STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume L, Number 2, June 2005

NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM UNDER NONRESONANCE CONDITION

DEZIDERIU MUZSI

Abstract. The nonresonance method of Mawhin and Ward Jr. is used to discuss the existence of solutions to two point boundary value problems for second order functional-differential equations.

1. Introduction

In this paper we present existence results for the two point boundary value problem

$$\begin{cases} -u''(t) = cu(t) + F(u)(t), & t \in (0,1) \\ u(0) = u(1) = 0 \end{cases}$$
(1)

under the assumption that the constant c is not an eigenvalue of the operator -u''(nonresonance condition) and the growth of F(u) on u is at most linear. More exactly, we will apply the fixed point theorems of Banach, Schauder and the Leray-Schauder principle in order to obtain weak solutions to (1), that is a function $u \in H_0^1(0, 1)$ with

$$\int_0^1 u'(t)v'(t)dt = \int_0^1 (cu(t) + F(u)(t))v(t)dt, \text{ for all } v \in H_0^1(0,1).$$

The method we use was introduced by J. Mawhin and J. Ward Jr. in [2]. See also [3], [4], [5] for its applications to differential equations. This paper was inspired by [7] and [6], chapter 6. The novelty in this note is that the term F(u) is given by a general operator F from $L^2(0,1)$ to $L^2(0,1)$. In particular, F can be the usual superposition operator f(t, u(t)) as in[6] and [7], or a delay operator $f(t, u(t - \tau))$.

Received by the editors: 10.05.2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ 34L30.$

Key words and phrases. Boundary value problems, functional-differential equations, nonresonance.

1.1. Fixed point formulation of problem (1). We consider $F : L^2(0,1) \rightarrow L^2(0,1)$ to be a continuous operator and we define

$$L: H^2(0,1) \cap H^1_0(0,1) \to L^2(0,1), \quad Lu = -u'' - cu$$

Let $L^{-1}: L^2(0,1) \to H^2(0,1) \subset L^2(0,1)$ be the inverse of L. If we look a priori for a solution u of the form $u = L^{-1}v$ with $v \in L^2(0,1)$, then we have to solve the fixed point problem on $L^2(0,1)$:

$$(F \circ L^{-1})(v) = v \tag{2}$$

Throughout this paper we denote:

$$\langle u, v \rangle_{L^2} = \int_0^1 uv dx, \ \|u\|_{L^2} = \left(\int_0^1 u^2 dx\right)^{1/2}, \ \|v\|_{H^1_0} = \left(\int_0^1 (v')^2 dx\right)^{1/2}$$

1.2. An auxiliarly result. We present first an auxiliarly result given in [7]. Let $(\lambda_k)_{k\geq 1}$ be the sequence of all eigenvalues of -u'' with respect to the boundary condition u(0) = u(1) = 0, and let $(\phi_k)_{k\geq 1}$ be the corresponding eigenfunctions, with $\|\phi_k\|_{L^2} = 1$.

Lemma 1. Let c be any constant with $c \neq \lambda_k$ for k = 1, 2, ... For each $v \in L^2(0, 1)$, there exists a unique weak solution $u \in H_0^1(0, 1)$ to the problem

$$\begin{cases} -u'' - cu = v, \quad on \ (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$

denoted by $L^{-1}v$, and the following eigenfunction expansion holds

$$L^{-1}v = \sum_{k=1}^{\infty} (\lambda_k - c)^{-1} \langle v, \phi_k \rangle_{L^2}$$
(3)

where the series converges in $H_0^1(0, 1)$. In addition,

$$\left\|L^{-1}v\right\|_{L^{2}} \le \mu_{c} \left\|v\right\|_{L^{2}} \text{ for all } v \in L^{2}(0,1)$$
(4)

where

$$\mu_c = \max\left\{ |\lambda_k - c|^{-1}; k = 1, 2, \dots \right\}.$$

NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM UNDER NONRESONANCE CONDITION

2. Existence results

We first show how the fixed point theorems of Banach and Schauder can be used to obtain existence results for problem (1).

