ITERATES OF SOME MULTIVARIATE APPROXIMATION PROCESSES, VIA CONTRACTION PRINCIPLE

CLAUDIA BACOTIU

Abstract

In this paper we study a general class of linear positive operators, using the theory of weakly Picard operators. The convergence of the iterates of the defined operators will be proven.

1. Introduction

In [2] and [1] Agratini and Rus applied the theory of weakly Picard operators to prove the convergence of iterates of a certain class of linear positive operators. In some particular cases, these operators are well known approximation operators, such as Bernstein or Stancu operators. In the above mentioned papers, the authors have considered the univariate, respectivelly the bivariate cases. In the present paper we give a generalization of these results to a class of linear positive operators defined on $C\left([0,1]^{p}\right), p \in \mathbb{N}$.

2. Weakly Picard operators

Let (X, \rightarrow) be an L-space and $A: X \rightarrow X$ an operator. In this paper we will use the following notations:

$$
\begin{gathered}
F_{A}:=\{x \in X: A(x)=x\} ; \\
I(A):=\{Y \in P(X): A(Y) \subset Y\} ; \\
A^{0}:=1_{X}, A^{n+1}:=A \circ A^{n} \forall n \in \mathbb{N} .
\end{gathered}
$$

Definition 2.1. (Rus [7]) The operator A is said to be:
(i) weakly Picard operator (WPO) if $\forall x_{0} \in X A^{n}\left(x_{0}\right) \rightarrow x_{0}^{*}$, and the limit x_{0}^{*} is a fixed point of A, which may depend on x_{0};
(ii) Picard operator (PO) if $F_{A}=\left\{x^{*}\right\}$ and $\forall x_{0} \in X A^{n}\left(x_{0}\right) \rightarrow x^{*}$.

If A is an WPO, we consider the operator A^{∞} defined by

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)
$$

We have the next characterization theorem of WPOs:
Theorem 2.1. (Rus [7]) The operator A is WPO if and only if there exists a partition of $X, X=\bigcup_{\lambda \in \Lambda} X_{\lambda}$ such that:
(i) $X_{\lambda} \in I(A), \forall \lambda \in \Lambda$;
(ii) $\left.A\right|_{X_{\lambda}}: X_{\lambda} \rightarrow X_{\lambda}$ is $P O, \forall \lambda \in \Lambda$.

3. Main results

Let $p \geq 1$ be a fixed integer and

$$
D:=[0,1] \times[0,1] \times \ldots \times[0,1]=[0,1]^{p} .
$$

$C(D)=\{f: D \rightarrow \mathbb{R}: f-$ continuous $\}$.
We introduce the next notations: $\alpha^{\langle 0\rangle}:=(0,0, \ldots, 0)=0_{\mathbb{R}^{p}}$ is the null vector. For all $k \in \overline{1, p}$ and for all $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq p$, denote by $\alpha_{i_{1}, i_{2}, \ldots, i_{k}}^{\langle k\rangle}$ the vector from \mathbb{R}^{p} defined as follows: on positions $i_{1}, i_{2}, \ldots, i_{k}$ the value 1 appears and on all other positions the value 0 is displayed.

$$
\begin{aligned}
M_{k} & :=\left\{\left(i_{1}, i_{2}, \ldots, i_{k}\right): 1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq p\right\} \subset \mathbb{N}^{k} \quad \forall k \in \overline{1, p} \\
\nu_{D} & :=\left\{\alpha^{\langle 0\rangle}\right\} \bigcup\left\{\alpha_{i_{1}, i_{2}, \ldots, i_{k}}^{\langle k\rangle}: k \in \overline{1, p} \text { and }\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}\right\} .
\end{aligned}
$$

Denote by $e_{\alpha}, \alpha \in \nu_{D}$ the test functions

$$
e_{\alpha}: D \rightarrow \mathbb{R}_{+} ; \quad e_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{p}\right):=\prod_{k=1}^{p} x_{k}^{\alpha_{k}} \quad \forall\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in D
$$

iterates of some multivariate approximation processes, via contraction principle with the convention that, if in a component, α_{k} is null, then $x_{k}^{\alpha_{k}}$ will be replaced by 1.

