ON A FIRST-ORDER NONLINEAR DIFFERENTIAL SUBORDINATION II

GH. OROS AND GEORGIA IRINA OROS

Abstract

We find conditions on the complex-valued functions A, B, C, D defined in the unit disc U and the positive constants M and N such that $$
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right|<M
$$ implies $|p(z)|<N$, where p is analytic in U, with $p(0)=0$.

1. Introduction and preliminaries

In [1] chapter IV, the authors have analyzed a first-order linear differential subordination

$$
\begin{equation*}
B(z) z p^{\prime}(z)+C(z) p(z)+D(z) \prec h(z), \tag{1}
\end{equation*}
$$

where B, C, D and h are complex-valued functions.
A more general version of (1) is given by

$$
\begin{equation*}
B(z) z p^{\prime}(z)+C(z) p(z)+D(z) \in \Omega, \tag{2}
\end{equation*}
$$

where $\Omega \subseteq \mathbb{C}$.
In this paper we shall extend this problem by considering a first-order nonlinear differential subordination given by

$$
\begin{equation*}
A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z) \prec h(z) \tag{3}
\end{equation*}
$$

A more general version of (3) is given by:

$$
\begin{equation*}
A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z) \in \Omega \tag{4}
\end{equation*}
$$

Received by the editors: 06.05.2005.

2000 Mathematics Subject Classification. 30C80.
Key words and phrases. Differential subordination, dominant.
where $\Omega \subseteq \mathbb{C}$.
The general problem is to find conditions on the complex-valued functions A, B, C, D and h such that the differential subordination given by (3) or (4) will have dominants and even best dominant.

We let U denote the class of holomorphic functions in the unit disc

$$
U=\{z \in \mathbb{C} ;|z|<1\}, \quad \bar{U}=\{z \in \mathbb{C} ;|z| \leq 1\}
$$

For $a \in \mathbb{C}$ and $n \in \mathbb{N}^{*}$ we let

$$
\mathcal{H}[a, n]=\left\{f \in U, f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots, z \in U\right\}
$$

and

$$
A_{n}=\left\{f \in U, f(z)=z+a_{n+1} z^{n+1}+\ldots, z \in U\right\}
$$

and $A_{1}=A$.
We let Q denote the class of functions q that are holomorphic and injective in $\bar{U} \backslash E(q)$, where

$$
E(q)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}
$$

and furthermore $q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial U \backslash E(q)$, where $E(q)$ is called exception set.
In order to prove the new results we shall use the following:
Lemma A. [1] (Lemma 2.2.d p.24) Let $q \in Q$, with $q(0)=a$, and let

$$
p(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\ldots
$$

be analytic in U with $p(z) \not \equiv a$, and $n \geq 1$.
If p is not subordinate to q, then there exist points $z_{0}=r_{0} e^{i \theta_{0}} \in U, r_{0}<1$ and $\zeta \in \partial U \backslash E(q)$, and an $m \geq n \geq 1$ for which $p\left(U_{r_{0}}\right) \subset q(U)$
(i) $p\left(z_{0}\right)=q(\zeta)$
(ii) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta q^{\prime}(\zeta)$, and
(iii) $\operatorname{Re} \frac{z_{0} p^{\prime \prime}\left(z_{0}\right)}{p^{\prime}\left(z_{0}\right)}+1 \geq m \operatorname{Re}\left[\frac{\zeta q^{\prime \prime}(\zeta)}{q^{\prime}(\zeta)}+1\right]$.

In this paper we consider the first-order nonlinear differential subordination (4) in which $\Omega=\{w ;|w|<M\}$. Given the functions A, B, C, D and the constant

ON A FIRST-ORDER NONLINEAR DIFFERENTIAL SUBORDINATION II
M, our problem is to find a constant N such that, for $p \in \mathcal{H}[0, n]$, the differential inequality

$$
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right|<M
$$

implies

$$
|p(z)|<N .
$$

If $D(0)=0$, then this result can be written in terms of the differential subordination as

$$
A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z) \prec M z
$$

implies $p(z) \prec N z$.

2. Main results

In this paper we improve the results obtained in [2].
Theorem 1. Let $M>0, N>0$ and let n be a positive integer. Suppose that the functions $A, B, C, D: U \rightarrow \mathbb{C}$ satisfy

$$
\begin{equation*}
n|A(z)|-|C(z)| \geq \frac{M+N^{2}|B(z)|+|D(z)|}{N} \tag{5}
\end{equation*}
$$

If $p \in \mathcal{H}[0, n]$ and

$$
\begin{equation*}
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right|<M \tag{6}
\end{equation*}
$$

then

$$
|p(z)|<N, \quad z \in U .
$$

Proof. If we let

$$
w(z)=A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z),
$$

then from (6) we obtain

$$
\begin{equation*}
|w(z)|=\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right| . \tag{7}
\end{equation*}
$$

From (7) and (6) we have

$$
\begin{equation*}
|w(z)|<M, \quad z \in U \tag{8}
\end{equation*}
$$

Assume that $|p(z)| \nless N$, which is equivalent with $p(z) \nprec N z=q(z)$.
According to Lemma A, with $q(z)=N z$, there exist $z_{0} \in U, z_{0}=r_{0} e^{i \theta_{0}}$, $r_{0}<1, \theta_{0} \in[0,2 \pi), \zeta \in \partial U,|\zeta|=1$ and $m \geq n$, such that $p\left(z_{0}\right)=N \zeta$ and $z_{0} p^{\prime}\left(z_{0}\right)=m N \zeta$.

