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CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN
LOCALLY CONVEX SPACES

A. CHIŞ

Abstract. The continuation method is used to investigate the existence

of solutions to integral equations in locally convex spaces.

1. Introduction

In this article we study the problem of the existence of solutions for the

Fredholm integral equation

x(t) =
∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1]. (1.1)

and the Volterra integral equation

x(t) =
∫ t

0

K(t, s, x(s))ds, t ∈ [0, 1] (1.2)

where the functions x,K have values in a locally convex space.

In paper [2] the above equations are studied using fixed point theorems for

self-maps. Our approach is based on the continuation method.

The results presented in this paper extend and complement those in [2]-[5].

We finish this section by stating the main result from [1] which will be used

in the next section.
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A. CHIŞ

For a map H : D × [0, 1] → X, where D ⊂ X, we will use the following

notations:
Σ = {(x, λ) ∈ D × [0, 1] : H(x, λ) = x},

S = {x ∈ D : H(x, λ) = x for some λ ∈ [0, 1]},

Λ = {λ ∈ [0, 1] : H(x, λ) = x for some x ∈ D}.

(1.3)

Theorem 1.1. Let X be a set endowed with the separating gauge structures P =

{pα}α∈A and Qλ = {qλβ}β∈B for λ ∈ [0, 1]. Let D ⊂ X be P-sequentially closed,

H : D × [0, 1] → X a map, and assume that the following conditions are satisfies:

(i) for each λ ∈ [0, 1], there exists a function ϕλ : B → B and aλ ∈ [0, 1)B,

aλ = {aλβ}β∈B such that

qλβ(H(x, λ),H(y, λ)) ≤ aλβq
λ
ϕλ(β)(x, y), (1.4)

∞∑
n=1

aλβa
λ
ϕλ(β)a

λ
ϕ2

λ(β)...a
λ
ϕn−1

λ (β)
qλϕn

λ(β)(x, y) <∞ (1.5)

for every β ∈ B and x, y ∈ D;

(ii) there exists ρ > 0 such that for each (x, λ) ∈ Σ, there is a β ∈ B with

inf{qλβ(x, y) : y ∈ X\D} > ρ; (1.6)

(iii) for each λ ∈ [0, 1], there is a function ψ : A → B and c ∈ (0,∞)A,

c = {cα}α∈A such that

pα(x, y) ≤ cαq
λ
ψ(α)(x, y) for all α ∈ A and x, y ∈ X; (1.7)

(iv) (X,P) is a sequentially complete gauge space;

(v) if λ ∈ [0, 1], x0 ∈ D,xn = H(xn−1, λ) for n = 1, 2, ..., and P-limn→∞ xn =

x, then H(x, λ) = x;

(vi) for every ε > 0, there exists δ = δ(ε) > 0 with

qλϕn
λ(β)(x,H(x, λ)) ≤ (1− aλϕn

λ(β))ε

for (x, µ) ∈ Σ, |λ− µ| ≤ δ, all β ∈ B, and n ∈ N.

In addition, assume that H0 := H(., 0) has a fixed point. Then, for each

λ ∈ [0, 1], the map Hλ := H(., λ) has a unique fixed point.
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CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES

Remark 1.2. Notice that, by condition (ii) we have: for each (x, λ) ∈ Σ, there is a

β ∈ B such that the set

B(x, λ, β) = {y ∈ X : qλϕn
λ(β)(x, y) ≤ ρ, ∀n ∈ N} ⊂ D. (1.8)

The proof of Theorem 1.1, in [1], shows that the contraction condition (1.4)

given on D, can be asked only on sets of the form (1.8), more exactely for (x, λ) ∈ Σ

and y ∈ B(x, λ, β).

2. Existence Results

This section contains existence results for the equations (1.1) and (1.2).

