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ON GENERALIZED DIFFERENCE LACUNARY
STATISTICAL CONVERGENCE

BINOD CHANDRA TRIPATHY AND MIKÂIL ET

Abstract. A lacunary sequence is an increasing integer sequence θ = (kr)

such that k0 =0, kr−kr−1 →∞ as r →∞. A sequence x is called Sθ(∆
m)−

convergent to L provided that for each ε > 0, limr(kr − kr−1)
−1 {the

number of kr−1 < k ≤ kr : |∆mxk−L| ≥ ε} = 0, where ∆mxk = ∆m−1xk−
∆m−1xk+1. The purpose of this paper is to introduce the concept of ∆m−
lacunary statistical convergence and ∆m-lacunary strongly convergence

and examine some properties of these sequence spaces. We establish some

connections between ∆m-lacunary strongly convergence and ∆m-lacunary

statistical convergence. It is shown that if a sequence is ∆m-lacunary

strongly convergent then it is ∆m-lacunary statistically convergent. We

also show that the space Sθ(∆
m) may be represented as a [f, p, θ](∆m)

space.

1. Introduction

Throughout the article w, `∞, c, c0, c̄, and c̄0 denote the spaces of all,

bounded, convergent, null, statistically convergent and statistically null complex se-

quences. The notion of statistical convergence was introduced by Fast [6] and Schoen-

berg [19] independently. Subsequently statistical convergence have been discussed in

([5], [7], [8], [12], [16], [18]).
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The notion depends on the density of subsets of the set N of natural numbers.

A subset E of N is said to have density δ (E) , if

δ (E) = lim
n→∞

1
n

n∑
k=1

χE (k) exists,

where χE is the characteristic function of E.

A sequence (xn) is said to be statistically convergent to L if for every ε > 0,

δ ({k ∈ N : |xk − L| ≥ ε}) = 0. In this case we write S − limxk = L or xk → L (S) .

The notion of difference sequence spaces was introduced by Kizmaz [10].

Later on the notion was generalized by Et and Çolak [3] and was studied by Et and

Basarir [4], Malkowsky and Parashar [14], Et and Nuray [5], Çolak [2] and many

others.

Let m be a non-negative integer, then

X (∆m) = {x = (xk) : (∆mxk) ∈ X}

for X = `∞, c and c0, where m ∈ N, ∆0x = (xk) and ∆mx = (∆mxk) =(
∆m−1xk −∆m−1xk+1

)
.

The generalized difference has the following binomial representation:

∆mxk =
m∑

v=0

(−1)v

(
m

v

)
xk+v.

The sequence spaces `∞ (∆m) , c (∆m) and c0 (∆m) are BK-spaces, normed by

‖x‖∆ =
m∑

i=0

|xi|+ ‖∆mx‖∞ .

We call these sequence spaces ∆m−bounded, ∆m−convergent and ∆m−null se-

quences, respectively. The classes c̄ (∆m) and c̄0 (∆m) was studied by Et and Nuray

[5].

Let θ = (kr) be the sequence of positive integers such that k0 = 0, 0 < kr <

kr+1 and hr = kr − kr−1 →∞ as r →∞. Then θ is called a lacunary sequence. The

intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr/kr−1

will be denoted by qr.

120
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Let E,F ⊂ w. Then we shall write

M (E,F ) = ∩
x∈E

x−1 ∗ F = {a ∈ w : ax ∈ F for all x ∈ E} [20].

The set Eα = M (E, l1) is called Köthe-Toeplitz dual space or α−dual of E.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E whenever

(xk) ∈ E for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N,

A sequence space E is said to be symmetric if (xk) ∈ E implies
(
xπ(k)

)
∈ E,

where π (k) is a permutation of N,

A sequence space E is said to be convergence free when, if x is in E and if

yk = 0 whenever xk = 0, then y is in E,

A sequence space E is said to be monotone if it contains the canonical preim-

ages of its step spaces,

A sequence space E is said to be sequence algebra if x.y /∈ E whenever

x, y ∈ E,

A sequence space E is said to be perfect if E = Eαα [9].