We notice that

$$
\operatorname{Card}\left(M_{k}\right)=\binom{p}{k}, \forall k=\overline{1, p} \quad \text { and } \quad \operatorname{Card}\left(\nu_{D}\right)=\sum_{k=0}^{p}\binom{p}{k}=2^{p}:=N .
$$

Remark 3.1. Any $\alpha \in \nu_{D}$ is $\alpha^{\langle 0\rangle}$ or there exist $k \in \overline{1, p}$ and $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}$ such that $\alpha=\alpha_{i_{1}, i_{2}, \ldots, i_{k}}^{\langle k}$.

Remark 3.2. Because $\operatorname{Card}\left(\nu_{D}\right)=\operatorname{Card}\{1,2, \ldots, N\}$, it follows that there exists a bijective function

$$
\omega: \nu_{D} \rightarrow\{1,2, \ldots, N\} .
$$

More precisely:

- for $k=0$ there exists a unique $j \in \overline{1, N}$ such that $\omega\left(\alpha^{\langle 0\rangle}\right)=j$ and
- for any $k \in \overline{1, p}$ and for any $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}$ there exists a unique $j \in \overline{1, N}$ such that $\omega\left(\alpha_{i_{1}, i_{2}, \ldots, i_{k}}^{\langle k\rangle}\right)=j$.

For all $\left(m_{1}, m_{2}, \ldots, m_{p}\right) \in \mathbb{N}^{p}$ consider the next p-dimensional net

$$
\Delta_{m_{k}}^{k}:=\left(0=x_{k, m_{k}, 0}<x_{k, m_{k}, 1}<\ldots<x_{k, m_{k}, m_{k}}=1\right) \quad \forall k=\overline{1, p} .
$$

We also consider the next systems of real positive functions

$$
0 \leq \psi_{k, m_{k}, i} \in C[0,1], \quad \forall i=\overline{0, m_{k}} \quad \forall k=\overline{1, p}
$$

Let the next assumptions be satisfied:

$$
\begin{gather*}
\sum_{i=0}^{m_{k}} \psi_{k, m_{k}, i}(x)=1, \quad \forall x \in[0,1], \quad \forall k=\overline{1, p} ; \tag{1}\\
\sum_{i=0}^{m_{k}} x_{k, m_{k}, i} \psi_{k, m_{k}, i}(x)=x, \quad \forall x \in[0,1], \quad \forall k=\overline{1, p} ; \tag{2}\\
\psi_{k, m_{k}, 0}(0)=\psi_{k, m_{k}, m_{k}}(1)=1, \quad \forall k=\overline{1, p} \tag{3}
\end{gather*}
$$

We also introduce the next notation:

$$
K:=\left\{0,1, \ldots, m_{1}\right\} \times\left\{0,1, \ldots, m_{2}\right\} \times \ldots \times\left\{0,1, \ldots, m_{p}\right\}
$$

CLAUDIA BACOTIU

Clearly,

$$
\partial K=\left\{(0,0, \ldots, 0),\left(m_{1}, 0, \ldots, 0\right), \ldots,\left(0,0, \ldots, m_{p}\right), \ldots,\left(m_{1}, m_{2}, \ldots, m_{p}\right)\right\} \subset \mathbb{R}^{p}
$$

Notice that $\operatorname{Card\partial K}=N$ and

$$
\begin{equation*}
\left(x_{1, m_{1}, i_{1}}, \ldots, x_{p, m_{p}, i_{p}}\right) \in \nu_{D}, \quad \forall\left(i_{1}, \ldots, i_{p}\right) \in \partial K \tag{4}
\end{equation*}
$$