Theorem 2.1. Let E be a locally convex space, Hausdorff separated, complete by

sequences, with the topology defined by the saturated and sufficient set of semi-norms

{|.|α , α ∈ A} and let δ > 0 be a fixed number. Assume that the following conditions

are satisfied:

(1) K : [0, 1]2 × E → E is continuous;

(2) there exists r = {rα}α∈A such that, any solution x of the equation

x(t) = λ

∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1], (2.9)

for some λ ∈ [0, 1] satisfies |x(t)|α ≤ rα, for all t ∈ [0, 1] and α ∈ A;

(3) there exists {Lα}α∈A ∈ [0, 1)A such that

|K(t, s, x)−K(t, s, y)|α ≤ Lα |x− y|f(α) (2.10)

whenever α ∈ A,for all t, s ∈ [0, 1] and x, y ∈ Er where Er = {x ∈ E : there exists

α ∈ A such that |x|α ≤ rα + δ};

(4)
∞∑
n=0

LαLf(α)...Lfn(α) <∞ (2.11)

for every α ∈ A;

(5) for every α ∈ A and for each continuous function g : [0, 1] → E one has

sup{|g(t)|fn(α) : t ∈ [0, 1], n = 0, 1, 2, ...} <∞;

67



A. CHIŞ

(6) there exists C with 0 < C ≤
1− Lfn(α)

Mfn(α)
for all α ∈ A and n ∈ N, where

Mα := sup
t,s∈[0,1],

|x|f(α)≤rf(α)

|K(t, s, x)|α.

Then problem (1.1) has a solution.

Notice that Mα <∞. Indeed, from (2.10) we have

|K(t, s, x)|α ≤ |K(t, s, x)−K(t, s, 0)|α + |K(t, s, 0)|α

≤ Lαrf(α) + max
t,s∈[0,1]

|K(t, s, 0)|α <∞

for all t, s ∈ [0, 1] and x ∈ E with |x|f(α) ≤ rf(α).

Proof. We shall apply Theorem 1.1. Let X = C([0, 1], E). For each α ∈ A we define

the map dα : X ×X → R+, by

dα(x, y) = max
t∈[0,1]

|x(t)− y(t)|α .

It is easy to show that dα is a pseudo-metric on X and the family {dα}α∈A defines

on X a gauge structure, separated and complete by sequences.

Here P = Qλ = {dα}α∈A for every λ ∈ [0, 1]. Let D be the closure in X of

the set

{x ∈ X : dα(x, 0) ≤ rα + δ for some α ∈ A}.

We define H : D × [0, 1] → X, by H(x, λ) = λA(x) , where

A(x)(t) =
∫ 1

0

K(t, s, x(s))ds.

In what follows we shall check conditions (i)-(vi) in Theorem 1.1. We shall

start with condition (ii) by technical reason.

Condition (ii) becomes: there exists ρ > 0 such that for each solution (x, λ) ∈

D × [0, 1], of x = H(x, λ), there is an α ∈ A with

inf{dα(x, y) : y ∈ X\D} > ρ.

68
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To prove this, let us note that if y ∈ X\D, one has dα(y, 0) > rα+δ for every

α ∈ A. Consequently, for at least one t ∈ [0, 1],

|x(t)− y(t)|α ≥ |y(t)|α − |x(t)|α > rα + δ − rα = δ.

Then dα(x, y) > δ. Hence (ii) holds for any ρ ∈ (0, δ).

Condition (i) becomes: for each α ∈ A there exists f(α) ∈ A and Lα ∈ [0, 1)

such that

dα(H(x, λ),H(y, λ)) ≤ Lαdf(α)(x, y), (2.12)

∞∑
n=1

LαLf(α)...Lfn−1(α)dfn(α)(x, y) <∞, (2.13)

for all x, y ∈ D.

According to Remark 1.2, it suffices to have (2.12) on sets of the form (1.8).

Let (x, λ) ∈ D × [0, 1], such that H(x, λ) = x, and let β ∈ A. The set B(x, λ, β) :=

{y ∈ X : dfn(β)(x, y) ≤ ρ, ∀ n ∈ N} is included in D. From the fact that H(x, λ) = x

it follows that |x(t)|α ≤ rα, for every t ∈ [0, 1] and α ∈ A; from y ∈ B(x, λ, β) it

follows that |y(t)|β ≤ rβ + δ, for every t ∈ [0, 1].