Theorem 2. Suppose

$$\lambda_j < c < \lambda_{j+1} \text{ for some } j \in \mathbb{N}, j \ge 1, \text{ or } 0 \le c < \lambda_1$$
(5)

Also assume that

$$\|F(v_1) - F(v_2)\|_{L^2} \le a \|v_1 - v_2\|_{L^2}$$
(6)

for all $v_1, v_2 \in L^2(0, 1)$, where a is a nonnegative constant such that

$$a\mu_c < 1. \tag{7}$$

Then (1) has a unique solution $u \in H_0^1(0,1) \cap H^2(0,1)$. In addition

$$(F \circ L^{-1})^n(v_0) \to v \text{ in } L^2(0,1) \text{ as } n \to \infty$$

for any $v_0 \in L^2(0,1)$, where v = Lu.

Proof. We will show that $F \circ L^{-1}$ is a contraction on $L^2(0,1)$. For this, let $v_1, v_2 \in L^2(0,1)$. Using (6) and (4) we have

$$\left\|F(L^{-1}(v_1)) - F(L^{-1}(v_2))\right\|_{L^2} \le a \left\|L^{-1}(v_1 - v_2)\right\|_{L^2} \le a\mu_c \left\|v_1 - v_2\right\|_{L^2}.$$

This together with (7) shows that $F \circ L^{-1}$ is a contraction. The conclusion follows from Banach's fixed point theorem.

Theorem 3. Suppose that (5) holds, F is continuous and satisfies the growth condition

$$\|F(u)\|_{L^2} \le a \, \|u\|_{L^2} + h \tag{8}$$

for all $u \in L^2(0,1)$, where $h \in \mathbb{R}_+$ and $a \in \mathbb{R}_+$ is as in (7). Then (1) has at least one solution $u \in H^2(0,1) \cap H^1_0(0,1)$.

Proof. We have $F \circ L^{-1} = F \circ J \circ L_0^{-1}$ where

$$\begin{cases} L_0^{-1}: L^2(0,1) \to H^2(0,1), \ L_0^{-1}u = L^{-1}u \text{ and} \\ \\ J: H_0^1(0,1) \to L^2(0,1), \ Ju = u. \end{cases}$$

Recall that F is continuous and by (8) is bounded. Next, by Rellich-Kondrachov theorem (see [1]), the imbedding of $H_0^1(0,1)$ into $L^2(0,1)$ is completely continuous. Thus, $F \circ L^{-1}$ is a completely continuous operator. On the other hand, from (8) and (4) we have

$$\left\|F(L^{-1}(v))\right\|_{L^{2}} \le a \left\|L^{-1}(v)\right\|_{L^{2}} + h \le a\mu_{c} \left\|v\right\|_{L^{2}} + h.$$

Now (7) guarantees that $F \circ L^{-1}$ is a self-map of a sufficiently large closed ball of $L^2(0, 1)$. Thus we may apply Schauder's fixed point theorem.

Better results can be obtained if we use the Leray-Schauder principle (see [6]).

Theorem 4. Suppose that F is continuous and has the decomposition

$$F(u) = G(u)u + F_0(u) + F_1(u)$$

Also assume that

$$\|F_0(u)\|_{L^2} \le a \|u\|_{L^2} + h_0 \tag{9}$$

$$\|F_1(u)\|_{L^2} \le b \|u\|_{L^2} + h_1 \tag{10}$$

$$\langle u, F_1(u) \rangle_{L^2} \le 0 \tag{11}$$

$$-M \le G(u)(t) + c \le \beta < \lambda_1 \tag{12}$$

for all $u \in L^2(0,1)$, where $a, b, h_0, h_1, M, \beta \in \mathbb{R}_+$. In addition assume that $0 \le c \le \beta$ and

$$a/\lambda_1 < 1 - \beta/\lambda_1. \tag{13}$$

Then (1) has at least one solution $u \in H^2(0,1) \cap H^1_0(0,1)$. 66 NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM UNDER NONRESONANCE CONDITION

Proof. We look for a fixed point $v \in L^2(0,1)$ of $F \circ L^{-1}$. As above, $F \circ L^{-1}$ is a completely continuous operator. We will show that the set of all solutions to

$$v = \lambda(F \circ L^{-1})(v) \tag{14}$$

when $\lambda \in [0, 1]$ is bounded in $L^2(0, 1)$. Let $v \in L^2(0, 1)$ be any solution of (14). Let $u = L^{-1}v$. It is clear that u solves

$$\begin{cases} -u''(t) - cu(t) = \lambda F(u)(t), & t \in (0, 1) \\ u(0) = u(1) = 0. \end{cases}$$
(15)