It is well known that if E is perfect =⇒ E is normal.

The following inequality will be used throughout this paper.

|ak + bk|pk ≤ C {|ak|pk + |bk|pk} , (1)

where ak, bk ∈ C, 0 < pk ≤ supk pk = H, C = max
(
1, 2H−1

)
.

The notion of modulus function was introduced by Nakano [15]. We recall

that a modulus f is a function from [0,∞) to [0,∞) such taht

i) f(x) = 0 if and only if x = 0, ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0, iii)

f is increasing, iv) f is continuous from the right at 0.

It follows that f must be continuous everwhwre on [0,∞). A modulus may be

unbounded or bounded. Ruckle [17] and Maddox [12] used a modulus f to construct

sequence spaces.
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2. Definitions and Preliminaries

The notion of almost convergence of sequences was introduced by Lorentz

[11]. The notion was generalized by Et and Başarır [4].

Definition 2.1 [4] The sequence (xn) is said to be ∆m−almost convergent

to L if

lim
n→∞

1
n

k+n∑
i=k+1

(∆mxi − L) = 0, uniformly in k.

We denote the class of all ∆m−almost convergent sequences by AC (∆m) .

Definition 2.2 [4] The sequence (xn) is said to be ∆m− strongly almost

convergent to L if

lim
n→∞

1
n

k+n∑
i=k+1

|∆mxi − L| = 0, uniformly in k.

We denote the class of all ∆m−strongly almost convergent sequences by |AC| (∆m) .

Definition 2.3 [8] The sequence (xk) is said to be lacunary statistically

convergent to L if for each ε > 0,

lim
r→∞

1
hr

card {k ∈ Ir : |xk − L| ≥ ε} = 0.

The class of all lacunary statistically convergent sequences is denoted by Sθ.

Definition 2.4 A sequence (xn) is said to be ∆m−Cesàro summable to L if

lim
n→∞

1
n

n∑
k=1

(∆mxk − L) = 0.

The class of all ∆m−Cesàro summable sequences is denoted by σ1 (∆m) .

Definition 2.5 A sequence (xn) is said to be ∆m−strongly Cesàro summable

to L if

lim
n→∞

1
n

n∑
k=1

|∆mxk − L| = 0.

The class of all ∆m−strongly Cesàro summable sequences is denoted by |σ1| (∆m) .

Now we introduce the definitions of ∆m−lacunary statistically convergence,

∆m− lacunary strongly convergence and ∆m−lacunary strongly convergence with

respect to a modulus f.
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Definition 2.6 Let θ be a lacunary sequence, the number sequence x is

∆m−lacunary statistically convergent to the number L provided that for every ε > 0,

lim
r→∞

1
hr

card {k ∈ Ir : |∆mxk − L| ≥ ε} = 0.

In this case we write Sθ (∆m) − limxk = L or xk → L (Sθ (∆m)) . We denote

∆m−lacunary statistically convergent sequence by Sθ (∆m) .

Definition 2.7 Let θ be a lacunary sequence. Then a sequence (xk) is said

to be Cθ (∆m)−summable to L if

lim
r→∞

1
hr

∑
k∈Ir

(∆mxk − L) = 0.

We denote the class of all Cθ (∆m)−summable sequences by Cθ (∆m) .

A sequence (xk) is said to be ∆m− lacunary strongly summable to L if

lim
r→∞

1
hr

∑
k∈Ir

|∆mxk − L| = 0.

We denote the class of all ∆m− lacunary strongly summable sequences by Nθ (∆m) .

In the case L = 0 we shall write N0
θ (∆m) instead of Nθ (∆m) . It can be shown that

the sequence space Nθ (∆m) is a Banach space with norm by

‖x‖∆θ =
m∑

i=1

|xi|+ sup
r

1
hr

∑
k∈Ir

|∆mxk| .

If we take m = 0 then we obtain the sequence space Nθ which were introduced

by Freedman et al.[1].

