there is a function ¢ : A — B and ¢ € (0,00)4,
¢ ={cataca such that

Palz,y) < caqu‘,(a)(a:,y) forallae€ A and z,y € X; (1.7)

(iv) (X, P) is a sequentially complete gauge space;
(v)if A €10,1], 29 € D,x, = H(xp—1,A) forn=1,2,..., and P-lim,, oo x,, =
x, then H(x,\) = x;

(vi) for every e > 0, there exists 6 = §(g) > 0 with

(]27;(5)(1'7}[(557)‘)) <(1- a’éﬂf(ﬁ))g

for (x,u) € X, AN —u| <4, all € B, andn € N.
In addition, assume that Hy := H(.,0) has a fixed point. Then, for each
A € [0,1], the map Hy := H(.,\) has a unique fized point.
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Remark 1.2. Notice that, by condition (ii) we have: for each (x,\) € 3, there is a
B € B such that the set

B(z,\,08)={yeX: qgg(ﬁ)(m‘,y) <p, VneN} CD. (1.8)

The proof of Theorem 1.1, in [1], shows that the contraction condition (1.4)
given on D, can be asked only on sets of the form (1.8), more exactely for (x,\) € X
and y € B(z,\, §).

2. Existence Results

This section contains existence results for the equations (1.1) and (1.2).

Theorem 2.1. Let E be a locally convexr space, Hausdorff separated, complete by
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.I, ;& € A} and let 6 > 0 be a fized number. Assume that the following conditions
are satisfied:

(1) K : 0,12 x E — E is continuous;

(2) there exists 1 = {ro }aca such that, any solution x of the equation
1
o) = [ Ksats)ds,  te o, (2.9)
0

for some X € [0,1] satisfies |z(t)|, < ra, forallt € 0,1] and a € A,
(3) there exists {Lo}aca € [0,1)4 such that

K (t,5,2) = K(t,5,9)], < Lalo =yl (2.10)

whenever a € A,for all t,s € [0,1] and x,y € E, where E, = {x € E : there exists
a € A such that |x|, < 1o +0};

(4)

Z LaLf(a)...Lfn(a) < o0 (2.11)
n=0
for every a € A;
(5) for every a € A and for each continuous function g : [0,1] — E one has
sup{|g(t)| fn (o) 1t €[0,1], n=0,1,2,..} <o0;
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(6) there exists C with 0 < C' < Mif() for all a« € A and n € N, where
fr(e)
M, = sup  |K(t,s,2)],-
t,s€(0,1],
|93|‘f(a)§""f(a)

Then problem (1.1) has a solution.

Notice that M, < co. Indeed, from (2.10) we have

|K(t757.');‘)|a < |K(ta S,Q?) - K(t7s,0)|a + |K(t7570)|a

< L, K(t,s,
< LaTf(a) th,géz[%oﬁ]' (t,5,0)], < o0

for all t,s € [0,1] and = € E with |z[;,) < Tf(a)-

Proof. We shall apply Theorem 1.1. Let X = C([0, 1], E'). For each o € A we define
the map d,, : X x X — Ry, by

do(z,y) = Jnax lz(t) — y(t)], -

It is easy to show that d, is a pseudo-metric on X and the family {d,}oca defines
on X a gauge structure, separated and complete by sequences.

Here P = Q* = {dq}aca for every A € [0,1]. Let D be the closure in X of
the set

{r e X: do(z,0) <r,+ 0 for some a € A}.

We define H : D x [0,1] — X, by H(z,\) = MA(x), where

A(x)(t):/o K(t, s, x(s))ds.

In what follows we shall check conditions (i)-(vi) in Theorem 1.1. We shall
start with condition (ii) by technical reason.
Condition (ii) becomes: there exists p > 0 such that for each solution (x, A) €

D x [0,1], of & = H(x, A), there is an o € A with

inf{du(z,y) : y € X\D} > p.
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To prove this, let us note that if y € X\ D, one has d,(y,0) > r, + ¢ for every

a € A. Consequently, for at least one ¢ € [0,1],
l2(t) = y(®)lo = [yl = 2], > 710 +6 =710 =0

Then dy(z,y) > 0. Hence (ii) holds for any p € (0, §).
Condition (i) becomes: for each a € A there exists f(a) € Aand L, € [0,1)

such that
da(H(xa)‘)aH(ya A)) < Ladf(a)(xay)7 (212)
Z LaLf(a)...Lfnfl(a)dfn(a) (SL’, y) < o0, (2.13)
n=1

for all x,y € D.

