EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER

GH. ATANASIU
N. VOICU

Abstract

In [7], R. Miron and Gh. Atanasiu wrote the Einstein equations of a metric structure G on the tangent bundle of order two, $T^{2} M$ (previously named " 2 -osculator bundle" and denoted by $O s c^{2} M$), endowed with a nonlinear connection N and a linear connection D such that the 2-tangent structure J be absolutely parallel to D.

In the present paper, the authors determine the Einstein equations by making use of the concept of N-linear connection defined by Gh. Atanasiu, [1], this is, a linear connection which is not neccesarily compatible with J, but only preserves the distributions generated by the nonlinear connection N.

1. The Tangent Bundle $T^{2} M$

Let M be a real n-dimensional manifold of class $\mathcal{C}^{\infty},\left(T^{2} M, \pi^{2}, M\right)$ its second order tangent bundle and let $\widetilde{T^{2} M}$ be the space $T^{2} M$ without its null section. For a point $u \in T^{2} M$, let $\left(x^{a}, y^{(1) a}, y^{(2) a}\right)$ be its coordinates in a local chart.

Let N be a nonlinear connection, [3, 8-13], and denote its coefficients by $\left(N_{1}^{a}, N_{2}^{a}\right), a, b=1, \ldots, n$.Then, N determines the direct decomposition

$$
\begin{equation*}
T_{u} T^{2} M=N_{0}(u) \oplus N_{1}(u) \oplus V_{2}(u), \forall u \in T^{2} M \tag{1}
\end{equation*}
$$

[^0]The adapted basis to (1) is $\left(\delta_{a}, \delta_{1 a}, \delta_{2 a}\right)$ and its dual basis is $\left(d x^{a}, \delta y^{(1) a}, \delta y^{(2) a}\right)$, where

$$
\left\{\begin{array}{l}
\delta_{a}=\frac{\delta}{\delta x^{a}}=\frac{\partial}{\partial x^{a}}-\underset{1}{N_{a}^{c}} \frac{\partial}{\partial y^{(1) c}}-\underset{2}{N_{a}^{c}} \frac{\partial}{\partial y^{(2) c}} \tag{2}\\
\delta_{1 a}=\frac{\delta}{\delta y^{(1) a}}=\frac{\partial}{\partial y^{(1) a}}-{\underset{1}{a}}_{c}^{c} \frac{\partial}{\partial y^{(2) c}} \\
\delta_{2 a}=\frac{\partial}{\partial y^{(2) a}}
\end{array}\right.
$$

respectively,

$$
\left\{\begin{array}{l}
\delta y^{(1) a}=d y^{(1) a}+{\underset{1}{M}}_{M_{a}^{c}} d x^{c} \tag{3}\\
\delta y^{(2) a}=d y^{(2) a}+{\underset{1}{a}}_{M_{a}^{c}}^{d} d y^{(1) c}+\underset{2}{M_{a}^{c}} d x^{c},
\end{array}\right.
$$

where ${\underset{1}{1}}_{a}^{c},{\underset{2}{a}}_{a}^{c}$ are the dual coefficients of the nonlinear connection N.
Then, a vector field $X \in \mathcal{X}\left(T^{2} M\right)$ is represented in the local adapted basis as

$$
\begin{equation*}
X=X^{(0) a} \delta_{a}+X^{(1) a} \delta_{1 a}+X^{(2) a} \delta_{2 a} \tag{4}
\end{equation*}
$$

with the three right terms (called d-vector fields) belonging to the distributions N, N_{1} and V_{2} respectively.

A 1-form $\omega \in \mathcal{X}^{*}\left(T^{2} M\right)$ will be decomposed as

$$
\omega=\omega_{a}^{(0)} d x^{a}+\omega_{a}^{(1)} \delta y^{(1) a}+\omega_{a}^{(2)} \delta y^{(2) a}
$$

Similarly, a tensor field $T \in \mathcal{T}_{s}^{r}\left(T^{2} M\right)$ can be split with respect to (1) into components ,which will be called d-tensor fields.