Then for x with H(x, λ) = x and y ∈ B(x, λ, β) we have

|H(x, λ)(t)−H(y, λ)(t)|α = λ

∣∣∣∣∫ 1

0

(K(t, s, x(s))−K(t, s, y(s))) ds
∣∣∣∣
α

≤ λ

∫ 1

0

|K(t, s, x(s))−K(t, s, y(s))|α ds

≤ λ

∫ 1

0

Lα |x(s)− y(s)|f(α) ds

≤ λLα max
t∈[0,1]

|x(s)− y(s)|f(α)

= λLαdf(α)(x, y)

≤ Lαdf(α)(x, y).

Then maxt∈[0,1] |H(x, λ)(t)−H(y, λ)(t)|α ≤ Lαdf(α)(x, y), that is (2.12).

Now (2.13) follows from (4) and (5).

Condition (iii) is trivial since P = Qλ.
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Condition (iv): (X, {dα}α∈A) is a sequentially complete gauge space since E

is complete by sequences.

Condition (v): Let λ ∈ [0, 1], x0 ∈ D, xn = H(xn−1, λ) for n = 1, 2, ... and

assume P- lim
n→∞

xn = x. We wish to obtain that H(x, λ) = x.

We have

|H(x, λ)(t)− x(t)|α = |H(x, λ)(t)− xn(t) + xn(t)− x(t)|α

≤ |H(x, λ)(t)− xn(t)|α + |xn(t)− x(t)|α

= |H(x, λ)(t)−H(xn−1, λ)(t)|α + |xn(t)− x(t)|α

≤
∫ 1

0

Lα |x(s)− xn−1(s)|f(α) ds+ |xn(t)− x(t)|α

≤ Lα max
s∈[0,1]

|x(s)− xn−1(s)|f(α) + sup
t∈[0,1]

|xn(t)− x(t)|α

= Lαdf(α)(xn−1, x) + dα(xn, x).

Passing to the supremum we obtain

dα(H(x, λ), x) ≤ Lαdf(α)(xn−1, x) + dα(xn, x).

Letting n→∞, we deduce dα(H(x, λ), x) = 0.Since this equality is true for all α ∈ A

and {dα}α∈A is separated, we have H(x, λ) = x as we wished.

Condition (vi) becomes: for every ε > 0, there exists δ = δ(ε) > 0 such that

dfn(α)(x,H(x, λ)) ≤ (1− Lfn(α))ε

whenever (x, µ) ∈ D × [0, 1], H(x, µ) = x, |λ− µ| ≤ δ, α ∈ A and n ∈ N.
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Indeed, using (2) and (6) we obtain

|x(t)−H(x, λ)(t)|fn(α) = |H(x, µ)(t)−H(x, λ)(t)|fn(α)

= |µ− λ|
∣∣∣∣∫ 1

0

K(t, s, x(s))ds
∣∣∣∣
fn(α)

≤ |µ− λ|
∫ 1

0

|K(t, s, x(s))|fn(α) ds

≤ |µ− λ|Mfn(α)

≤ |µ− λ|
1− Lfn(α)

C
.

So condition (vi) is true with δ(ε) = Cε.

In addition H(., 0) = 0 ·A(.) = 0. Hence H(., 0) has a fixed point.

Thus all the assumptions of Theorem 1.1 are satisfied and the proof is com-

pleted.

In Banach space, Theorem 2.1 becomes the following well-known result.

Corollary 2.2. Let (E, |.|) be a Banach space. Assume that the following conditions

are satisfied:

(1) K : [0, 1]2 × E → E is continuous;

(2) there exists r > 0 such that, any solution x of the equation

x(t) = λ

∫ 1

0

K(t, s, x(s))ds, t ∈ [0, 1], (2.14)

for some λ ∈ [0, 1] satisfies |x(t)| < r, for all t ∈ [0, 1] and any λ ∈ [0, 1];

(3) there exists L ∈ [0, 1) such that

|K(t, s, x)−K(t, s, y)| ≤ L |x− y| (2.15)

for all t, s ∈ [0, 1] and x, y ∈ E with |x| , |y| ≤ r.

Then problem (1.1) has a solution.