Let $u_{m_{1}, \ldots, m_{p}}: D \rightarrow \mathbb{R}$ be the function given by

$$
\begin{equation*}
u_{m_{1}, \ldots, m_{p}}\left(x_{1}, \ldots, x_{p}\right):=\sum_{\left(i_{1}, \ldots, i_{p}\right) \in \partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{m_{1}, \ldots, m_{p}}:=\inf \left\{u_{m_{1}, \ldots, m_{p}}\left(x_{1}, \ldots, x_{p}\right):\left(x_{1}, \ldots, x_{p}\right) \in D\right\} . \tag{6}
\end{equation*}
$$

We define now the operators:

$$
L_{m_{1}, m_{2}, \ldots, m_{p}}: C(D) \rightarrow C(D)
$$

by

$$
\begin{gather*}
\left(L_{m_{1}, m_{2}, \ldots, m_{p}} f\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right):= \\
=\sum_{i_{1}=0}^{m_{1}} \ldots \sum_{i_{k}=0}^{m_{k}} \ldots \sum_{i_{p}=0}^{m_{p}} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{k, m_{k}, i_{k}}\left(x_{k}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) . \tag{7}\\
\cdot f\left(x_{1, m_{1}, i_{1}}, \ldots, x_{k, m_{k}, i_{k}}, \ldots, x_{p, m_{p}, i_{p}}\right)
\end{gather*}
$$

for all $f \in C(D), \forall\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in D$.
Proposition 3.1. The operators $L_{m_{1}, m_{2}, \ldots, m_{p}}$ have the next properties:
(i) $L_{m_{1}, m_{2}, \ldots, m_{p}}\left(e_{\alpha}\right)=e_{\alpha}$, for all $\alpha \in \nu_{D}$;
(ii) $\left(L_{m_{1}, m_{2}, \ldots, m_{p}} f\right)(\alpha)=f(\alpha)$, for all $f \in C(D), \forall \alpha \in \nu_{D}$;
(iii) $L_{m_{1}, m_{2}, \ldots, m_{p}}$ are linear and positive.

Proof: The first statement follows from (1) and (2). The second follows from (1) and (3). The last statement is obvious.

For all $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right) \in \mathbb{R}^{N}$, consider the sets

$$
\begin{equation*}
X_{\Lambda}:=\left\{f \in C(D): f(\alpha):=\lambda_{\omega(\alpha)}, \forall \alpha \in \nu_{D}\right\} \tag{8}
\end{equation*}
$$

ITERATES OF SOME MULTIVARIATE APPROXIMATION PROCESSES, VIA CONTRACTION PRINCIPLE

Lemma 3.1. (i) For all $\Lambda \in \mathbb{R}^{N}$, the sets X_{Λ} are closed in $C(D)$;
(ii) $X_{\Lambda} \in I\left(L_{m_{1}, m_{2}, \ldots, m_{p}}\right)$;
(iii) $C(D)=\bigcup_{\Lambda \in \mathbb{R}^{N}} X_{\Lambda}$ is a partition of the space $C(D)$.

The main result is given by the next theorem.
Theorem 3.1. If $\sigma_{m_{1}, \ldots, m_{p}}$ given by (6) is non-zero, then the operators $L_{m_{1}, m_{2}, \ldots, m_{p}}$ defined by (7) are WPOs and for all $\left(m_{1}, m_{2}, \ldots, m_{p}\right) \in \mathbb{N}^{p}$, we have:

$$
L_{m_{1}, m_{2}, \ldots, m_{p}}^{\infty}(f)=\varphi_{f}^{*}, \quad \forall f \in C(D)
$$