The $\mathcal{F}\left(T^{2} M\right)$-linear mapping $J: \mathcal{X}\left(T^{2} M\right) \rightarrow \mathcal{X}\left(T^{2} M\right)$ given by

$$
\begin{equation*}
J\left(\delta_{a}\right)=\delta_{1 a}, J\left(\delta_{1 a}\right)=\delta_{2 a}, J\left(\delta_{2 a}\right)=0 \tag{5}
\end{equation*}
$$

is called the 2-tangent structure on $T^{2} M,[8-13]$.

2. N-linear connections. d-tensors of curvature

An N-linear connection $D,[1]$, is a linear connection on $T^{2} M$, which preserves by parallelism the distributions N, N_{1} and V_{2}. Let us notice that an N-linear connection, in the sense of the definition above, is not necessarily compatible to the

2-tangent structure J (an N-linear connection which is also compatible to J is called, [1], a JN-linear connection).

An N-linear connection is locally given by its coefficients

$$
\begin{equation*}
D \Gamma(N)=\left(\underset{(00)}{L^{a} b c}, \underset{(10)}{L^{a}}{ }^{a}, \underset{(20)}{L^{a}}{ }^{b c}, \underset{(01)}{C}{ }^{a} b c, ~ \underset{(11)}{C}{ }^{a} b c, \underset{(21)}{C}{ }^{a} b c, \underset{(02)}{C}{ }^{a} b_{c}, \underset{(12)}{C}{ }^{a} b c, \underset{(22)}{C}{ }^{a}{ }^{a}\right), \tag{6}
\end{equation*}
$$

where

In the particular case when D is J-compatible, we have

$$
\begin{aligned}
& \underset{(00)}{L^{a} b c}=\underset{(10)}{L^{a}}{ }^{a}{ }^{a}=\underset{(20)}{L}{ }^{a}{ }_{b c}=: L^{a}{ }_{b c}, \\
& \underset{(01)}{C^{a} b c}=\underset{(11)}{C}{ }^{a} b_{c}=\underset{(21)}{C}{ }^{a} b_{c}=\underset{(1)}{C^{a}}{ }^{a} \text {, } \\
& \underset{(02)}{C}{ }^{a} b c=\underset{(12)}{C}{ }^{a}{ }_{b c}=\underset{(22)}{C}{ }^{a}{ }_{b c}=\underset{(2)}{C^{a}}{ }^{a} .
\end{aligned}
$$

For an N-linear connection, let

$$
\left\{\begin{array}{r}
{\underset{0}{D}}_{X}^{H} Y=D_{X^{H}} Y^{H},{\underset{0}{D}}_{V_{1}}^{V_{1}} Y=D_{X^{V_{1}}} Y^{H}, \underset{0}{D_{X}^{V_{2}} Y=D_{X^{V_{2}}} Y^{H}} \\
{\underset{\beta}{D}}_{X}^{H} Y=D_{X^{H}} Y^{V_{\beta}},{\underset{\beta}{D}}_{X}^{V_{1}} Y=D_{X^{V_{1}}} Y^{V_{\beta}},{\underset{\beta}{D}}_{V_{2}}^{V_{2}} Y=D_{X^{V_{2}}} Y^{V_{\beta}}, \\
\beta=1,2 .
\end{array}\right.
$$