According to Remark 1.2, it suffices to have (2.12) on sets of the form (1.8).
Let (z,A\) € D x [0,1], such that H(z,\) = z, and let 8 € A. The set B(z,\,3) :=
{ye X :dgnip(2,y) < p,Vn €N} isincluded in D. From the fact that H(z,\) = x
it follows that |z(t)|, < 74, for every ¢t € [0,1] and o € A; from y € B(z, A, ) it
follows that |y(t)|5 < rs + 4, for every t € [0,1].

Then for x with H(z,A\) = z and y € B(z, A, 8) we have

1
IH(%)\)(t)*H(y,A)(t)IO,:/\/O (K(t,s,2(s)) — K(t,5,y(s))) ds

«

< A/O K (1, 5,2(s)) — K(t, 5,y(s))|., ds
1

< / Lala(s) = y(8)] ;o ds
0

<AL, —
< tlgl[gﬁ] |z(s) y(s)‘f(a)

= >\Locdf(a) (337 y)

< Ladf(a)(z7y)

Then maxyejo,1) [H (2, M) (t) — H(y, \)(t)|, < Ladf)(x,y), that is (2.12).
Now (2.13) follows from (4) and (5).
Condition (iii) is trivial since P = Q.
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Condition (iv): (X,{da}aca) is a sequentially complete gauge space since E
is complete by sequences.

Condition (v): Let A € [0,1], o € D, x, = H(zp_1,A) for n = 1,2, ... and
assume P- lim x,, = . We wish to obtain that H(z,\) = x.

n—oo

We have

[H (2, A)(t) — 2(t)| = [H (2, A)(t) = 2n(t) + 2a(t) — 2(2))

o [

< H(z, A) () = 2z ()], + |2n(t) — 2(2)]

[e%

— H (@, () ~ H(zne1, N (O], + [oat) - 2(0),
< [ Ealol®) = 06l g ds-+ o) = (0,
< Lo max [2(s) = n-1(8)| (o) + sup_|zn(t) —z(t)],

s€[0,1] t€[0,1]

= Ladg(a)(Tn-1,2) + do(2n, ).
Passing to the supremum we obtain
do(H(z,A),7) < Ladf(a)(Tn—1,7) + do(Tp, ).

Letting n — oo, we deduce d, (H(z, A), z) = 0.Since this equality is true for all « € A
and {dq }aca is separated, we have H(z,\) = x as we wished.

Condition (vi) becomes: for every ¢ > 0, there exists 6 = d(¢) > 0 such that
dfn(a)(x, H(Z‘, /\)) S (1 — Lfn(a))z’:‘

whenever (z,u) € D x [0,1], H(z,u) =2, [N —p] <0, € Aand n € N,
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Indeed, using (2) and (6) we obtain

|2(8) = H (2, ) ()] pr (o) = [H (2, 1) (8) = H(@, ) (@) ()

S \ / K (1 2(s))ds

(@)
1
<lp-— A|/0 (Kt 5,2(5)] pr (o) ds

< |M - >‘| Mf”(a)

Sl =A—4

So condition (vi) is true with d(e) = Ce.
In addition H(.,0) =0- A(.) = 0. Hence H(.,0) has a fixed point.
Thus all the assumptions of Theorem 1.1 are satisfied and the proof is com-

pleted. O

In Banach space, Theorem 2.1 becomes the following well-known result.

Corollary 2.2. Let (E,|.|) be a Banach space. Assume that the following conditions
are satisfied:
(1) K : [0,1]*> x E — E is continuous;

(2) there exists r > 0 such that, any solution = of the equation
1
x(t) = )\/ K(t,s,z(s))ds, t e 0,1], (2.14)
0

for some A € [0,1] satisfies |x(t)| <r, for allt € [0,1] and any X € [0,1];
(3) there exists L € [0,1) such that

[K(t,s,2) — K(t,s,y)| < Lz -y (2.15)

for allt,s € [0,1] and z,y € E with |z|,|y| < 7.
Then problem (1.1) has a solution.

Notice that an analogue result is true for Volterra integral equation (1.2).
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In particular, we obtain an existence principle for the initial value problem

x'(t) = K(t,x(t)) t €10,1]

(2.16)
z(0)=0
is equivalent to the integral equation
t
z(t) = / K(s,z(s))ds, te[0,1] (2.17)
0

for which the following result holds.