The function φ_{f}^{*} is defined by

$$
\begin{gathered}
\varphi_{f}^{*}\left(x_{1}, x_{2}, \ldots, x_{p}\right)=C_{0}^{0}+\sum_{i_{1} \in M_{1}} C_{i_{1}}^{1} x_{i_{1}}+\sum_{\left(i_{1}, i_{2}\right) \in M_{2}} C_{i_{1}, i_{2}}^{2} x_{i_{1}} x_{i_{2}}+\ldots+ \\
+\sum_{\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}} C_{i_{1}, i_{2}, \ldots, i_{k}}^{k} x_{i_{1}} x_{i_{2} \ldots x_{i_{k}}+\ldots+C_{1,2, \ldots, p}^{p} x_{1} x_{2} \ldots x_{p} \quad \forall f \in C(D) \forall\left(x_{1}, x_{2}, \ldots, x_{p}\right) \in D}
\end{gathered}
$$

where C_{0}^{0} and $C_{i_{1}, i_{2}, \ldots, i_{k}}^{k}, \forall k \in \overline{1, p}, \forall\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}$ are real numbers which depend of f, given by

$$
\begin{gathered}
C_{0}^{0}:=f\left(\alpha^{\langle 0\rangle}\right) ; \\
C_{i_{1}, i_{2}, \ldots, i_{k}}^{k}:=(-1)^{k} f\left(\alpha^{\langle 0\rangle}\right)+(-1)^{k-1} \sum_{s_{1}=1}^{k} f\left(\alpha_{i_{s_{1}}}^{\langle 1\rangle}\right)+(-1)^{k-2} \sum_{1 \leq s_{1}<s_{2} \leq k} f\left(\alpha_{i_{s_{1}}, i_{s_{2}}}^{\langle 2\rangle}\right)+ \\
+\ldots+(-1)^{k-l} \sum_{1 \leq s_{1}<s_{2}<\ldots<s_{l} \leq k} f\left(\alpha_{i_{s_{1}}, i_{s_{2}}, \ldots, i_{s_{l}}}^{\langle l\rangle}\right)+\ldots+(-1)^{0} f\left(\alpha_{i_{1}, i_{2}, \ldots, i_{k}}^{\langle k\rangle}\right) ;
\end{gathered}
$$

for all $k \in \overline{1, p}, \forall\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in M_{k}$.
Proof: By virtue of Lemma 3.1, the sets X_{Λ} are closed, $X_{\Lambda} \in$ $I\left(L_{m_{1}, m_{2}, \ldots, m_{p}}\right)$, and $C(D)=\bigcup_{\Lambda \in \mathbb{R}^{N}} X_{\Lambda}$ is a partition of the space $C(D)$.
Denote by $\|\cdot\|_{C(D)}$ the Cebysev norm in $C(D)$, i.e.

$$
\|v\|_{C(D)}:=\sup _{\left(x_{1}, \ldots, x_{p}\right) \in D}\left|v\left(x_{1}, \ldots, x_{p}\right)\right|, \quad \forall v \in C(D) .
$$

For all $\Lambda \in C(D)$ and for all $f, g \in X_{\Lambda}$ we have:

$$
\begin{aligned}
& \left|\left(L_{m_{1}, m_{2}, \ldots, m_{p}} f\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right)-\left(L_{m_{1}, m_{2}, \ldots, m_{p}} g\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right)\right|= \\
& \quad=\mid \sum_{i_{1}=0}^{m_{1}} \ldots \sum_{i_{k}=0}^{m_{k}} \ldots \sum_{i_{p}=0}^{m_{p}} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{k, m_{k}, i_{k}}\left(x_{k}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \cdot(f-g)\left(x_{1, m_{1}, i_{1}}, \ldots, x_{k, m_{k}, i_{k}}, \ldots, x_{p, m_{p}, i_{p}}\right) \mid= \\
& =\left|\sum_{\left(i_{1}, \ldots, i_{p}\right) \in K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) \cdot(f-g)\left(x_{1, m_{1}, i_{1}}, \ldots, x_{p, m_{p}, i_{p}}\right)\right| \leq \\
& \leq\left|\sum_{\left(i_{1}, \ldots, i_{p}\right) \in K-\partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) \cdot(f-g)\left(x_{1, m_{1}, i_{1}}, \ldots, x_{p, m_{p}, i_{p}}\right)\right|+ \\
& +\left|\sum_{\left(i_{1}, \ldots, i_{p}\right) \in \partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) \cdot(f-g)\left(x_{1, m_{1}, i_{1}}, \ldots, x_{p, m_{p}, i_{p}}\right)\right| \stackrel{(4)}{=} \\
& =\left|\sum_{\left(i_{1}, \ldots, i_{p}\right) \in K-\partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right) \cdot(f-g)\left(x_{1, m_{1}, i_{1}}, \ldots, x_{p, m_{p}, i_{p}}\right)\right| \leq \\
& \leq\left[\sum_{\left(i_{1}, \ldots, i_{p}\right) \in K-\partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right)\right] \cdot\|f-g\|_{C(D)}= \\
& =\left[\sum_{\left(i_{1}, \ldots, i_{p}\right) \in K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right)-\sum_{\left(i_{1}, \ldots, i_{p}\right) \in \partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right)\right] \text {. } \\
& \cdot\|f-g\|_{C(D)} \stackrel{(1)}{=}\left[1-\sum_{\left(i_{1}, \ldots, i_{p}\right) \in \partial K} \psi_{1, m_{1}, i_{1}}\left(x_{1}\right) \ldots \psi_{p, m_{p}, i_{p}}\left(x_{p}\right)\right] \cdot\|f-g\|_{C(D)} \stackrel{(5)}{=} \\
& =\left[1-u_{m_{1}, \ldots, m_{p}}\left(x_{1}, \ldots, x_{p}\right)\right] \cdot\|f-g\|_{C(D)} \stackrel{(6)}{\leq}\left(1-\sigma_{m_{1}, \ldots, m_{p}}\right) \cdot\|f-g\|_{C(D)} .
\end{aligned}
$$

Because $\sigma_{m_{1}, \ldots, m_{p}}$ in non-zero, the restrictions $\left.L_{m_{1}, m_{2}, \ldots, m_{p}}\right|_{X_{\Lambda}}$ are contractions with the same constant $1-\sigma_{m_{1}, \ldots, m_{p}} \in[0,1[$. Consequently, they are POs.
It can be proven that for all $\Lambda \in \mathbb{R}^{N}, \varphi_{f}^{*} \in X_{\Lambda} \forall f \in X_{\Lambda}$. For any $\Lambda \in \mathbb{R}^{N}$, the restriction $L_{m_{1}, m_{2}, \ldots, m_{p}} \mid X_{\Lambda}$ has a unique fixed point which is φ_{f}^{*} (it follows from Proposition 3.1).
From Theorem 2.1 it follows that $L_{m_{1}, m_{2}, \ldots, m_{p}}: C(D) \rightarrow C(D)$ are WPOs. Besides, for all $f \in C(D)$, the limit operator is φ_{f}^{*}.
Remark 3.3. In the case $p=2$ we have $D=[0,1] \times[0,1], N=4$,

$$
\alpha^{\langle 0\rangle}=(0,0), \quad \alpha_{1}^{\langle 1\rangle}=(1,0), \quad \alpha_{2}^{\langle 1\rangle}=(0,1), \quad \alpha_{1,2}^{\langle 2\rangle}=(1,1)
$$

and

$$
\nu_{D}=\{(0,0),(1,0),(0,1),(1,1)\}
$$

ITERATES OF SOME MULTIVARIATE APPROXIMATION PROCESSES, VIA CONTRACTION PRINCIPLE

There exists a bijective function $\omega: \nu_{D} \rightarrow\{1,2,3,4\}$.
For all $\Lambda:=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in \mathbb{R}^{4}$ consider the sets:
$X_{\Lambda}:=\left\{f \in C(D): f(0,0)=\lambda_{\omega(0,0)}, f(1,0)=\lambda_{\omega(1,0)}, f(0,1)=\lambda_{\omega(0,1)}, f(1,1)=\lambda_{\omega(1,1)}\right\}$
For all $m_{1}:=m \in \mathbb{N}, m_{2}:=n \in \mathbb{N}$, the operators $L_{m, n}$ are WPOs and