Notice that an analogue result is true for Volterra integral equation (1.2).
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In particular, we obtain an existence principle for the initial value problem x′(t) = K(t, x(t)) t ∈ [0, 1]

x(0) = 0
(2.16)

is equivalent to the integral equation

x(t) =
∫ t

0

K(s, x(s))ds, t ∈ [0, 1] (2.17)

for which the following result holds.

Theorem 2.3. Let E be a locally convex space, Hausdorff separated, complete by the

sequences, with the topology defined by the saturated and sufficient set of semi-norms

{|.|α , α ∈ A} and let δ > 0 be a fixed number. Assume that the following conditions

are satisfied:

(1) K : [0, 1]× E → E is continuous;

(2) there exists r = {rα}α∈A such that, any solution x of the equation

x(t) = λ

∫ t

0

K(s, x(s))ds t ∈ [0, 1]

for some λ ∈ [0, 1] satisfies |x(t)|α ≤ rα, for all t ∈ [0, 1] and α ∈ A;

(3) there exists {Lα}α∈A ∈ [0, 1)A such that

|K(t, x)−K(t, y)|α ≤ Lα |x− y|f(α)

whenever α ∈ A, for all t ∈ [0, 1] and x, y ∈ Er;

(4)
∑∞
n=0 LαLf(α)...Lfn(α) <∞, for every α ∈ A;

(5)for every α ∈ A and for each continuous function g : [0, 1] → E, one has

sup{|g(t)|fn(α) : t ∈ [0, 1], n = 0, 1, 2, ...} <∞;

(6) there exists C with 0 < C ≤
1− Lfn(α)

Mfn(α)
, for all α ∈ A and n ∈ N, where

Mα := sup
t∈[0,1],

|x|f(α)≤rf(α)

|K(t, x)|α .

Then, the problem (2.17) has a solution.

The next theorem is concerning with the ”a priori” boundedness condition

(2).
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Theorem 2.4. Assume K : [0, 1] × E → E is continuous. In addition assume that

for each α ∈ A, there exists βα ∈ C([0, 1],R+) and ψα : R+ → (0,∞) nondecreasing

with 1
ψα

∈ L1
loc(R+) such that

|K(t, x)|α ≤ βα(t)ψα(|x|α), for x ∈ E, t ∈ [0, 1] (2.18)

and ∫ ∞

0

dτ

ψα(τ)
>

∫ 1

0

βα(s)ds. (2.19)

Then condition (2) in Theorem 2.3 is satisfied..

Proof. Let x be any solution of the problem x′(t) = λK(t, x(t)), t ∈ [0, 1]

x(0) = 0

for some λ ∈ [0, 1], and let α ∈ A by arbitrary. Then

x(t) = λ

∫ t

0

K(s, x(s))ds, t ∈ [0, 1]

and so

|x(t)|α ≤ λ

∫ t

0

|K(s, x(s))|α ds = λ

∫ t

0

|x′(s)|α ds.

Let wα(t) =
∫ t
0
|x′(s)|α ds. Then |x(t)|α ≤ wα(t) on [0, 1]. Using (2.18) we obtain

w′α(t) = |x′(t)|α = λ |K(t, x(t))|α ≤ λβα(t)ψα(|x(t)|α) ≤ λβα(t)ψα(wα(t))

on [0, 1]. Next
w′α(t)

ψα(wα(t))
≤ λβα(t) ≤ βα(t)

and ∫ t

0

w′α(s)
ψα(wα(s))

ds ≤
∫ t

0

βα(s)ds ≤
∫ 1

0

βα(s)ds.

Make the following change of variable wα(s) = τ and use (2.19) to derive∫ wα(t)

0

dτ

ψa(τ)
≤

∫ 1

0

βα(s)ds <
∫ ∞

0

dτ

ψα(τ)
.