${ }_{\alpha}{ }^{H}, \underset{\alpha}{D^{V_{1}}}, \underset{\alpha}{D^{V_{2}}}$ are called respectively, $h_{\alpha^{-}}, v_{1 \alpha^{-}}$and $v_{2 \alpha}$-covariant derivatives, $\alpha=$ $0,1,2$. In local coordinates, for a d-tensor field

$$
T=T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}\left(x, y^{(1)}, y^{(2)}\right) \delta_{a_{1}} \otimes \ldots \otimes \delta_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}}
$$

we have

$$
{ }_{\alpha}^{D_{X}^{H}} T=X^{(0) m} T_{\left.b_{1} \ldots b_{s}\right|_{\alpha m}}^{a_{1} \ldots a_{r}} \delta_{a_{1}} \otimes \ldots \otimes \delta_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}},
$$

where

$$
\begin{aligned}
T_{\left.b_{1} \ldots b_{s}\right|_{\alpha m}}^{a_{1} \ldots a_{r}}= & \delta_{m} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}+\underset{(\alpha 0)}{L}{ }^{a_{1}} T_{b_{1} \ldots b_{s}}^{h a_{2} \ldots a_{r}}+\ldots \underset{(\alpha 0)}{L}{ }^{a_{r}} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r-1} h}- \\
& -\underset{(\alpha 0)^{b_{1} m}}{{ }^{h} T_{h b_{2} \ldots b_{s}}^{a_{1} \ldots a_{r}}-\ldots-\underset{(\alpha 0)}{L}{ }^{h}{ }_{s} m T_{b_{1} \ldots b_{s-1} h}^{a_{1} \ldots a_{r}}}
\end{aligned}
$$

and

$$
{ }_{\alpha}^{D_{X}^{V_{\beta}}} T=X^{(1) m} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}{ }_{\alpha m}^{(\beta)} \delta_{a_{1}} \otimes \ldots \otimes \delta_{2 a_{r}} \otimes d x^{b_{1}} \otimes \ldots \otimes \delta y^{(2) b_{s}},
$$

where

$$
\begin{aligned}
\left.T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}\right|_{\alpha m} ^{(\beta)}= & \delta_{\beta m} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r}}+\underset{(\alpha \beta)}{C}{ }^{a_{1}} T_{b_{1} \ldots b_{s}}^{h a_{2} \ldots a_{r}}+\ldots \underset{(\alpha \beta)}{C^{a_{r}}}{ }^{a_{r}} T_{b_{1} \ldots b_{s}}^{a_{1} \ldots a_{r-1} h}- \\
& -\underset{(\alpha \beta)}{C}{ }^{h} b_{1} T_{h b_{2} \ldots b_{s}}^{a_{1} \ldots a_{r}}-\ldots-\underset{(\alpha \beta)}{C^{h} b_{s} m} T_{b_{1} \ldots b_{s-1} h}^{a_{1} \ldots a_{r}} .
\end{aligned}
$$

The curvature of the N-linear connection D,

$$
R(X, Y) Z=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z
$$

is completely determined by its components (which are d-tensors) $R\left(\delta_{\gamma l}, \delta_{\beta k}\right) \delta_{\alpha j}$. Namely, the 2-forms of curvature of an N - linear connection are, [1],

$$
\begin{align*}
& \underset{(\alpha)}{\Omega^{a}{ }^{a}=\frac{1}{2} \underset{(0 \alpha)}{R}{ }_{b}{ }^{a}{ }_{c d} d x^{c} \wedge d x^{d}+\underset{(1 \alpha)}{P}{ }^{b}{ }^{a} d d} d x^{c} \wedge \delta y^{(1) d}+\underset{(2 \alpha)^{b}}{P}{ }^{a} d x^{c} \wedge \delta y^{(2) d}+ \tag{8}\\
& \frac{1}{2} \underset{(1 \alpha)}{S} \underset{ }{b}{ }^{a}{ }_{c d} \delta y^{(1) c} \wedge \delta y^{(1) d}+\underset{(2 \alpha)}{Q} \stackrel{a}{b}{ }_{c d} d y^{(1) c} \wedge \delta y^{(2) d}+\frac{1}{2} \underset{(2 \alpha)}{S} \underset{b}{b}{ }^{a} \delta d y^{(2) c} \wedge \delta y^{(2) d},
\end{align*}
$$

 the d-tensors of curvature of the N-linear connection D. For a $J N$ - linear connection, there holds

$$
\underset{(0)}{\Omega^{a}{ }_{b}=}=\underset{(1)}{\Omega^{a}}{ }^{b}=\underset{(2)}{\Omega^{a}}{ }^{a},
$$

this is,

EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER

$$
\begin{aligned}
& \underset{(20)}{Q_{b}}{ }_{b}^{a}=\underset{(21)}{Q_{b}}{ }_{b c d}^{a}=\underset{(22)}{Q_{b}}{ }_{b c d}^{a}=Q_{b}{ }_{c d}^{a}
\end{aligned}
$$