$$
L_{m, n}^{\infty}(f)=\varphi_{f}^{*}, \quad \forall f \in C(D)
$$

where

$$
\begin{aligned}
\varphi_{f}^{*}(x, y)= & \underbrace{f\left(\alpha^{\langle 0\rangle}\right)}_{C_{0}^{0}}+(\underbrace{\left[f\left(\alpha_{1}^{\langle 1\rangle}\right)-f\left(\alpha^{\langle 0\rangle}\right)\right]}_{C_{1}^{1}} x+\underbrace{\left[f\left(\alpha_{2}^{\langle 1\rangle}\right)-f\left(\alpha^{\langle 0\rangle}\right)\right]}_{C_{2}^{1}} y)+ \\
& +\underbrace{\left(f\left(\alpha^{\langle 0\rangle}\right)-\left[f\left(\alpha_{1}^{\langle 1\rangle}\right)+f\left(\alpha_{2}^{\langle 1\rangle}\right)\right]+f\left(\alpha_{1,2}^{\langle 2\rangle}\right)\right)}_{C_{1,2}^{2}} x y
\end{aligned}
$$

So, we reobtain [1; Remark 1-Theorem 9] in the particular case $a_{1}=a_{2}=0$ and $b_{1}=b_{2}=1$.

4. Applications

4.1. Bernstein operators of $\left(m_{1}, \ldots, m_{p}\right)$ order. For all $\left(m_{1}, \ldots, m_{p}\right) \in \mathbb{N}^{p}$ consider the next system of points:

$$
\Delta_{m_{k}}^{k}:=\left(0=\frac{0}{m_{k}}<\frac{1}{m_{k}}<\ldots<\frac{m_{k}}{m_{k}}=1\right) \quad \forall k=\overline{1, p} .
$$

Let the functions $\psi_{k, m_{k}, i}$ be the fundamental polynomials of Bernstein

$$
\psi_{k, m_{k}, i}(x):=b_{m_{k}, i}(x)=\binom{m_{k}}{i} x^{i}(1-x)^{m_{k}-i} \quad \forall x \in[0,1]
$$

for all $i=\overline{0, m_{k}}, k=\overline{1, p}$.
Then the polynomials $L_{m_{1}, m_{2}, \ldots, m_{p}}: C(D) \rightarrow C(D)$ from (7) are the Bernstein polynomials of (m_{1}, \ldots, m_{p}) order, given by

$$
\begin{gathered}
\left(L_{m_{1}, m_{2}, \ldots, m_{p}} f\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right):= \\
=\sum_{i_{1}=0}^{m_{1}} \ldots \sum_{i_{p}=0}^{m_{p}} b_{m_{1}, i_{1}}\left(x_{1}\right) \ldots b_{m_{p}, i_{p}}\left(x_{p}\right) \cdot f\left(\frac{i_{1}}{m_{1}}, \ldots, \frac{i_{p}}{m_{p}}\right) .
\end{gathered}
$$

CLAUDIA BACOŢIU

The next theorem states the convergence of the iterates of the generalized Bernstein operator.