Since u is a weak solution of (15), we have

$$||u||_{H_0^1}^2 = \langle cu + \lambda F(u), u \rangle_{L^2}$$

It is easy to check that

$$\left\langle cu + \lambda G(u)u, u \right\rangle_{L^2} \le \beta \left\| u \right\|_2^2.$$
(16)

We define

$$R(u) := \|u\|_{H_0^1}^2 - \beta \|u\|_2^2$$
(17)

and using (11), (16) and $c \leq \beta$, we obtain

$$R(u) \le ||u||_{H_0^1}^2 - \langle cu + \lambda G(u)u, u \rangle_{L^2} \le |\langle F_0(u), u \rangle_{L^2}|$$

On the other hand, if we denote $c_k = \langle u, \phi_k \rangle_{L^2} = \langle u, \phi_k \rangle_{H_0^1} / \lambda_k$, we see that

$$R(u) = \sum_{k=1}^{\infty} (\lambda_k - \beta) c_k^2 \ge \sum_{k=1}^{\infty} \lambda_k (1 - \beta/\lambda_1) c_k^2$$

$$\ge (1 - \beta/\lambda_1) \|u\|_{H_0^1}^2.$$
(18)

Recall that

$$\lambda_1 = \inf \left\{ \|u\|_{H_0^1}^2 / \|u\|_2^2 ; u \in H_0^1(0,1) \setminus \{0\} \right\}$$

and using (18), (17), (9) and Holder's inequality we obtain

$$\begin{aligned} (1 - \beta/\lambda_1) \|u\|_{H_0^1}^2 &\leq |\langle F_0(u), u \rangle_{L^2}| \leq \|F_0(u)\|_{L^2} \|u\|_{L^2} \leq a \|u\|_{L^2}^2 + h_0 \|u\|_{L^2} \\ &\leq \frac{a}{\lambda_1} \|u\|_{H_0^1}^2 + C \|u\|_{H_0^1} \end{aligned}$$

for some constant C > 0. Thus (13) guarantees that there is a constant r > 0 independent of λ with $||u||_{H_0^1} \leq r$. Finally, a bound for $||v||_{L^2}$ can be immediately derived from $u = L^{-1}v$. The collusion now follows from the Leray-Schauder principle. \Box

3. Particular cases

Particular case 1. Let F(u) be the usual superposition operator, F(u)(t) = f(t, u(t)). Then for the problem

$$\begin{cases} -u''(t) = cu(t) + f(t, u(t)), \ t \in (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$
(19)

we have the following existence result given in [7]:

Theorem 5. Assume that $f: (0,1) \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function, $f(\cdot,0) \in L^2(0,1)$ and that f satisfies the Lipschitz condition

$$|f(t, v_1) - f(t, v_2)| \le a |v_1 - v_2|$$
(20)

for every $v_1, v_2 \in \mathbb{R}$, $t \in (0, 1)$ and some $a \ge 0$. Also assume that the conditions (5) and (7) from Theorem 2 are satisfied.

Then (19) has a unique solution $u \in H_0^1(0,1) \cap H^2(0,1)$.

Proof. Using (20) we deduce

$$|f(t, u)| \le |f(t, u) - f(t, 0)| + |f(t, 0)| \le a |u| + |f(t, 0)|$$

for every $u \in \mathbb{R}$ and $t \in (0, 1)$. Moreover, f beeing a Caratheodory function, we have that the Nemitskii operator

$$u \longmapsto f(\cdot, u(\cdot))$$

is well defined, bounded and continuous from $L^2(0,1)$ into $L^2(0,1)$. Using again (20) we obtain

$$\int_0^1 |f(t, v_1(t)) - f(t, v_2(t))|^2 dt \le a^2 \int_0^1 |v_1(t) - v_2(t)|^2 dt$$

 \mathbf{SO}

$$\|F(v_1) - F(v_2)\|_{L^2} \le a \|v_1 - v_2\|_{L^2}.$$

The conclusion follows now by applying Theorem 2. \Box 68

NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM UNDER NONRESONANCE CONDITION