The last inequality implies that there exists rα < ∞ such that wα(t) ≤ rα for every

t ∈ [0, 1]. Hence |x(t)|α ≤ rα, for every t ∈ [0, 1].Therefore (2) holds.
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A better existence result is true for the Volterra integral equation

x(t) =
∫ t

0

K(t, s, x(s))ds, t ∈ [0, 1]. (2.20)

Theorem 2.5. Let E be a locally convex space, Hausdorff separated, complete by the

sequences, with the topology defined by the saturated and sufficient set of semi-norms

{|.|α : α ∈ A} and let δ > 0 a fixed number. Assume that the following conditions are

satisfied:

(1) K : [0, 1]2 × E → E is continuous;

(2) there exists r = {rα}α∈A such that each solution x of the equation

x(t) = λ

∫ t

0

K(t, s, x(s))ds, t ∈ [0, 1]

for some λ ∈ [0, 1] satisfies |x(t)|α ≤ rα, for all t ∈ [0, 1] and α ∈ A;

(3) there exists {Lα}α∈A ∈ (0,∞)A such that

|K(t, s, x)−K(t, s, y)|β ≤ Lα |x− y|f(β) for every β ∈ Oα

whenever α ∈ A; t, s ∈ [0, 1] and x, y ∈ Er; here Oα := {α, f(α), f2(α), ...};

(4) for every α ∈ A and for each continuos function g : [0, 1] → E one has

sup{|g(t)|fn(α) : t ∈ [0, 1], n = 0, 1, 2, ...} <∞;

(5) sup
n
Mfn(α) <∞, for every α ∈ A.

Then problem (2.20) has a solution.

Proof. We also apply Theorem 1.1. Let X = C([0, 1], E). We define the applications

‖.‖α : X → R+ by

‖x‖α = max
t∈[0,1]

(
|x(t)|α e

−θαt
)

where θα > 0 will we precised in what follows. This applications are semi-norms on

the linear space X, and the family {‖.‖α}α∈A defines on X a structure of a locally

convex space, separated, complete by sequences.

Let a < 1. For each α ∈ A and θα > 0, we define the pseudo-metric dα :

X ×X → R+, by

dα(x, y) = ‖x− y‖α .
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Here again P = Qλ = {dα}α∈A for all λ ∈ [0, 1]. Let D be the closure of

{x ∈ X : there is α ∈ A with dα(x, 0) ≤ rα + δ}.

We define H : D × [0, 1] → X, by H(x, λ) = λA(x) , where

A(x)(t) =
∫ t

0

K(t, s, x(s))ds.

Now we check conditions (i)-(vi) from Theorem 1.1.

First we check condition (ii): For any y ∈ X\D one has dα(y, 0) > rα + δ for

every α ∈ A. Then for at least one t ∈ [0, 1], we have

|x(t)− y(t)|α e
−θαt ≥ (|y(t)|α − |x(t)|α)e−θαt

= |y(t)|α e
−θαt − |x(t)|α e

−θαt

≥ dα(y, 0)− dα(x, 0)

> rα + δ − rα = δ.

Then dα(x, y) > δ for all y ∈ X\D. So inf{dα(x, y) : y ∈ X\D} > ρ for any

ρ ∈ (0, δ).

Condition (i): Using the statements made in Remark 1.2,we will check the

condition (1.4) on sets of the form (1.8). Let (x, λ) ∈ D×[0, 1], such that H(x, λ) = x,

and let β ∈ A. The set B(x, λ, β) := {y ∈ X : dfn(β)(x, y) ≤ ρ, ∀ n ∈ N} is

included in D. From the fact that H(x, λ) = x it follows that |x(t)|α e−θαt ≤ rα,

for every t ∈ [0, 1], every α ∈ A and θα > 0; from y ∈ B(x, λ, β) it follows that

|y(t)|β e−θβt ≤ rβ + δ, for every t ∈ [0, 1] and θβ > 0.
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Let x with H(x, λ) = x and y ∈ B(x, λ, β). Then for γ ∈ Oβ we have

|H(x, λ)(t)−H(y, λ)(t)|γ = λ

∣∣∣∣∫ t

0

(K(t, s, x(s))−K(t, s, y(s))) ds
∣∣∣∣
γ

≤ λ

∫ t

0

|K(t, s, x(s))−K(t, s, y(s))|γ ds

≤ λ

∫ t

0

Lβ |x(s)− y(s)|f(γ) e
−θβseθβsds

≤ λLβ max
t∈[0,1]

(
|x(s)− y(s)|f(γ) e

−θβs
) ∫ t

0

eθβsds

= λLβdf(γ)(x, y)
∫ t

0

eθβsds

≤ Lβ
θβ
df(γ)(x, y)eθβt.

