STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{L} , Number 1, March 2005

ON GENERALIZED DIFFERENCE LACUNARY STATISTICAL CONVERGENCE

BINOD CHANDRA TRIPATHY AND MIKÂIL ET

Abstract. A lacunary sequence is an increasing integer sequence $\theta = (k_r)$ such that $k_0 =_0, k_r - k_{r-1} \to \infty$ as $r \to \infty$. A sequence x is called $S_{\theta}(\Delta^m)$ convergent to L provided that for each $\varepsilon > 0$, $\lim_r (k_r - k_{r-1})^{-1}$ {the number of $k_{r-1} < k \leq k_r : |\Delta^m x_k - L| \geq \varepsilon$ } = 0, where $\Delta^m x_k = \Delta^{m-1} x_k \Delta^{m-1} x_{k+1}$. The purpose of this paper is to introduce the concept of Δ^m lacunary statistical convergence and Δ^m -lacunary strongly convergence and examine some properties of these sequence spaces. We establish some connections between Δ^m -lacunary strongly convergence and Δ^m -lacunary statistical convergence. It is shown that if a sequence is Δ^m -lacunary strongly convergent then it is Δ^m -lacunary statistically convergent. We also show that the space $S_{\theta}(\Delta^m)$ may be represented as a $[f, p, \theta](\Delta^m)$ space.

1. Introduction

Throughout the article w, ℓ_{∞} , c, c_0 , \bar{c} , and \bar{c}_0 denote the spaces of all, bounded, convergent, null, statistically convergent and statistically null complex sequences. The notion of statistical convergence was introduced by Fast [6] and Schoenberg [19] independently. Subsequently statistical convergence have been discussed in ([5], [7], [8], [12], [16], [18]).

Received by the editors: 15.11.2004.

²⁰⁰⁰ Mathematics Subject Classification. 40A05, 40C05, 46A45.

Key words and phrases. Difference sequence, statistical convergence, lacunary sequence.

The notion depends on the density of subsets of the set \mathbb{N} of natural numbers. A subset E of \mathbb{N} is said to have density $\delta(E)$, if

$$\delta\left(E\right) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{E}\left(k\right) \text{ exists},$$

where χ_E is the characteristic function of E.

A sequence (x_n) is said to be statistically convergent to L if for every $\varepsilon > 0$, $\delta\left(\{k \in \mathbb{N} : |x_k - L| \ge \varepsilon\}\right) = 0$. In this case we write $S - \lim x_k = L$ or $x_k \to L(S)$.

The notion of difference sequence spaces was introduced by Kizmaz [10]. Later on the notion was generalized by Et and Çolak [3] and was studied by Et and Basarir [4], Malkowsky and Parashar [14], Et and Nuray [5], Çolak [2] and many others.

Let m be a non-negative integer, then

$$X\left(\Delta^{m}\right) = \left\{x = (x_{k}) : \left(\Delta^{m} x_{k}\right) \in X\right\}$$

for $X = \ell_{\infty}$, c and c_0 , where $m \in \mathbb{N}$, $\Delta^0 x = (x_k)$ and $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$.

The generalized difference has the following binomial representation:

$$\Delta^m x_k = \sum_{v=0}^m \left(-1\right)^v \binom{m}{v} x_{k+v}.$$

The sequence spaces $\ell_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$ are BK-spaces, normed by

$$||x||_{\Delta} = \sum_{i=0}^{m} |x_i| + ||\Delta^m x||_{\infty}.$$

We call these sequence spaces Δ^m -bounded, Δ^m -convergent and Δ^m -null sequences, respectively. The classes $\bar{c}(\Delta^m)$ and $\bar{c}_0(\Delta^m)$ was studied by Et and Nuray [5].

Let $\theta = (k_r)$ be the sequence of positive integers such that $k_0 = 0$, $0 < k_r < k_{r+1}$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Then θ is called a lacunary sequence. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio k_r/k_{r-1} will be denoted by q_r .