The detailed expressions of the d-tensors of curvature can be found in [1].

3. Metric structures on $T^{2} M$

A Riemannian metric on $T^{2} M$ is a tensor field G of type $(0,2)$, which is nondegenerate in each $u \in T^{2} M$ and is positively defined on $T^{2} M$.

In this paper, we shall consider metrics in the form

$$
\begin{equation*}
G=\underset{(0)}{g_{a b}} d x^{a} \otimes d x^{b}+\underset{(1)}{g_{a b}} \delta y^{(1) a} \otimes \delta y^{(1) b}+\underset{(2)}{g_{a b}} \delta y^{(2) a} \otimes \delta y^{(2) b} \tag{10}
\end{equation*}
$$

where $\underset{(\alpha)}{g_{a b}}=\underset{(\alpha)}{g_{a b}\left(x, y^{(1)}, y^{(2)}\right) \text {; this is, such that the distributions } N, N_{1} \text { and } V_{2}, ~(1)}$ generated by the nonlinear connection N be orthogonal with respect to G.

An N-linear connection D is called a metrical N-linear connection if $D_{X} G=$ $0, \forall X \in \mathcal{X}\left(T^{2} M\right)$.

This means

$$
\underset{(\alpha)}{g_{a b \mid \alpha c}}=\underset{(\alpha)}{g_{a b}} \stackrel{\beta}{\mid \alpha c}^{\alpha}=0, \alpha=0,1,2, \beta=1,2 .
$$

The existence of metrical N-linear connections is proved in [2].

4. The Ricci tensor Ric (D)

Let us notice that, if D is not J - compatible, we could expect that the components of the Ricci tensor look in a more complicated way that the ones in the Miron-Atanasiu theory, [7].

Indeed, if we consider the Ricci tensor $\operatorname{Ric}(D),[14]$, as the trace of the linear operator

$$
\begin{equation*}
V \mapsto R(V, X) Y, \forall V=V^{(0) a} \delta_{a}+V^{(1) a} \delta_{1 a}+V^{(2) a} \delta_{2 a} \in \mathcal{X}\left(T^{2} M\right), \tag{11}
\end{equation*}
$$

then we have:

$$
\begin{align*}
\operatorname{Ric}(D)(X, Y)= & \operatorname{trace}\left(V \mapsto R\left(V^{H}, X\right) Y+R\left(V^{V_{1}}, X\right) Y+\right. \\
& \left.+R\left(V^{V_{1}}, X\right) Y\right) \tag{12}
\end{align*}
$$

By a straightforward calculus, we obtain:
Theorem 4.1. The Ricci tensor Ric (d) has the following components:

$$
\begin{aligned}
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta x^{b}}, \frac{\delta}{\delta x^{a}}\right)=\underset{(00)^{a b c}}{R^{c}}=: R_{a b} ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(1) b}}, \frac{\delta}{\delta x^{a}}\right)=-\underset{(10)^{P}}{ }{ }^{c} c b=:-\underset{(10)}{2} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(2) b}}, \frac{\delta}{\delta x^{a}}\right)=-\underset{(20)^{P}}{ }{ }^{c}{ }^{c}{ }^{c b}=:-\underset{(20)}{\stackrel{2}{P}} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta x^{b}}, \frac{\delta}{\delta y^{(1) a}}\right)=\underset{(11)^{P}}{ }{ }^{c} b c=: \underset{(11)}{\underset{P}{P}} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(1) b}}, \frac{\delta}{\delta y^{(1) a}}\right)=\underset{(11)^{a}}{S^{c} b c}=: \underset{(1)}{S_{1}} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(2) b}}, \frac{\delta}{\delta y^{(1) a}}\right)=-\underset{(21)}{Q^{2}}{ }_{a}^{c}{ }_{c b}=:-\underset{(21)}{2} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta x^{b}}, \frac{\delta}{\delta y^{(2) a}}\right)=\underset{(22)^{P}}{ }{ }^{c} b c=: \underset{(22)}{\underset{P}{P}} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(1) b}}, \frac{\delta}{\delta y^{(2) a}}\right)=\underset{(22)}{Q_{a}^{c}}{ }_{b c}=: \underset{(22)}{Q_{2}} a b ; \\
& \operatorname{Ric}(D)\left(\frac{\delta}{\delta y^{(2) b}}, \frac{\delta}{\delta y^{(2) a}}\right)=\underset{(22)^{a}}{S^{c} b c}=: \underset{(2)}{S_{(2)} a b} \text {. }
\end{aligned}
$$

The Ricci scalar $S c(D)$ is, thus,

$$
\begin{equation*}
S c(D)=g^{a b} R_{a b}+\underset{(1)}{g^{a b}} \underset{(1)}{S} a b+\underset{(2)}{g^{a b}} \underset{(2)}{S} a b, \tag{13}
\end{equation*}
$$

where $g^{a b}, g^{a b}, g^{a b}$ are the coefficients of the inverse matrix of G.

$$
\begin{array}{ll}
y & y \\
(1) & (2)
\end{array}
$$

EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER
In the particular case of a $J N$-linear connection, taking into account (8^{\prime}), with the notations in [7], we have

$$
\begin{align*}
& \underset{(\beta \beta)}{\stackrel{1}{P}} a b=\stackrel{{ }_{(\beta)}^{P}}{P} a b, \stackrel{\underset{(\beta 0)}{P} a b}{\stackrel{2}{P}} \underset{(\beta)}{P} a b, \underset{(22)}{Q_{Q}^{Q}} a b=\underset{(21)}{P}{ }_{a b}^{1}\left(=Q_{a b c}^{c}\right), \tag{14}\\
& \underset{(21)}{{\underset{Q}{2}}^{2} a b}=\underset{(21)^{a b}}{P^{2}}\left(=Q_{a c b}^{c}\right) .
\end{align*}
$$

5. Einstein equations

The Einstein equations associated to the metrical N-linear connection D are

$$
\begin{equation*}
\operatorname{Ric}(D)-\frac{1}{2} S c(D) G=\kappa \mathcal{T} \tag{15}
\end{equation*}
$$

where κ is a constant and \mathcal{T} is the energy-momentum tensor, given by its components

$$
\underset{(\alpha \beta)}{\mathcal{T}_{b} a b}=\mathcal{T}\left(\delta_{\beta b}, \delta_{\alpha a}\right)
$$

Expressing the above relation in the adapted frame (2), we obtain
Theorem 5.1. The Einstein equations associated to the metrical N-linear connection D are

$$
\begin{aligned}
& R_{a b}-\frac{1}{2} S c(D) g_{a b}=\underset{(00)_{a b}}{\mathcal{T}} ; \\
& \stackrel{{ }_{(\beta \beta)}^{P}}{a b}=\kappa \underset{(\beta 0)}{\mathcal{T}} a b, \beta=1,2 ; \\
& \underset{(\beta 0)}{\stackrel{2}{P}} a b=-\kappa \underset{(0 \beta)}{\mathcal{T}} a b, \beta=1,2 ; \\
& \underset{(\beta)}{S} a b-\frac{1}{2} S c(D) \underset{(\beta)}{g_{a b}}=\kappa \underset{(\beta \beta)}{\mathcal{T}} a b, \alpha=1,2 ; \\
& \underset{(22)}{Q_{2}} a b=\kappa \underset{(21)}{\mathcal{T}} a b ; \\
& \stackrel{{\underset{(21)}{2}}_{Q}^{(2)}}{ }=-\kappa \underset{(12)}{\mathcal{T}} a b .
\end{aligned}
$$