Definition 2.8 Let f be a modulus function and p = (pk) be any sequence

of strictly positive real numbers. We define the following sequence set

[f, p, θ] (∆m) =

{
x = (xk) : lim

r

1
hr

∑
k∈Ir

[f (|∆mxk − L|)]pk = 0, for some L

}
,

If x ∈ [f, p, θ] (∆m), then we will write xk → L [f, p, θ] (∆m) and will be called

∆m−lacunary strongly summable with respect to a modulus f. In the case pk = 1 for

all k ∈ N, we shall write [f, θ] (∆m) instead of [f, p, θ] (∆m). It may be noted here

that the space [f, θ] (∆m) was discussed by Colak [2].
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3. Main Results

In this section we prove the results of this article. The proof of the following

results is a routine work.

Proposition 3.1 Let θ be a lacunary sequence, then Sθ

(
∆m−1

)
⊂ Sθ (∆m).

In general Sθ

(
∆i

)
⊂ Sθ (∆m) , for all i = 1, 2, . . . , m − 1. Hence Sθ ⊂ Sθ (∆m) and

the inclusions are strict.

Theorem 3.2 If a ∆m−bounded sequence is ∆m−statistically convergent to

L then it is ∆m−Cesàro summable to L.

Proof. Without loss of generality we may assume that L = 0. Then,∣∣∣∣∣ 1
n

n∑
k=1

∆mxk

∣∣∣∣∣ ≤ 1
n

n∑
k=1

|∆mxk| =
1
n

∑
1≤k≤n
|∆mxk|≥ε

|∆mxk|+
1
n

∑
1≤k≤n
|∆mxk|<ε

|∆mxk|

<
1
n

K card {k ≤ n : |∆mxk| ≥ ε}+
n

n
ε.

Thus x ∈ σ1 (∆m) . Converse of Theorem 3.2 does not holds, for example, the sequence

x = (0,−1,−1,−2,−2,−3,−3,−4,−4, ...) belongs to σ1 (∆) and does not belong to

S (∆) .

Theorem 3.3 Let θ be a lacunary sequence, then

i) If a sequence is ∆m−lacunary strongly convergent to L, then it is ∆m−lacunary

statistically convergent to L and the inclusion is strict.

ii) If a ∆m−bounded sequence is ∆m−lacunary statistically convergent to L then it

is ∆m−lacunary strongly convergent to L.

iii) `∞ (∆m) ∩ Sθ (∆m) = `∞ (∆m) ∩Nθ (∆m) .

Proof. We give the proof of (i) only. If ε > 0 and xk → L (Nθ (∆m)) we can

write

∑
k∈Ir

|∆mxk − L| ≥
∑
k∈Ir

|∆mxk−L|≥ε

|∆mxk − L| ≥ ε. |{k ∈ Ir : |∆mxk − L| ≥ ε}| .

Hence xk → L (Sθ (∆m)) . The inclusion is strict. In order to establish this, let

θ be given and define ∆mxk to be 1, 2, ...,
[√

hr

]
at the first

[√
hr

]
integers in Ir,

124



ON GENERALIZED DIFFERENCE LACUNARY STATISTICAL CONVERGENCE

and ∆mxk = 0 otherwise. Then x is not ∆m−bounded, xk → 0 (Sθ (∆m)) and

xk 9 0 (Nθ (∆m)).

Note that any ∆m−bounded Sθ (∆m)−summable sequence is

Cθ (∆m)−summable.

Theorem 3.4 Let θ be a lacunary sequence, then S (∆m) = Sθ (∆m) if and

only if 1 < limr inf qr ≤ limr sup qr < ∞.

The proof of Theorem 3.4, we need the following lemmas.

Lemma 3.5 For any lacunary sequence θ, S (∆m) ⊂ Sθ (∆m) if and only if

limr inf qr > 1.

Proof. If lim infr qr > 1 there exists a δ > 0 such that 1 + δ ≤ qr for

sufficiently large r. Since hr = kr − kr−1, we have kr

hr
≤ 1+δ

δ . Let xk → L (Sθ (∆m)) .

