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PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES
DEFINED BY A MODULUS FUNCTION

YAVUZ ALTIN AYSEGUL GOKHAN HIFSI ALTINOK

Abstract. 1n this paper we introduce the sequence spaces éo(p,f,q,s), é(p,f,q,s) and
m(p,f,q,s) using a modulus function f and defined over a seminormed space (X,q) semi-
normed by g. We study some properties of these sequence spaces and obtain some inclusion

relations.

1. Introduction

Let m, ¢ and ¢y be the Banach spaces of bounded, convergent and null se-
quences x = (xx) with the usual norm ||z| = sgp |zk| . Let D be the shift operator
on s, that is, Dz = (xx)pe, , D?x = (2k) ey §£§ so on. It may be recalled that a
Banach limit (see Banach [1]) L is a nonnegative linear functional on m such that L
is invariant under shift operator (that is, L (Dxz) = L(x) for x € m) and L (e) = 1,
where e = (1,1,...). A sequence x € m is almost convergent (see Lorentz [8]) if all
Banach limits of x coincide. Let ¢ denote the space of almost convergent sequences.

It is proved by Lorentz [8] that

¢ = {a? : lim ¢, (z) exists uniformly in n}

m—0oQ
where
I &

Several authors including Duran [5] , King [7] and Nanda ( [12] ,[13]) have

studied almost convergent sequences.
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The notion of a modulus function was introduced by Nakano [11] in 1953. We
recall that a modulus f is a function from [0, 00) to [0,00) such that (i) f(z) = 0 if
and only if x =0, (i) f(z+y) < f(z)+ f(y), for allz > 0, y > 0, (i) f is increasing,
(iv) f is continuous from the right at 0.

Since |f (z) — f(y)] < f(lz—y|), it follows from condition (iv) that f is
continuous on [0,00). Furthermore, we have f(nz) < nf (z) for all n € N, from

condition (ii), and so

hence
1 x
—f(x) Sf(f> for all n € N.
n n
A modulus may be bounded or unbounded. For example, f(z) = zP,
(0 <p<1) is unbounded and f () = i is bounded. Maddox [10] and Ruckle

[14] used a modulus function to construct some sequence spaces.
After then some sequence spaces, defined by a modulus function, were intro-

duced and studied by Bhardwaj [2], Bilgin [3], Connor [4], Esi [6], and many others.

Definition 1.1. Let g1, g2 be seminorms on a vector space X. Then qi is said to
be stronger than go if whenever (x,) is a sequence such that ¢i(z,) — 0, then also
g2(zn) — 0. If each is stronger than the other g1 and g2 are said to be equivalent (one

may refer to Wilansky [15] ).

Lemma 1.1. Let g1 and g2 be seminorms on a linear space X. Then q1 is stronger
than qo if and only if there exists a constant M such that gs (x) < Mgy (z) for all
x € X (see for instance Wilansky [15]).

Let p = (pm) be a sequence of strictly positive real numbers and X be a
seminormed space over the field C of complex numbers with the seminorm ¢q. We
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define the sequence spaces as follows:

éo(p, f0,8) = {x € X : Tim m= (£ (¢ (tmn (2))))"" = 0 uniformly in n} ,
e fra,8) = {x € X lim m™* [(f (q(tm,n (# — €€))))]"" =0 for some ¢,

uniformly in n},

i fars) = {0 € Xsupm (@t @D <o

m.n
where f is a modulus function.

The following inequalities will be used throughout the paper. Let p = (py)
be a bounded sequence of strictly positive real numbers with 0 < p,, < supp,, = H,

C = max (1,2771) | then
|am+bm|pm §0{|am|pm+|bm|pm}v (1.1)

where a,,, b, € C .

2. Main results

Theorem 2.1. Let p = (py,) be a bounded sequence, then &y (p, f,q,s), ¢(p, f,q,s),
m (p, f,q,s) are linear spaces.

Proof. We give the proof for ¢y (p, f,q,s) only. The others can be treated
similarly. Let z,y € é (p, f,q,s). For A\, u € C, there exist positive integers M) and
Ny such that |A| < M) and || < N,. Since f is subadditive and ¢ is a seminorm

M= [f (@ (b Oz + )" < C (M) m= [ (g (tmn ()] +
C (NH)H m=* [f (q (tm.n (y)))]"™ — O,uniformly in n. This proves that éo (p, f, ¢, s) is

a linear space.

Theorem 2.2. The space ¢ (p, f,q,s) is a paranormed space, paranormed by

g9 (x) =supm ™" ([f (q (tmn (2))]")™,
where M = max (1,sup p,,) . The spaces ¢ (p, f,q,s), m(p, f,q,s) are paranormed by
g, if inf p,,, > 0.

15



YAVUZ ALTIN AYSEGUL GOKHAN HIFSI ALTINOK

Proof. Omitted.

Theorem 2.3. Let f be modulus function, then
(1) o (p, fr9,8) S (p, frq,9),
(ii) ¢(p, f,q,8) S (p, f,q:8)-
Proof. We prove the second inclusion, since the first inclusion is obvious.

