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NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM
UNDER NONRESONANCE CONDITION

DEZIDERIU MUZSI

Abstract. The nonresonance method of Mawhin and Ward Jr. is used to

discuss the existence of solutions to two point boundary value problems

for second order functional-differential equations.

1. Introduction

In this paper we present existence results for the two point boundary value

problem  −u′′(t) = cu(t) + F (u)(t), t ∈ (0, 1)

u(0) = u(1) = 0
(1)

under the assumption that the constant c is not an eigenvalue of the operator −u′′

(nonresonance condition) and the growth of F (u) on u is at most linear. More exactly,

we will apply the fixed point theorems of Banach, Schauder and the Leray-Schauder

principle in order to obtain weak solutions to (1), that is a function u ∈ H1
0 (0, 1) with∫ 1

0

u′(t)v′(t)dt =
∫ 1

0

(cu(t) + F (u)(t))v(t)dt, for all v ∈ H1
0 (0, 1).

The method we use was introduced by J. Mawhin and J. Ward Jr. in [2]. See

also [3], [4], [5] for its applications to differential equations. This paper was inspired

by [7] and [6], chapter 6. The novelty in this note is that the term F (u) is given

by a general operator F from L2(0, 1) to L2(0, 1). In particular, F can be the usual

superposition operator f(t, u(t)) as in[6] and [7], or a delay operator f(t, u(t− τ)).
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1.1. Fixed point formulation of problem (1). We consider F : L2(0, 1) →

L2(0, 1) to be a continuous operator and we define

L : H2(0, 1) ∩H1
0 (0, 1) → L2(0, 1), Lu = −u′′ − cu

Let L−1 : L2(0, 1) → H2(0, 1) ⊂ L2(0, 1) be the inverse of L. If we look a priori for

a solution u of the form u = L−1v with v ∈ L2(0, 1), then we have to solve the fixed

point problem on L2(0, 1) :

(F ◦ L−1)(v) = v (2)

Throughout this paper we denote:

〈u, v〉L2 =
∫ 1

0

uvdx, ‖u‖L2 =
(∫ 1

0

u2dx

)1/2

, ‖v‖H1
0

=
(∫ 1

0

(v′)2 dx

)1/2

1.2. An auxiliarly result. We present first an auxiliarly result given in [7]. Let

(λk)k≥1 be the sequence of all eigenvalues of −u′′ with respect to the boundary con-

dition u(0) = u(1) = 0, and let (φk)k≥1 be the corresponding eigenfunctions, with

‖φk‖L2 = 1.

Lemma 1. Let c be any constant with c 6= λk for k = 1, 2, .... For each v ∈ L2(0, 1),

there exists a unique weak solution u ∈ H1
0 (0, 1) to the problem −u′′ − cu = v, on (0, 1)

u(0) = u(1) = 0

denoted by L−1v, and the following eigenfunction expansion holds

L−1v =
∞∑

k=1

(λk − c)−1 〈v, φk〉L2 (3)

where the series converges in H1
0 (0, 1). In addition,

∥∥L−1v
∥∥

L2 ≤ µc ‖v‖L2 for all v ∈ L2(0, 1) (4)

where

µc = max
{
|λk − c|−1 ; k = 1, 2, ...

}
.
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2. Existence results

We first show how the fixed point theorems of Banach and Schauder can be

used to obtain existence results for problem (1).

Theorem 2. Suppose

λj < c < λj+1 for some j ∈ N, j ≥ 1, or 0 ≤ c < λ1 (5)

Also assume that

‖F (v1)− F (v2)‖L2 ≤ a ‖v1 − v2‖L2 (6)

for all v1, v2 ∈ L2(0, 1), where a is a nonnegative constant such that

aµc < 1. (7)

Then (1) has a unique solution u ∈ H1
0 (0, 1) ∩H2(0, 1). In addition

(F ◦ L−1)n(v0) → v in L2(0, 1) as n →∞

for any v0 ∈ L2(0, 1), where v = Lu.

Proof. We will show that F ◦ L−1 is a contraction on L2(0, 1). For this, let

v1, v2 ∈ L2(0, 1). Using (6) and (4) we have

∥∥F (L−1(v1))− F (L−1(v2))
∥∥

L2 ≤ a
∥∥L−1 (v1 − v2)

∥∥
L2 ≤ aµc ‖v1 − v2‖L2 .