Theorem 4.1. The Bernstein operators $L_{m_{1}, m_{2}, \ldots, m_{p}}$ are WPOs and

$$
L_{m_{1}, m_{2}, \ldots, m_{p}}^{\infty}(f)=\varphi_{f}^{*}, \quad \forall f \in C(D)
$$

with φ_{f}^{*} as in Theorem 3.1.
Remark 4.1. In the particular case $p=2, m_{1}:=m, m_{2}:=n$ we reobtain the estimation

$$
\lambda_{m, n}=\frac{1}{2^{m+n-2}}
$$

(see [1; §4.1.])
4.2. Stancu modified operators of $\left(m_{1}, \ldots, m_{p}\right)$ order. For all $\left(m_{1}, \ldots, m_{p}\right) \in \mathbb{N}^{p}$ consider the systems of points: $\Delta_{m_{k}}^{k}, k=\overline{1, p}$ as in the previous application. The functions $\psi_{k, m_{k}, i}$ are the fundamental polynomials of Stancu:

$$
\psi_{k, m_{k}, i}(x):=w_{m_{k}, i, \alpha_{k}}(x)=\frac{\binom{m_{k}}{i} x^{\left[i,-\alpha_{k}\right]}(1-x)^{\left[m_{k}-i,-\alpha_{k}\right]}}{1^{\left[m_{k},-\alpha_{k}\right]}} \forall x \in[0,1]
$$

for all $i=\overline{0, m_{k}}, k=\overline{1, p} . \alpha_{k}$ are real positive numbers.
Then $L_{m_{1}, m_{2}, \ldots, m_{p}}$ from (7) are the Stancu modified polynomials of (m_{1}, \ldots, m_{p}) order, given by

$$
\begin{aligned}
& \left(L_{m_{1}, m_{2}, \ldots, m_{p}} f\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right):=\left(S_{m_{1}, m_{2}, \ldots, m_{p}}^{\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\rangle} f\right)\left(x_{1}, x_{2}, \ldots, x_{p}\right)= \\
& \quad=\sum_{i_{1}=0}^{m_{1}} \ldots \sum_{i_{p}=0}^{m_{p}} w_{m_{1}, i_{1}, \alpha_{1}}\left(x_{1}\right) \ldots w_{m_{p}, i_{p}, \alpha_{p}}\left(x_{p}\right) \cdot f\left(\frac{i_{1}}{m_{1}}, \ldots, \frac{i_{p}}{m_{p}}\right)
\end{aligned}
$$

The next theorem states the convergence of the iterates of the generalized Stancu operators:
Theorem 4.2. The Stancu operators $S_{m_{1}, m_{2}, \ldots, m_{p}}^{\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\rangle}$ are WPOs and

$$
\left(S_{m_{1}, m_{2}, \ldots, m_{p}}^{\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\rangle}\right)^{\infty}(f)=\varphi_{f}^{*}, \quad \forall f \in C(D)
$$

where φ^{*} is as in Theorem 3.1.

ITERATES OF SOME MULTIVARIATE APPROXIMATION PROCESSES, VIA CONTRACTION PRINCIPLE

Remark 4.2. In the particular case $p=2, m_{1}:=m, m_{2}:=n$ we obtain:

$$
\lambda_{m, n} \geq \frac{1}{2^{m+n-2} \cdot 1^{\left[m,-\alpha_{1}\right]} \cdot 1^{\left[n,-\alpha_{2}\right]}}
$$

which is the estimation given in [1; §4.2.].

References

[1] O. Agratini and I. A. Rus, Iterates of Some Bivariate Approximation Process Via Contraction Principle, Nonlinear Analysis Forum, 8, 2(2003), 159-168.
[2] O. Agratini and I. A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolinae, 44, 3(2003), 555-563.
[3] O. Agratini, Stancu modified operators revisited, Rev. Anal. Numér. Théor. Approx., 31, 1(2002), 9-16.
[4] I. A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babess Bolyai (Mathematica), 47, 4(2000), 101-104.
[5] I. A. Rus,Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl., 292 (2004), 259-261.
[6] I. A. Rus,Some application of weakly Picard operators, Studia Univ. Babeş Bolyai (Mathematica), 48, 1(2003), 101-107.
[7] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae, 34, 4(1993), 769773.
[8] I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58, 1(2003), 191-219.
"Samuel Brassat" High School,
Cluj-Napoca, Romania
E-mail address: Claudia.Bacotiu@clujnapoca.ro