Let $E, F \subset w$. Then we shall write

$$M(E,F) = \bigcap_{x \in E} x^{-1} * F = \{a \in w : ax \in F \text{ for all } x \in E\} \ [20].$$

The set $E^{\alpha} = M(E, l_1)$ is called Köthe-Toeplitz dual space or α -dual of E.

A sequence space E is said to be solid (or normal) if $(\alpha_k x_k) \in E$ whenever $(x_k) \in E$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$,

A sequence space E is said to be symmetric if $(x_k) \in E$ implies $(x_{\pi(k)}) \in E$, where $\pi(k)$ is a permutation of \mathbb{N} ,

A sequence space E is said to be convergence free when, if x is in E and if $y_k = 0$ whenever $x_k = 0$, then y is in E,

A sequence space E is said to be monotone if it contains the canonical preimages of its step spaces,

A sequence space E is said to be sequence algebra if $x.y \notin E$ whenever $x,y \in E,$

A sequence space E is said to be perfect if $E = E^{\alpha \alpha}$ [9].

It is well known that if E is perfect $\Longrightarrow E$ is normal.

The following inequality will be used throughout this paper.

$$|a_k + b_k|^{p_k} \le C\{|a_k|^{p_k} + |b_k|^{p_k}\},\tag{1}$$

where $a_k, b_k \in \mathbb{C}, 0 < p_k \le \sup_k p_k = H, C = \max(1, 2^{H-1})$.

The notion of modulus function was introduced by Nakano [15]. We recall that a modulus f is a function from $[0,\infty)$ to $[0,\infty)$ such that

i) f(x) = 0 if and only if x = 0, ii) $f(x + y) \le f(x) + f(y)$ for $x, y \ge 0$, iii) f is increasing, iv) f is continuous from the right at 0.

It follows that f must be continuous everwhwre on $[0,\infty)$. A modulus may be unbounded or bounded. Ruckle [17] and Maddox [12] used a modulus f to construct sequence spaces. BINOD CHANDRA TRIPATHY AND MIKÂIL ET

2. Definitions and Preliminaries

The notion of almost convergence of sequences was introduced by Lorentz [11]. The notion was generalized by Et and Başarır [4].

Definition 2.1 [4] The sequence (x_n) is said to be Δ^m -almost convergent to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=k+1}^{k+n} \left(\Delta^m x_i - L \right) = 0, \text{ uniformly in } k.$$

We denote the class of all Δ^m -almost convergent sequences by $AC(\Delta^m)$.

Definition 2.2 [4] The sequence (x_n) is said to be Δ^m - strongly almost convergent to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=k+1}^{k+n} |\Delta^m x_i - L| = 0, \text{ uniformly in } k$$

We denote the class of all Δ^{m} -strongly almost convergent sequences by $|AC|(\Delta^{m})$.

Definition 2.3 [8] The sequence (x_k) is said to be lacunary statistically convergent to L if for each $\varepsilon > 0$,

$$\lim_{r \to \infty} \frac{1}{h_r} \operatorname{card} \left\{ k \in I_r : |x_k - L| \ge \varepsilon \right\} = 0.$$

The class of all lacunary statistically convergent sequences is denoted by S_{θ} .

Definition 2.4 A sequence (x_n) is said to be Δ^m -Cesàro summable to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\Delta^m x_k - L \right) = 0.$$

The class of all Δ^m -Cesàro summable sequences is denoted by $\sigma_1(\Delta^m)$.

Definition 2.5 A sequence (x_n) is said to be Δ^m -strongly Cesàro summable to L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |\Delta^m x_k - L| = 0.$$

The class of all Δ^{m} -strongly Cesàro summable sequences is denoted by $\left|\sigma_{1}\right|\left(\Delta^{m}\right)$.

Now we introduce the definitions of Δ^m -lacunary statistically convergence, Δ^m - lacunary strongly convergence and Δ^m -lacunary strongly convergence with respect to a modulus f.

Definition 2.6 Let θ be a lacunary sequence, the number sequence x is Δ^m -lacunary statistically convergent to the number L provided that for every $\varepsilon > 0$,

$$\lim_{r \to \infty} \frac{1}{h_r} \operatorname{card} \left\{ k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \right\} = 0.$$

In this case we write $S_{\theta}(\Delta^m) - \lim x_k = L$ or $x_k \to L(S_{\theta}(\Delta^m))$. We denote Δ^m -lacunary statistically convergent sequence by $S_{\theta}(\Delta^m)$.