Particular case 2. Let $0 < \tau < 1$ and let F be defined by

$$F(u)(t) = \begin{cases} f(t, u(t - \tau)), & \tau < t < 1\\ g(t), & 0 < t < \tau. \end{cases}$$
(21)

Theorem 6. Assume that $f : (\tau, 1) \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function, $f(\cdot, 0) \in L^2(\tau, 1)$ and that f satisfies the Lipschitz condition

$$|f(t, v_1) - f(t, v_2)| \le a |v_1 - v_2|$$
(22)

for all $v_1, v_2 \in \mathbb{R}$, $t \in (\tau, 1)$ and some a > 0. Also assume that $g \in L^2(0, \tau)$ and that the conditions (5) and (7) from Theorem 2 are satisfied.

Then (1) with F defined by (21) has a unique solution $u \in H_0^1(0,1) \cap H^2(0,1)$.

Proof. Let $u \in L^2(0,1)$. Then $u(\cdot - \tau) \in L^2(\tau,1)$. Hence, $f(\cdot, u(\cdot - \tau)) \in L^2(\tau,1)$. Moreover, since $g \in L^2(0,\tau)$ we have $F(u) \in L^2(0,1)$ is well defined as operator from $L^2(0,1)$ into $L^2(0,1)$.

Let (u_k) be a sequence wich converges to u in $L^2(0,1)$. Let $v_k(t) = u_k(t-\tau)$ and $v(t) = u(t-\tau)$. Then

$$\int_{\tau}^{1} (v_k(t) - v(t))^2 dt = \int_{\tau}^{1} (u_k(t - \tau) - u(t - \tau))^2 dt$$
$$= \int_{0}^{1 - \tau} (u_k(t) - u(t))^2 dt \longrightarrow 0, \text{ as } k \to \infty,$$

so $v_k \to v$ in $L^2(\tau, 1)$ as $k \to \infty$. Consequently, $f(\cdot, v_k(\cdot)) \longrightarrow f(\cdot, v(\cdot))$ in $L^2(\tau, 1)$ and by the definition of F it follows that $F(u_k) \to F(u)$ in $L^2(0, 1)$. Using (22) we deduce

$$\begin{split} \int_0^1 (F(v_1)(t) - F(v_2)(t))^2 dt &\leq \int_\tau^1 (f(t, v_1(t-\tau)) - f(t, v_2(t-\tau)))^2 dt \\ &\leq a^2 \int_\tau^1 (v_1(t-\tau) - v_2(t-\tau))^2 dt \\ &\leq a^2 \int_0^{1-\tau} (v_1(s) - v_2(s))^2 ds \\ &\leq a^2 \int_0^1 (v_1(s) - v_2(s))^2 ds \end{split}$$

and finally

$$\|F(v_1) - F(v_2)\|_{L^2} \le a \|v_1 - v_2\|_{L^2}.$$

The conclusion follows now by applying Theorem 2. \Box

References

- [1] Brezis, H., Analyse Foctionelle. Theorie et applications, Dunod, Paris, 1983
- [2] Mawhin, J., Ward Jr., J., Nonresonance and existence for nonlinear elliptic boundary value problems, Nonlinear Anal. 6 (1981), 677-684.
- [3] Ntouyas, S. K., Sficas, Y. G., Tsamatos, P. Ch., Boundary Value Problems for Functional Differential Equations, J. Math. Anal. Appl. 199 (1996), 213-230.
- [4] O'Regan, D., Nonresonant nonlinear singular problems in the limit circle case, J. Math. Anal. Applic., 197(1996), 708-725.
- [5] O'Regan, D., Caratheodory theory of nonresonant second order boundary value problems, Differential Equations and Dynamical Systems, 4 (1996), 57-77.
- [6] O'Regan, D., Precup, R., Theorems of Leray-Schauder Type and Applications, Gordon and Breach Science Publishers, Amsterdam, 2001.
- [7] Precup, R., Existence results for nonlinear boundary value problems under nonresonance conditions, in: Qualitative Problems for Differential Equations and Control Theory, C. Corduneanu (ed.), World Scientific, Singapore, 1995, 263-273.

BABEŞ-BOLYAI UNIVERSITY, DEPARTMENT OF APPLIED MATHEMATICS STR. M. KOGĂLNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: dmuzsi@math.ubbcluj.ro