Theorem 2.3. Let E be a locally convex space, Hausdorff separated, complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.l, ;o € A} and let 6 > 0 be a fived number. Assume that the following conditions
are satisfied:

(1) K : [0,1] x E — E is continuous;

(2) there exists r = {ro}aca such that, any solution x of the equation

x(t):)\/o K(s,z(s))ds  te0,1]

for some X € [0,1] satisfies |x(t)|, < ra, for allt € [0,1] and o € A;
(3) there exists {La}aca € [0,1)? such that

[K(tx) = Kt y)lo < La o =yl g

whenever a € A, for allt € [0,1] and z,y € E,;
(4) > 0zo LoLyay---Lgna) < oo, for every a € A;

(5)for every o € A and for each continuous function g : [0,1] — E, one has

sup{|g(t)| fn(a) 1t €[0,1], n=0,1,2,..} <o0;

1= Lngg
(6) there exists C with 0 < C < 7f(), for all « € A and n € N, where
fr(a)
M,:= sup |K(t,z)|,.
te[0,1],
|93|f<a)§7'f(0)

Then, the problem (2.17) has a solution.

The next theorem is concerning with the ”a priori” boundedness condition
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Theorem 2.4. Assume K : [0,1] x E — E is continuous. In addition assume that
for each a € A, there exists B, € C(]0,1],R;) and ¥ : Ry — (0,00) nondecreasing
with 27— € L} (Ry) such that

K (t,2)|, < Ba(t)allal,), forz € E,te0,1] (2.18)

/ - dT / Bals (2.19)

Then condition (2) in Theorem 2.3 is satzsﬁed..

and

Proof. Let x be any solution of the problem

z'(t) = NK (t,z(t)), te[0,1]
z(0) =0

for some A € [0, 1], and let « € A by arbitrary. Then

t) = )\/O K(s,z(s))ds, te[0,1]

| (¢ <)\/|st dS*/|£L’

Let wq(t) = fg |z'(s)|,, ds. Then |z(t)|, < wq(t) on [0, 1]. Using (2.18) we obtain

and so

wl, () = |2’ ()], = MKt 2(t)], < Ma®va(|2(t)],) < ABa(t)tba(wa(t))

on [0,1]. Next
we, (1)
Yo (wa(t))

/ot wds < /t Ba(s)ds < /1 Ba(s)ds

Make the following change of variable w,(s) = 7 and use (2.19) to derive

[ st o< [

The last inequality implies that there exists r, < oo such that w,(t) < r, for every

t € [0,1]. Hence |z(t)|,, < ra, for every t € [0, 1]. Therefore (2) holds. O

< ABa(t) < Balt)

and
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A better existence result is true for the Volterra integral equation

x(t) = /0 K(t,s,z(s))ds, t €[0,1]. (2.20)

Theorem 2.5. Let E be a locally convex space, Hausdorff separated, complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.l, s« € A} and let 6 > 0 a fized number. Assume that the following conditions are
satisfied:

(1) K : [0,1]*> x E — E is continuous;

(2) there exists 1 = {To}aca such that each solution x of the equation

x(t) = )\/0 K(t,s,z(s))ds, t € 0,1]

for some X € [0,1] satisfies |z(t)|, < ra, for allt € [0,1] and o € A;
(3) there exists {Lo}aca € (0,00)? such that

|K(t,s,2) — K(t,5,9)|5 < La |z =yl for every B € O,

whenever a € A; t,s € [0,1] and z,y € E,; here O, = {a, f(a), f3(a),...};

(4) for every a € A and for each continuos function g : [0,1] — E one has
sup{|g(t)|fn(a) :t€]0,1], n=0,1,2,...} < o0;

(5) sup Mgn (o) < 00, for every a € A.
Then problem (2.20) has a solution.

Proof. We also apply Theorem 1.1. Let X = C([0, 1], E'). We define the applications
Il X >Ry by

2]y = max (Ja(t)], e"")

t€[0,1] @

where 6, > 0 will we precised in what follows. This applications are semi-norms on
the linear space X, and the family {]|.||,}aca defines on X a structure of a locally
convex space, separated, complete by sequences.
Let a < 1. For each o € A and 6, > 0, we define the pseudo-metric d, :
X xX — Ry, by
do(z,y) = llz =yl -
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Here again P = Q* = {d4}aca for all X € [0,1]. Let D be the closure of
{z € X : there is a € A with d,(z,0) <r, +J}.
We define H : D x [0,1] — X, by H(z,\) = MA(z), where

A(:r)(t):/o K(t,s,x(s))ds.

Now we check conditions (i)-(vi) from Theorem 1.1.
First we check condition (i1): For any y € X\ D one has d,(y,0) > r, + 0 for
every @ € A. Then for at least one ¢ € [0, 1], we have

l2(t) — y(t)], e % > (ly(t)],, — |=(t)],)e 0"
= ly(®)], e %" = |2(t)], e’
> da(ya 0) - da(x70)

>Te+0—1q =0

Then do(x,y) > 0 for all y € X\D. So inf{d,(z,y) : y € X\D} > p for any
p € (0,9).