Definition 2.7 Let θ be a lacunary sequence. Then a sequence (x_k) is said to be $C_{\theta}(\Delta^m)$ -summable to L if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left(\Delta^m x_k - L \right) = 0.$$

We denote the class of all $C_{\theta}\left(\Delta^{m}\right)$ –summable sequences by $C_{\theta}\left(\Delta^{m}\right)$.

A sequence (x_k) is said to be Δ^m - lacunary strongly summable to L if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} |\Delta^m x_k - L| = 0.$$

We denote the class of all Δ^m – lacunary strongly summable sequences by $N_{\theta}(\Delta^m)$. In the case L = 0 we shall write $N^0_{\theta}(\Delta^m)$ instead of $N_{\theta}(\Delta^m)$. It can be shown that the sequence space $N_{\theta}(\Delta^m)$ is a Banach space with norm by

$$||x||_{\Delta\theta} = \sum_{i=1}^{m} |x_i| + \sup_r \frac{1}{h_r} \sum_{k \in I_r} |\Delta^m x_k|.$$

If we take m = 0 then we obtain the sequence space N_{θ} which were introduced by Freedman et al.[1].

Definition 2.8 Let f be a modulus function and $p = (p_k)$ be any sequence of strictly positive real numbers. We define the following sequence set

$$[f, p, \theta](\Delta^m) = \left\{ x = (x_k) : \lim_r \frac{1}{h_r} \sum_{k \in I_r} [f(|\Delta^m x_k - L|)]^{p_k} = 0, \text{ for some } L \right\},\$$

If $x \in [f, p, \theta] (\Delta^m)$, then we will write $x_k \to L[f, p, \theta] (\Delta^m)$ and will be called Δ^m -lacunary strongly summable with respect to a modulus f. In the case $p_k = 1$ for all $k \in \mathbb{N}$, we shall write $[f, \theta] (\Delta^m)$ instead of $[f, p, \theta] (\Delta^m)$. It may be noted here that the space $[f, \theta] (\Delta^m)$ was discussed by Colak [2].

BINOD CHANDRA TRIPATHY AND MIKÂIL ET

3. Main Results

In this section we prove the results of this article. The proof of the following results is a routine work.

Proposition 3.1 Let θ be a lacunary sequence, then $S_{\theta}(\Delta^{m-1}) \subset S_{\theta}(\Delta^m)$. In general $S_{\theta}(\Delta^i) \subset S_{\theta}(\Delta^m)$, for all i = 1, 2, ..., m-1. Hence $S_{\theta} \subset S_{\theta}(\Delta^m)$ and the inclusions are strict.

Theorem 3.2 If a Δ^m -bounded sequence is Δ^m -statistically convergent to L then it is Δ^m -Cesàro summable to L.

Proof. Without loss of generality we may assume that L = 0. Then,

$$\begin{aligned} \left| \frac{1}{n} \sum_{k=1}^{n} \Delta^{m} x_{k} \right| &\leq \left| \frac{1}{n} \sum_{k=1}^{n} |\Delta^{m} x_{k}| = \frac{1}{n} \sum_{\substack{1 \leq k \leq n \\ |\Delta^{\overline{m}} x_{k}| \geq \varepsilon}} |\Delta^{m} x_{k}| + \frac{1}{n} \sum_{\substack{1 \leq k \leq n \\ |\Delta^{\overline{m}} x_{k}| < \varepsilon}} |\Delta^{m} x_{k}| \\ &< \left| \frac{1}{n} K \operatorname{card} \left\{ k \leq n : |\Delta^{m} x_{k}| \geq \varepsilon \right\} + \frac{n}{n} \varepsilon. \end{aligned}$$

Thus $x \in \sigma_1(\Delta^m)$. Converse of Theorem 3.2 does not holds, for example, the sequence x = (0, -1, -1, -2, -2, -3, -3, -4, -4, ...) belongs to $\sigma_1(\Delta)$ and does not belong to $S(\Delta)$.