Let z € ¢(p, f,q,s), by definition of a modulus function (the inequality (7)), we have

m = [f (g (tmn (@) < Cm7 [ (q (b (x = O)]"" + Cm " [f (g ()] .

Then there exists an integer K, such that ¢ (¢) < K,. Hence, we have

m ™ [f (@ (o (@) < O [ (q (b (x = )] +Cm ™~ max(1, [(K) f (1)]7),
(1)

sox €m(p, f,q,s).
Theorem 2.4. Let f, f1, fo be modulus functions q, q1, g2 seminorms and s, s1, s3 > 0.
Then

(i) If s > 1 then Z (f1,q9,5) € Z(f o f1,4q,5),

(i) Z (p, f1,4,5) N Z (p, f2,4:8) € Z (p, f1 + f2. 4, 5),

(iii) Z (p, f,q1,5) N Z (p, fq2,8) € Z (p, f,q1 + g2, 8)

(iv) If q1 is stronger than g2 then Z (p, f,q1,8) C Z (p, f, q2, 8),

(v) If s1 < s2 then Z (p, f,q,51) € Z (p, f, q, 52) ,

(vi) If g1 = (equivalent to) q2 , then Z (p, f,q1,8) = Z (p, f,q2, ) ,

where Z = m, ¢ and Cy.

Proof. (i) We prove this part for Z = ¢ and the rest of the cases will follow
similarly. Let « € ¢(p, f,q, ), so that

Sm=m""[f1(q (tmn (v — )] — 0.

Let € > 0 and choose ¢ with 0 < § < 1 such that f (¢) < e for 0 <t < 4. Now
we write
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L = {meN: fi(qtmn(xz—120)) <d}
I2 = {meN:fl(Q(tm,n(x_Z)))>6}'

For f1(q(tm.n (x —¥£))) >4,

fi (q (tm,n (x - Z))) < fi(q (tm,n (ac —1))) sTh<1+ Hfl (q (tm,n (v — E))) 5_1H

where m € Iy and [|u|] denotes the integer part of u. By the definition of f we have

for fi (¢ (tmn (x —¥£))) >0,

F(fi(g(tmn (@ =0))) < (14 [[f1 (g (tmn (z =€) 67H]) £ (1)

<2f (1) f1 (g (tmm (x = €))) 0. (2.1)
FOI‘ fl (q (tnb,n (33 - g))) S 57

F(f1(g(tmn (z—0)))) <e (2.2)
where m € I;. By (2.1) and (2.2) we have
m= [f (f1 (g (tmn (= 0))))] < m™c 4+ [2f(1)67] S, — 0. as m —
oo,uniformly n.

Hence é(pathvs) - é(p’f Of17QaS) .
(ii) The proof follows from the following inequality

m=* [(f1 + f2) (¢ (tm,n (@)™ < Cm™*[f1(q (tm,n @) +Cm™* [fa (¢ (tm,n (@)

(iii), (iv) (v)and (vi) follow easily.

Corollary 2.1. Let f be a modulus function, then we have
(i) If s> 1, Z(p,q.5) € Z(p. f.q.5),
(i) Z (p. f.a) € Z (p, f,q.5),
(iit) Z (p,q) € Z (p, ¢, 5) ,
() Z(f,q) € Z(f,q.5)
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where Z = m, ¢ and Cy.

The proof is straightforward.

Theorem 2.5. For any two sequences p = (p) and r = (ry) of positive real numbers

and for any two seminorms q; and gz on X we have Z (p, f,q1,8) N Z (v, f, q2, s) # 0.

Proof. The proof follows from the fact that the zero element § belongs to

each of the classes of sequences involved in the intersection.

Theorem 2.6. For any two sequences p = () and r = (ry,) , we have &y (1, f,q,8) C

¢o (p, f,q,s) if and only if lim inf ’T’m > 0.

Proof. If we take y,, = f(q(tmn ())) for all m € N, then using the same
technique of lemma 1 of Maddox [9], it is easy to prove the theorem.
Theorem 2.7. For any two sequences p = (pm) and r = (ry,) , we have é (r, f,q,s) =
¢o (p, f,q,s) if and only if liminf % > 0 and lim inf % > 0.
Theorem 2.8. Let 0 < py, < 1y < 1. Then m(r, f,q,s) is closed subspace of
m(p, f.q,5) -

Proof. Let € i (r, f,q, s) . Then there exists a constant B > 1 such that
k7 1 (tm (@)™ < B for all m,n

and so

k5 [f (b (2))P"/™ < B for all m,n.

Thus = € m(p, f,q,8). To show that (7, f,q,s) is closed, suppose that z! €
m(r, f,q,8) and 2° — x € M (p, f,q,8). Then for every 0 < ¢ < 1, there exists
N such that for all m,n

K= [f (tmm (2 — 2))]""™ < B foralli> N.

Now

Tm /M

E=* [f (tmn (2 — 2))] <E 7 [f (tm (28— 2))]7M <2 foralli > N,

Therefore x € m (r, f,q, s). This completes the proof.
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