Using these conditions in (3) we obtain for $z=z_{0}$

$$
\begin{align*}
&\left|w\left(z_{0}\right)\right|=\left|A\left(z_{0}\right) z_{0} p^{\prime}\left(z_{0}\right)+B\left(z_{0}\right) p^{2}\left(z_{0}\right)+C\left(z_{0}\right) p\left(z_{0}\right)+D\left(z_{0}\right)\right| \tag{9}\\
&=\left|A\left(z_{0}\right) m N \zeta+B\left(z_{0}\right) N^{2} \zeta^{2}+C\left(z_{0}\right) N \zeta+D\left(z_{0}\right)\right| \\
& \geq\left|A\left(z_{0}\right) m N+B\left(z_{0}\right) N^{2} \zeta+C\left(z_{0}\right) N\right|-\left|D\left(z_{0}\right)\right| \\
& \geq N\left|A\left(z_{0}\right) m+C\left(z_{0}\right)\right|-N^{2}\left|B\left(z_{0}\right)\right|-\left|D\left(z_{0}\right)\right| \\
& \geq m n\left|A\left(z_{0}\right)\right|-N\left|C\left(z_{0}\right)\right|-N^{2}\left|B\left(z_{0}\right)\right|-\left|D\left(z_{0}\right)\right| \\
& \geq\left[n\left|A\left(z_{0}\right)\right|-\left|C\left(z_{0}\right)\right|\right] N-N^{2}\left|B\left(z_{0}\right)\right|-\left|D\left(z_{0}\right)\right| \geq M .
\end{align*}
$$

Since (9) contradicts (8) we obtain the desired results $|p(z)|<N$.
Instead of prescribing the constant N in Theorem 1 , in some cases we can use in (5) to determine an appropriate $N=N(M, n, A, B, C, D)$ so that (6) implies $|p(z)|<N$. This can be accomplished by solving (5) for N and by taking the supremum of the resulting function over U. The condition (5) is equivalent to

$$
\begin{equation*}
N^{2}|B(z)|-N[n|A(z)|-|C(z)|]+|D(z)|+M \leq 0 . \tag{10}
\end{equation*}
$$

Suppose $B(z) \neq 0$, the inequality (10) holds if

$$
\begin{equation*}
[n|A(z)|-|C(z)|]^{2} \geq 4|B(z)|[|D(z)|+M] . \tag{11}
\end{equation*}
$$

The roots of the trinomial in (10) are

$$
N_{1,2}=\frac{n|A(z)|-|C(z)| \pm \sqrt{[n|A(z)|-|C(z)|]^{2}-4|B(z)|[|D(z)|+M]}}{2|B(z)|} .
$$

Let

$$
\begin{aligned}
& N=\sup _{|z|<1} \frac{n|A(z)|-|C(z)|-\sqrt{[n|A(z)|-|C(z)|]^{2}-4|B(z)|[|D(z)|+M]}}{2|B(z)|} \\
& =\sup _{|z|<1} \frac{2[|D(z)|+M]}{n|A(z)|-|C(z)|+\sqrt{[n|A(z)|-|C(z)|]^{2}-4|B(z)|[|D(z)|+M]}} .
\end{aligned}
$$

If this supremum is finite, we have the following version of the Theorem 1:
Theorem 2. Let $M>0, N>0$ and n be a positive integer. Suppose that $p \in \mathcal{H}[0, n]$ and the functions $A, B, C, D: U \rightarrow \mathbb{C}$, with $B(z) \neq 0$, satisfy:

$$
\begin{gathered}
{[n|A(z)|-|C(z)|]^{2} \geq 4|B(z)|[|D(z)|+M] .} \\
N=\sup _{|z|<1} \frac{2[|D(z)|+M]}{n|A(z)|-|C(z)|+\sqrt{[n|A(z)|-|C(z)|]^{2}-4|B(z)|[|D(z)|+M]}}
\end{gathered}
$$

then

$$
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right|<M
$$

implies

$$
|p(z)|<N, \quad z \in U .
$$

If $D(z) \equiv 0$, the Theorem 1 can be rewritten as the following:
Corollary 1. Let $M>0, N>0$ and n be a positive integer. Suppose that the functions $A, B, C: U \rightarrow \mathbb{C}$ satisfy

$$
n|A(z)|-|C(z)| \geq \frac{M+N^{2}|C(z)|}{N} .
$$

If $p \in \mathcal{H}[0, n]$ and

$$
\left|A(z) z p^{\prime}(z)+B(z) p^{2}(z)+C(z) p(z)+D(z)\right|<M
$$

then

$$
|p(z)|<N, \quad z \in U .
$$

GH. OROS AND GEORGIA IRINA OROS

References

[1] Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.
[2] Oros, Gh., Oros, Georgia Irina, On a first-order nonlinear differential subordination I, Analele Univ. Oradea, Fasc. Matematică, Tome IX, 5-12, 2002, 65-70.

Department of Mathematics, University of Oradea
Str. Armatei Române, No. 5, 410087 Oradea, Romania
E-mail address: georgia_oros_ro@yahoo.co.uk