In the case when D is a $J N$-linear connection, one obtains the result in [7].
In order to avoid confusions when raising and lowering indices, because of the fact that the components $g^{a b}, \underset{(1)}{g^{a b}}, \underset{(2)}{g^{a b}}$ are different, we will denote in the following by i, j, \ldots the indices corresponding to the horizontal distribution, by a, b, \ldots those corresponding to N_{1}, and by p, q, \ldots those corresponding to V_{2}. Thus, if we impose
the condition that the divergence of the energy- momentum tensor vanish, in the adapted frame we will obtain

Theorem 5.2. The law of conservation on $T^{2} M$ endowed with the metrical N-linear connection D is given by

In the same way, one can deduce the Maxwell equations associated to the metrical N-linear connection D.

References

[1] Atanasiu, Gh.: New aspects in the Differential Geometry of second order, Sem. de Mecanică, Univ de Vest, Timişoara, 2001.
[2] Atanasiu, Gh., The homogeneous prolongation to the second order tangent bundle of a Riemannian metric (to appear);
[3] Miron, R., The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer Acad. Publ. FTPM no. 82, 1997;
[4] Miron, R., The Geometry of Higher Order Finsler Spaces, Hadronic Press, Inc. USA, (1998).
[5] Miron, R., The homogeneous lift of a Riemannian metric, An. St. Univ "Al. I. Cuza", Iaşi;
[6] Miron, R. and Anastasiei, M., The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Acad. Publ. no. 59, 1994;
[7] Miron, R. and Atanasiu, Gh., Geometrical theory of gravitational and electromagnetic fields in higher order Lagrange spaces, Tsukuba J. of Math., vol 20, 1996;
[8] Miron, R., and Atanasiu, Gh., Compendium on the higher-order Lagrange spaces: The geometry of k-osculator bundles. Prolongation of the Riemannian, Finslerian and Lagrangian structures. Lagrange spaces, Tensor N.S. 53, 1993.

EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER

[9] Miron, R., and Atanasiu, Gh., Compendium sur les espaces Lagrange d'ordre superieur: La geometrie du fibre k-osculateur. Le prolongement des structures Riemanniennes, Finsleriennes et Lagrangiennes. Les espaces $L^{(k) n}$, Univ. Timişoara, Seminarul de Mecanică, no. 40, 1994, 1-27.
[10] Miron, R., and Atanasiu, Gh.,Lagrange Geometry of Second Order, Math. Comput Modelling, 20, no. 4, 1994, 41-56.
[11] Miron, R., and Atanasiu, Gh., Differential Geometry of the k-Osculator Bundle, Rev. Roumaine Math. Pures et Appl., 41, 3/4, 1996, 205-236.
[12] Miron, R., and Atanasiu, Gh., Higher-order Lagrange Spaces, Rev. Roumaine Math. Pures et Appl., 41, 3/4, 1996, 251-262.
[13] Miron, R., and Atanasiu, Gh., Prolongations of the Riemannian, Finslerian and Lagrangian Structures, Rev. Roumaine Math. Pures et Appl., 41, 3/4, 1996, 237-249.
[14] Munteanu, Gh. and Bălan, V., Leç̧ii de Teoria relativităţii, Ed. Bren, Bucureşti, 2000.
"Transilvania" University, Brasov, Romania

[^0]: Received by the editors: 15.09.2005
 2000 Mathematics Subject Classification. 53C60, 58 B20, 70 G45.
 Key words and phrases. 2-tangent bundle, nonlinear connection, N-linear connection, Riemannian metric, Ricci tensor, Einstein equations.