Theorem 3.3 Let θ be a lacunary sequence, then

i) If a sequence is Δ^m -lacunary strongly convergent to L, then it is Δ^m -lacunary statistically convergent to L and the inclusion is strict.

ii) If a Δ^m -bounded sequence is Δ^m -lacunary statistically convergent to L then it is Δ^m -lacunary strongly convergent to L.

iii) $\ell_{\infty}(\Delta^m) \cap S_{\theta}(\Delta^m) = \ell_{\infty}(\Delta^m) \cap N_{\theta}(\Delta^m).$

Proof. We give the proof of (i) only. If $\varepsilon > 0$ and $x_k \to L(N_\theta(\Delta^m))$ we can write

$$\sum_{k \in I_r} |\Delta^m x_k - L| \ge \sum_{\substack{k \in I_r \\ |\Delta^m x_k - L| \ge \varepsilon}} |\Delta^m x_k - L| \ge \varepsilon. \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right|.$$

Hence $x_k \to L(S_\theta(\Delta^m))$. The inclusion is strict. In order to establish this, let θ be given and define $\Delta^m x_k$ to be $1, 2, ..., [\sqrt{h_r}]$ at the first $[\sqrt{h_r}]$ integers in I_r , 124

and $\Delta^m x_k = 0$ otherwise. Then x is not Δ^m -bounded, $x_k \to 0(S_\theta(\Delta^m))$ and $x_k \to 0(N_\theta(\Delta^m))$.

Note that any Δ^m -bounded $S_{\theta}(\Delta^m)$ -summable sequence is $C_{\theta}(\Delta^m)$ -summable.

Theorem 3.4 Let θ be a lacunary sequence, then $S(\Delta^m) = S_{\theta}(\Delta^m)$ if and only if $1 < \lim_r \inf q_r \le \lim_r \sup q_r < \infty$.

The proof of Theorem 3.4, we need the following lemmas.

Lemma 3.5 For any lacunary sequence θ , $S(\Delta^m) \subset S_{\theta}(\Delta^m)$ if and only if $\lim_r \inf q_r > 1$.

Proof. If $\liminf_r q_r > 1$ there exists a $\delta > 0$ such that $1 + \delta \leq q_r$ for sufficiently large r. Since $h_r = k_r - k_{r-1}$, we have $\frac{k_r}{h_r} \leq \frac{1+\delta}{\delta}$. Let $x_k \to L(S_\theta(\Delta^m))$. Then for every $\varepsilon > 0$,

$$\begin{aligned} \frac{1}{k_r} \left| \{k \le k_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| &\ge \frac{1}{k_r} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \\ &\ge \frac{\delta}{1+\delta} \frac{1}{h_r} \left| \{k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right|. \end{aligned}$$

Hence $S(\Delta^m) \subset S_\theta(\Delta^m)$.

Conversely suppose that $\liminf_r q_r = 1$. If we consider the sequence defined by,

$$\Delta^m x_i = \begin{cases} 1, & \text{if } i \in I_{r_j} & \text{for some } j = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

then $x \in \ell_{\infty}(\Delta^m)$ but $x \notin N_{\theta}(\Delta^m)$. However, $x \in |\sigma_1|(\Delta^m)$. Theorem 3.3 (ii) implies that $x \notin S_{\theta}(\Delta^m)$. On the other hand if a sequence is strongly Δ^m -strongly Cesàro summable to L then it is Δ^m -statistically convergent to L (Theorem 4.2, Et and Nuray [5]). Hence $S(\Delta^m) \notin S_{\theta}(\Delta^m)$ and the proof is complete.

Lemma 3.6 For any lacunary sequence θ , $S_{\theta}(\Delta^m) \subset S(\Delta^m)$ if and only if $\limsup_r q_r < \infty$.