This together with (7) shows that F ◦ L−1 is a contraction. The conclusion follows

from Banach’s fixed point theorem.�

Theorem 3. Suppose that (5) holds, F is continuous and satisfies the growth condi-

tion

‖F (u)‖L2 ≤ a ‖u‖L2 + h (8)

for all u ∈ L2(0, 1), where h ∈ R+ and a ∈ R+ is as in (7). Then (1) has at least one

solution u ∈ H2(0, 1) ∩H1
0 (0, 1).
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Proof. We have F ◦ L−1 = F ◦ J ◦ L−1
0 where

L−1
0 : L2(0, 1) → H2(0, 1), L−1

0 u = L−1u and

J : H1
0 (0, 1) → L2(0, 1), Ju = u.

Recall that F is continuous and by (8) is bounded. Next, by Rellich-Kondrachov

theorem (see [1]), the imbedding of H1
0 (0, 1) into L2(0, 1) is completely continuous.

Thus, F ◦L−1 is a completely continuous operator. On the other hand, from (8) and

(4) we have ∥∥F (L−1(v))
∥∥

L2 ≤ a
∥∥L−1(v)

∥∥
L2 + h ≤ aµc ‖v‖L2 + h.

Now (7) guarantees that F ◦ L−1 is a self-map of a sufficiently large closed ball of

L2(0, 1). Thus we may apply Schauder’s fixed point theorem.�

Better results can be obtained if we use the Leray-Schauder principle (see

[6]).

Theorem 4. Suppose that F is continuous and has the decomposition

F (u) = G(u)u + F0(u) + F1(u)

Also assume that

‖F0(u)‖L2 ≤ a ‖u‖L2 + h0 (9)

‖F1(u)‖L2 ≤ b ‖u‖L2 + h1 (10)

〈u, F1(u)〉L2 ≤ 0 (11)

−M ≤ G(u)(t) + c ≤ β < λ1 (12)

for all u ∈ L2(0, 1), where a, b, h0, h1,M, β ∈ R+. In addition assume that 0 ≤ c ≤ β

and

a/λ1 < 1− β/λ1. (13)

Then (1) has at least one solution u ∈ H2(0, 1) ∩H1
0 (0, 1) .
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Proof. We look for a fixed point v ∈ L2(0, 1) of F ◦L−1. As above, F ◦L−1

is a completely continuous operator. We will show that the set of all solutions to

v = λ(F ◦ L−1)(v) (14)

when λ ∈ [0, 1] is bounded in L2(0, 1). Let v ∈ L2(0, 1) be any solution of (14). Let

u = L−1v. It is clear that u solves −u′′(t)− cu(t) = λF (u)(t), t ∈ (0, 1)

u(0) = u(1) = 0.
(15)

Since u is a weak solution of (15), we have

‖u‖2
H1

0
= 〈cu + λF (u), u〉L2 .

It is easy to check that

〈cu + λG(u)u, u〉L2 ≤ β ‖u‖2
2 . (16)

We define

R(u) := ‖u‖2
H1

0
− β ‖u‖2

2 (17)

and using (11), (16) and c ≤ β, we obtain

R(u) ≤ ‖u‖2
H1

0
− 〈cu + λG(u)u, u〉L2 ≤ |〈F0(u), u〉L2 | .

On the other hand, if we denote ck = 〈u, φk〉L2 = 〈u, φk〉H1
0
/λk, we see that

R(u) =
∞∑

k=1

(λk − β)c2
k ≥

∞∑
k=1

λk(1− β/λ1)c2
k

≥ (1− β/λ1) ‖u‖2
H1

0
.