So we have

|H(x, λ)(t)−H(y, λ)(t)|β e
−θβt ≤ Lβ

θβ
df(γ)(x, y).

Consequently

dγ(H(x, λ),H(y, λ)) ≤ Lβ
θ
df(γ)(x, y).

We choose θα > 0 large enough that

Lα
θα

≤ a

and

Lα + sup
n
Mfn(α) ≤ θα (2.21)

for all α ∈ A.

For each α ∈ A series (1.5) is dominated by the convergent series
∞∑
n=0

an

which obviously is convergent. This together with condition (4) guarantees condition

(i) from Theorem 1.1.

For condition (iii) and condition (iv) see the proff of Theorem 2.1.
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Condition (v): We have

|H(x, λ)(t)− x(t)|α = |H(x, λ)(t)− xn(t) + xn(t)− x(t)|α

≤ |H(x, λ)(t)− xn(t)|α + |xn(t)− x(t)|α

= |H(x, λ)(t)−H(xn−1, λ)(t)|α + |xn(t)− x(t)|α

≤
∫ t

0

Lα |x(s)− xn−1(s)|f(α) e
−θαseθαsds+ |xn(t)− x(t)|α

≤ Lα max
s∈[0,1]

(
|x(s)− xn−1(s)|f(α) e

−θαs
) ∫ t

0

eθαsds+

+ |xn(t)− x(t)|α ≤
Lα
θα
df(α)(xn−1, x)eθαt + |xn(t)− x(t)|α .

Hence

|H(x, λ)(t)− x(t)|α ≤
Lα
θα
df(α)(xn−1, x)eθαt + |xn(t)− x(t)|α .

If we multiply by e−θαt, we obtain

|H(x, λ)(t)− x(t)|α e
−θαt ≤ df(α)(xn−1, x) + |xn(t)− x(t)|α e

−θαt.

Taking the supremum into the above inequality, we obtain

dα(H(x, λ), x) ≤ df(α)(xn−1, x) + dα(xn, x).

Letting n→∞, we deduce that dα(H(x, λ), x) = 0 and so H(x, λ) = x.

Condition (vi) From

|x(t)−H(x, λ)(t)|fn(α) = |H(x, µ)(t)−H(x, λ)(t)|fn(α)

= |µ− λ|
∣∣∣∣∫ t

0

K(t, s, x(s))ds
∣∣∣∣
fn(α)

≤ |µ− λ|
∫ t

0

|K(t, s, x(s))|fn(α) e
−θαseθαsds

≤ |µ− λ|Mfn(α)

∫ t

0

eθαsds.

we obtain

|x(t)−H(x, λ)(t)|fn(α) ≤ |µ− λ|
Mfn(α)

θα
eθαt,
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and using (2.21) we deduce

|x(t)−H(x, λ)(t)|fn(α) e
−θαt ≤ |µ− λ|

Mfn(α)

θα
≤ |µ− λ|

(
1− Lα

θα

)
.

So condition(vi) is true for δ = ε.

In addition H(., 0) = 0 · A(.) = 0. Hence H(., 0) has a fixed point. Thus

Theorem (1.1), applies.

In case that f : A → A is the identity map, Theorem 2.5 reduces to the

following result.

Theorem 2.6. Let E be a locally convex space, Hausdorff separated ,complete by the

sequences, with the topology defined by the saturated and sufficient set of semi-norms

{|.|α , α ∈ A} and δ > 0 a fixed number. Assume that the following conditions are

satisfied:

(1) K : [0, 1]2 × E → E is continuous;

(2) there exists r = {rα}α∈A such that, each solution x of the problems

x(t) = λ

∫ t

0

K(t, s, x(s))ds

has the property |x(t)|α ≤ rα, for all t ∈ [0, 1], α ∈ A and every λ ∈ [0, 1];

(3)there exists Lα > 0 such that

|K(t, s, x)−K(t, s, y)|α ≤ Lα |x− y|fα

whenever α ∈ A, for all t, s ∈ [0, 1], and x, y ∈ Er;

Then, the problem (2.20) has a solution.
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