Proof. Sufficiency can be proved using the same technique of Lemma 3 of [8]. Now suppose that $\limsup_{r} q_r = \infty$. Consider the sequence defined by

$$\Delta^m x_i = \begin{cases} 1, & \text{if } k_{r_j-1} < i \le 2k_{r_j-1} & \text{for some } j = 1, 2, 3, \dots \\ 0, & \text{otherwise} \end{cases}$$

Then $x \in N_{\theta}(\Delta^m)$ but $x \notin |\sigma_1|(\Delta^m)$. Clearly we have $x \in S_{\theta}(\Delta^m)$, but Theorem 4.2 of Et and Nuray [5] $x \notin S(\Delta^m)$. Hence $S_{\theta}(\Delta^m) \nsubseteq S(\Delta^m)$. This completes the proof.

Lemma 3.7 If \pounds denotes the set of all lacunary sequences, then

$$|AC| (\Delta^m) = \ell_{\infty} (\Delta^m) \cap (\cap_{\theta \in \pounds} S_{\theta} (\Delta^m)).$$

Proof. Omitted.

Lemma 3.8 Let *E* be any of the spaces σ_1 , $|\sigma_1|$, C_{θ} , N_{θ} , N_{θ}^0 , AC, |AC| and S_{θ} . Then the sequence spaces $E(\Delta^m)$ are neither solid nor symmetric nor sequence algebra nor convergence free nor perfect.

Proof. Proof follows from the following examples.

Example 1. Let $\theta = (2^r)$. Then $x = (k) \in N^0_{\theta}(\Delta^2)$, but $\alpha x = (\alpha_k x_k) \notin N^0_{\theta}(\Delta^2)$, for $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $N^0_{\theta}(\Delta^m)$ is not solid.

Example 2. Let $\theta = (2^r)$. Then $x = (k) \in (N_\theta)(\Delta)$. Let (y_k) be a rearrangement of (x_k) , which is defined as follows:

$$(y_k) = \{x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, \dots\}.$$

Then $(y_k) \notin (N_\theta) (\Delta)$.

Example 3. Let $\theta = (2^r)$. Then $x = (k) \in N^0_{\theta}(\Delta^2)$. Let (y_k) be a rearrangement of (x_k) , which is defined as above, then $(y_k) \notin N^0_{\theta}(\Delta^2)$.

Example 4. Let $\theta = (2^r)$. Consider the sequences x = (k), $y = (k^{m-1})$, then $x, y \in N^0_{\theta}(\Delta^m)$ but $x.y \notin N^0_{\theta}(\Delta^m)$. For the others spaces consider the sequences x = (k), $y = (k^m)$.

Example 5. Let $\theta = (2^r)$. Then $(x_k) = (1)$ is in $N^0_{\theta}(\Delta)$. The sequence (y_k) defined as $y_k = k$ for all $k \in \mathbb{N}$ does not belong to $N^0_{\theta}(\Delta)$. Hence $N^0_{\theta}(\Delta)$ is not convergence free.

Note. Similarly different examples can be constructed for the other spaces.

Now we will give some relations between Δ^m -lacunary statistically convergent sequences and Δ^m - lacunary strongly summable sequences with respect to a modulus function.

Theorem 3.9 The inclusion $[f, p, \theta] (\Delta^{m-1}) \subset [f, p, \theta] (\Delta^m)$ is strict. In general $[f, p, \theta] (\Delta^i) \subset [f, p, \theta] (\Delta^m)$ for all i = 1, 2, ..., m-1 and the inclusion is strict.

Proof. Straight forward and hence omitted.

Theorem 3.10 Let f, f_1, f_2 be modulus functions. Then we have

i)
$$[f, \theta] (\Delta^m) \subset [f \circ f_1, \theta] (\Delta^m)$$

ii)
$$[f_1, p, \theta] (\Delta^m) \cap [f_2, p, \theta] (\Delta^m) \subset [f_1 + f_2, p, \theta] (\Delta^m).$$