(18)

Recall that

λ1 = inf
{
‖u‖2

H1
0
/ ‖u‖2

2 ;u ∈ H1
0 (0, 1) \ {0}

}
and using (18), (17), (9) and Holder’s inequality we obtain

(1− β/λ1) ‖u‖2
H1

0
≤ |〈F0(u), u〉L2 | ≤ ‖F0(u)‖L2 ‖u‖L2 ≤ a ‖u‖2

L2 + h0 ‖u‖L2

≤ a

λ1
‖u‖2

H1
0

+ C ‖u‖H1
0
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for some constant C > 0. Thus (13) guarantees that there is a constant r > 0 inde-

pendent of λ with ‖u‖H1
0
≤ r. Finally, a bound for ‖v‖L2 can be immediately derived

from u = L−1v. The colnclusion now follows from the Leray-Schauder principle. �

3. Particular cases

Particular case 1. Let F (u) be the usual superposition operator, F (u)(t) =

f(t, u(t)). Then for the problem −u′′(t) = cu(t) + f(t, u(t)), t ∈ (0, 1)

u(0) = u(1) = 0
(19)

we have the following existence result given in [7]:

Theorem 5. Assume that f : (0, 1) × R → R is a Caratheodory function, f(·, 0) ∈

L2(0, 1) and that f satisfies the Lipschitz condition

|f(t, v1)− f(t, v2)| ≤ a |v1 − v2| (20)

for every v1, v2 ∈ R, t ∈ (0, 1) and some a ≥ 0. Also assume that the conditions (5)

and (7) from Thorem 2 are satisfied.

Then (19) has a unique solution u ∈ H1
0 (0, 1) ∩H2(0, 1).

Proof. Using (20) we deduce

|f(t, u)| ≤ |f(t, u)− f(t, 0)|+ |f(t, 0)| ≤ a |u|+ |f(t, 0)|

for every u ∈ R and t ∈ (0, 1). Moreover, f beeing a Caratheodory function, we have

that the Nemitskii operator

u 7−→ f(·, u(·))

is well defined, bounded and continuous from L2(0, 1) into L2(0, 1). Using again (20)

we obtain ∫ 1

0

|f(t, v1(t))− f(t, v2(t))|2 dt ≤ a2

∫ 1

0

|v1(t)− v2(t)|2 dt

so

‖F (v1)− F (v2)‖L2 ≤ a ‖v1 − v2‖L2 .

The conclusion follows now by applying Theorem 2. �
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Particular case 2. Let 0 < τ < 1 and let F be defined by

F (u)(t) =

 f(t, u(t− τ)), τ < t < 1

g(t), 0 < t < τ.
(21)

Theorem 6. Assume that f : (τ, 1) × R → R is a Caratheodory function, f(·, 0) ∈

L2(τ, 1) and that f satisfies the Lipschitz condition

|f(t, v1)− f(t, v2)| ≤ a |v1 − v2| (22)

for all v1, v2 ∈ R, t ∈ (τ, 1) and some a > 0. Also assume that g ∈ L2(0, τ) and that

the conditions (5) and (7) from Theorem 2 are satisfied.

Then (1) with F defined by (21) has a unique solution u ∈ H1
0 (0, 1)∩H2(0, 1).

Proof. Let u ∈ L2(0, 1). Then u(· − τ) ∈ L2(τ, 1). Hence, f(·, u(· − τ)) ∈

L2(τ, 1). Moreover, since g ∈ L2(0, τ) we have F (u) ∈ L2(0, 1) is well defined as

operator from L2(0, 1) into L2(0, 1).

Let (uk) be a sequence wich converges to u in L2(0, 1). Let vk(t) = uk(t− τ)

and v(t) = u(t− τ). Then∫ 1

τ
(vk(t)− v(t))2dt =

∫ 1

τ
(uk(t− τ)− u(t− τ))2dt

=
∫ 1−τ

0
(uk(t)− u(t))2dt −→ 0, as k →∞,

so vk → v in L2(τ, 1) as k → ∞. Consequently, f(·, vk(·)) −→ f(·, v(·)) in L2(τ, 1)

and by the definition of F it follows that F (uk) → F (u) in L2(0, 1). Using (22) we

deduce ∫ 1

0
(F (v1)(t)− F (v2)(t))2dt ≤

∫ 1

τ
(f(t, v1(t− τ))− f(t, v2(t− τ)))2dt

≤ a2
∫ 1

τ
(v1(t− τ)− v2(t− τ))2dt

≤ a2
∫ 1−τ

0
(v1(s)− v2(s))2ds

≤ a2
∫ 1

0
(v1(s)− v2(s))2ds
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and finally

‖F (v1)− F (v2)‖L2 ≤ a ‖v1 − v2‖L2 .

The conclusion follows now by applying Theorem 2. �
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