Condition (i): Using the statements made in Remark 1.2,we will check the
condition (1.4) on sets of the form (1.8). Let (x,\) € D x|[0,1], such that H(z, \) = x,
and let 8 € A. The set B(x,\, ) = {y € X : dpn)(z,y) < p, Vn € N}is
included in D. From the fact that H(x,\) = z it follows that |z(t)|, e %! < rq,
for every t € [0,1], every @ € A and 6, > 0; from y € B(z, A, () it follows that
ly(t)| 5 e %" <rp+ 6, for every t € [0,1] and 65 > 0.
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Let « with H(z,A\) = z and y € B(z, A, 3). Then for v € O we have

[H (2, A)(t) = H(y, M)(B)], = A /O (K(t,s,2(s)) — K(t,5,y(s))) ds

-
¢
< [ I (ks 0(9) - Kt s y(s)], ds
0
' 05,0
< )\/O Lgla(s) = y(s)|p(,y e 77" ds
0 "o
< ALg tren[aaﬁ} (\x(s) —y($)]yy € ° ) /0 e?85ds
¢
:)\Lgdf(,y)(m,y)/ e%5%ds
0
Lg
< %df(w) (a,y)e”".
So we have
705t Lﬂ
[H (2, A)(8) = H(y, A)(8)| g e < %df(v)(af?y)
Consequently

(2 X), H(y V) < 2y (2,3).

We choose 6, > 0 large enough that

h

e}

Zeca
O —

and
Lo +sup Mygn(q) < 0, (2.21)

for all a € A.

For each o € A series (1.5) is dominated by the convergent series i a”
which obviously is convergent. This together with condition (4) guarantees conra:i‘gion
(i) from Theorem 1.1.

For condition (iii) and condition (iv) see the proff of Theorem 2.1.

76



CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES

Condition (v): We have

H (@, \)(E) = 2(b)],, = [H(w, () = a(t) + 2a(t) — 2(0)

[e% «

< [H(z, A)(8) = 2 ()] + [2n(t) — 2(1)]

[e3%

= [H(z, \)(t) = H(zn-1, ) (@), + [z (t) — z(1)]

[e3

t
< [ Lalo(s) = mna(s)l gy e " e s + [on(t) ~ (1),
0

¢
] Ons
<L, s?[?}ﬁ] (|x(s) — Zn-1(8)] ya) € ) /0 e’**ds+

Lq
Tdf(a) ('xn—h x)eQQt + ‘.’L‘n(t) - x(t)|o¢ :

+ |zn(t) =z (@), <
Hence

[H (2, \)(t) — x(t)], < %df(a) (@n-1,2)e”" +|an(t) = 2(t)], -

fat e obtain

If we multiply by e~
|H (2, \)(t) — 2(t)], e %" < dfa)(@n_1,7) + |za(t) — 2(t)], e .

@

Taking the supremum into the above inequality, we obtain
do(H(x,X),2) < dfa)(®n-1,2) + do(zn, ).

Letting n — oo, we deduce that do(H(z,A),z) =0 and so H(z,\) = z.
Condition (vi) From

|(8) = H (2, ) ()] pr (o) = [H (2, 1) (8) = H(@, ) ()] ()

Y /0 K(t, 5, 2(s))ds

fr(e)

t
< |pu-— )\|/ |K (2,5, 2(5))] fn(a) e baselasis
0

¢
< |,uf)\|an(a)/ ¥ ds.
0

we obtain

Min(a) ofat
0, ’

|2(t) = H (@, \)(0)] (o) < 1= Al
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and using (2.21) we deduce
_ M n(q La
ol0) = BN Oy 7 < = N <] (1252

So condition(vi) is true for § = e.
In addition H(.,0) = 0- A(.) = 0. Hence H(.,0) has a fixed point. Thus
Theorem (1.1), applies. O

In case that f : A — A is the identity map, Theorem 2.5 reduces to the

following result.

Theorem 2.6. Let E be a locally convex space, Hausdorff separated ,complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.I,,;@ € A} and 6 > 0 a fized number. Assume that the following conditions are
satisfied:

(1) K : [0,1]*> x E — E is continuous;

(2) there exists r = {ro}aca such that, each solution x of the problems

x(t) = )\/0 K(t,s,x(s))ds

has the property |z(t)|, < 7a, for allt € [0,1],ac € A and every X € [0, 1];
(8)there exists Lo > 0 such that

|K(t787l‘) - K(t,S,y)|a S LOt |JU - y|fa

whenever a € A, for allt,s € [0,1], and x,y € E,;
Then, the problem (2.20) has a solution.
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