Proof. i) Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Write $y_k = f_1 (|\Delta^m x_k - L|)$ and consider

$$\sum_{k \in I_r} f(y_k) = \sum_1 f(y_k) + \sum_2 f(y_k)$$

where the first summation is over $y_k \leq \delta$ and second summation is over $y_k > \delta$. Since f is continuous, we have

$$\sum_{1} f(y_k) < h_r \varepsilon \tag{2}$$

and for $y_k > \delta$, we use the fact that

$$y_k < \frac{y_k}{\delta} \le 1 + \frac{y_k}{\delta}.$$

By the definition of f we have for $y_k > \delta$,

$$f(y_k) < 2f(1)\frac{y_k}{\delta}.$$

Hence

$$\sum_{2} f(y_k) \le 2f(1)\delta^{-1} \sum_{k=1}^{n} y_k.$$
 (3)

From(2) and (3), we obtain $[f, \theta] (\Delta^m) \subset [f \circ f_1, \theta] (\Delta^m)$.

ii) The proof of (ii) follows from the following inequality

$$\left[(f_1 + f_2) \left(|\Delta^m x_k - L| \right) \right]^{p_k} \le C \left[f_1 \left(|\Delta^m x_k - L| \right) \right]^{p_k} + C \left[f_2 \left(|\Delta^m x_k - L| \right) \right]^{p_k}.$$
127

The following result is a consequence of Theorem 3.10 (i).

Proposition 3.11 ([2]) Let f be a modulus function. Then $N_{\theta}(\Delta^m) \subset [f, \theta](\Delta^m)$.

Theorem 3.12 Let $0 < p_k \le q_k$ and (q_k/p_k) be bounded. Then $[f, q, \theta] (\Delta^m) \subset [f, p, \theta] (\Delta^m)$.

Proof: If we take $w_k = [f(|\Delta^m x_k - L|)]^{q_k}$ for all k. Following the technique applied for establishing Theorem 5 of Maddox [13], we can easily prove the theorem.

Theorem 3.13 The sequence space $[f, p, \theta] (\Delta^m)$ is neither solid nor symmetric nor sequence algebra nor convergence free nor perfect for $m \ge 1$.

To show these, consider the examples cited in Lemma 3.8.

Theorem 3.14 Let f be modulus function and $\sup_k p_k = H$. Then $[f, p, \theta] (\Delta^m) \subset S_\theta (\Delta^m)$.

Proof. Let $x \in [f, p, \theta] (\Delta^m)$ and $\varepsilon > 0$ be given. Then

$$\frac{1}{h_r} \sum_{k \in I_r} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} = \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |\Delta^m x_k - L| \ge \varepsilon}} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} + \frac{1}{h_r} \sum_{\substack{k \in I_r \\ k \in I_r \mid \Delta^m x_k - L| < \varepsilon}} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} \right]$$

$$\geq \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |\Delta^m x_k - L| \ge \varepsilon}} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} \geq \frac{1}{h_r} \sum_{\substack{k \in I_r \\ k \in I_r}} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} \right]$$

$$\geq \frac{1}{h_r} \sum_{\substack{k \in I_r \\ k \in I_r}} \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_k}, \left[f\left(\varepsilon \right) \right]^{H} \right)$$

$$\geq \frac{1}{h_r} \left| \{ k \in I_r : |\Delta^m x_k - L| \ge \varepsilon \} \right| \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_k}, \left[f\left(\varepsilon \right) \right]^{H} \right).$$

Hence $x \in S_{\theta}(\Delta^m)$.

Theorem 3.15 Let f be bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then $S_{\theta}(\Delta^m) \subset [f, p, \theta](\Delta^m)$.

Proof. Suppose that f is bounded and let $\varepsilon > 0$ be given. Then

$$\frac{1}{h_r} \sum_{k \in I_r} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k} = \frac{1}{h_r} \sum_{k \in I_r |\Delta^m x_k - L| \ge \varepsilon} \left[f\left(|\Delta^m x_k - L| \right) \right]^{p_k}$$

$$+\frac{1}{h_r}\sum_{k\in I_r|\Delta^m x_k - L| < \varepsilon} [f(|\Delta^m x_k - L|)]^{p_k}$$

$$\leq \frac{1}{h_r}\sum_{k\in I_r} \max(K^h, K^H) + \frac{1}{h_r}\sum_{k\in I_r} [f(\varepsilon)]^{p_k}$$

$$\leq \max(K^h, K^H)\frac{1}{h_r}|\{k\in I_r: |\Delta^m x_k - L| \ge \varepsilon\}|$$

$$+ \max\left(f(\varepsilon)^h, f(\varepsilon)^H\right).$$

Hence $x \in [f, p, \theta] (\Delta^m)$.

Theorem 3.16 Let f be bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then $S_{\theta}(\Delta^m) = [f, p, \theta](\Delta^m)$ if and only if f is bounded.

Proof. Let f be bounded. By Theorem 3.14 and Theorem 3.15 we have $S_{\theta}(\Delta^m) = [f, p, \theta](\Delta^m).$

Conversely suppose that f is unbounded. Then there exists a sequence (t_k) of positive numbers with $f(t_k) = k^2$, for k = 1, 2, If we choose

$$\Delta^m x_i = \begin{cases} t_k, & i = k^2, \, i = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

then we have

$$\frac{1}{n} \left| \{k \le n : |\Delta^m x_k| \ge \varepsilon \} \right| \le \frac{\sqrt{n}}{n}$$

for all n and so $x \in S_{\theta}(\Delta^m)$, but $x \notin [f, p, \theta](\Delta^m)$ for $\theta = (2^r)$ and $p_k = 1$ for all $k \in \mathbb{N}$. This contradicts to $S_{\theta}(\Delta^m) = [f, p, \theta](\Delta^m)$.

References

- Freedman, A. R., Sember, J. J., Raphael, M., Some Cesàro-type summability spaces, Proc. Lond. Math. Soc. 37(1978), 508-520.
- [2] Colak, R., Lacunary strong convergence of difference sequences with respect to a modulus function, FILOMAT 17(2003), 9-14.
- [3] Et, M., Colak, R., On some generalized difference sequence spaces, Soochow J. Math. 21(4)(1995), 377-386.
- [4] Et, M., Başarır, M., On some new generalized difference sequence spaces, Period. Math. Hung 35 (1997), 169-175.

- [5] Et, M., Nuray, F., Δ^m-Statistical convergence, Indian J. Pure appl. Math. 32(6)(2001), 961-969.
- [6] Fast, H., Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [7] Fridy, J. A., On the statistical convergence, Analysis 5(1985), 301-313.
- [8] Fridy, J. A., Orhan, C., Lacunary statistical convergence, Pacific J. Math. 160(1993), 43-51.
- [9] Kamthan, P. K., Gupta, M., Sequence Spaces and Series, Marcel Dekker Inc. New York, 1981.
- [10] Kizmaz, H., On certain sequence spaces, Canadian Math. Bull. 24(1981), 169-176.
- [11] Lorentz, G. G., A contribution to the theory of divergent series, Acta Math. 80(1948), 176-190.
- [12] Maddox, I. J., Statistical convergence in a locally convex space, Math. Proc. Camb. Phil. Soc. 104 (1988), 141-145.
- [13] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math. 18(72)(1967), 345-355.
- [14] Malkowsky, E., Parashar, S.D., Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis 17(1997), 87-97.
- [15] Nakano, H., Concave modulars, J. Math. Soc. Japan 5 (1953), 29-49.
- [16] Rath, D., Tripathy, B. C., On statistically convergent and Statistically Cauchy sequences, Indian J. Pure appl. Math. 25(4)(1994), 381-386.
- [17] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25(1973), 973-978.
- [18] Šalàt, T., On statistically convergent sequences of real numbers, Math. Slovaca 30(2)(1980),139-150.
- [19] Schoenberg, I. J., The integrability of certain functions and related summability methods, Amer. Math. Monthly 66(1959), 361-375.
- [20] Wilansky, A., Summability through Functional Analysis, North-Holland Mathematics Studies 85(1984).

MATHEMATICAL SCIENCES DIVISION, INSTITUTE OF ADVANCED STUDY IN SCIENCE AND TECHNOLOGY, KHANPARA, GUWAHATI 781022 INDIA *E-mail address*: tripathybc@yahoo.com

DEPARTMENT OF MATHEMATICS, FIRAT UNIVERSITY, 23119 ELAZIĞ TURKEY *E-mail address:* mikailet@yahoo.com