Then for every ε > 0,

1
kr
|{k ≤ kr : |∆mxk − L| ≥ ε}| ≥ 1

kr
|{k ∈ Ir : |∆mxk − L| ≥ ε}|

≥ δ

1 + δ

1
hr
|{k ∈ Ir : |∆mxk − L| ≥ ε}| .

Hence S (∆m) ⊂ Sθ (∆m) .

Conversely suppose that lim infr qr = 1. If we consider the sequence defined

by,

∆mxi =

 1, if i ∈ Irj
for some j = 1, 2, 3, ...

0, otherwise

then x ∈ `∞ (∆m) but x /∈ Nθ (∆m) . However, x ∈ |σ1| (∆m) . Theorem 3.3 (ii)

implies that x /∈ Sθ (∆m) . On the other hand if a sequence is strongly ∆m−strongly

Cesàro summable to L then it is ∆m−statistically convergent to L (Theorem 4.2, Et

and Nuray [5]). Hence S (∆m) * Sθ (∆m) and the proof is complete.

Lemma 3.6 For any lacunary sequence θ, Sθ (∆m) ⊂ S (∆m) if and only if

lim supr qr < ∞.
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Proof. Sufficiency can be proved using the same technique of Lemma 3 of

[8]. Now suppose that lim supr qr = ∞. Consider the sequence defined by

∆mxi =

 1, if krj−1 < i ≤ 2krj−1 for some j = 1, 2, 3, ...

0, otherwise
.

Then x ∈ Nθ (∆m) but x /∈ |σ1| (∆m) . Clearly we have x ∈ Sθ (∆m) , but Theorem

4.2 of Et and Nuray [5] x /∈ S (∆m) . Hence Sθ (∆m) * S (∆m) . This completes the

proof.

Lemma 3.7 If £ denotes the set of all lacunary sequences, then

|AC| (∆m) = `∞ (∆m) ∩ (∩θ∈£Sθ (∆m)) .

Proof. Omitted.

Lemma 3.8 Let E be any of the spaces σ1, |σ1| , Cθ, Nθ, N0
θ , AC, |AC| and

Sθ. Then the sequence spaces E (∆m) are neither solid nor symmetric nor sequence

algebra nor convergence free nor perfect.

Proof. Proof follows from the following examples.

Example 1. Let θ = (2r). Then x = (k) ∈ N0
θ

(
∆2

)
, but αx = (αkxk) /∈

N0
θ

(
∆2

)
, for αk = (−1)k for all k ∈ N. Hence N0

θ (∆m) is not solid.

Example 2. Let θ = (2r) . Then x = (k) ∈ (Nθ) (∆). Let (yk) be a

rearrangement of (xk), which is defined as follows:

(yk) = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, ...} .

Then (yk) /∈ (Nθ) (∆) .

Example 3. Let θ = (2r). Then x = (k) ∈ N0
θ

(
∆2

)
. Let (yk) be a re-

arrangement of (xk) , which is defined as above, then (yk) /∈ N0
θ

(
∆2

)
.

Example 4. Let θ = (2r) . Consider the sequences x = (k) , y =
(
km−1

)
,

then x, y ∈ N0
θ (∆m) but x.y /∈ N0

θ (∆m) . For the others spaces consider the sequences

x = (k) , y = (km) .

Example 5. Let θ = (2r). Then (xk) = (1) is in N0
θ (∆) . The sequence

(yk) defined as yk = k for all k ∈ N does not belong to N0
θ (∆) . Hence N0

θ (∆) is not

convergence free.
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Note. Similarly different examples can be constructed for the other spaces.

Now we will give some relations between ∆m−lacunary statistically conver-

gent sequences and ∆m− lacunary strongly summable sequences with respect to a

modulus function.

Theorem 3.9 The inclusion [f, p, θ] (∆m−1) ⊂ [f, p, θ] (∆m) is strict. In

general [f, p, θ] (∆i) ⊂ [f, p, θ] (∆m) for all i = 1, 2, . . . ,m − 1 and the inclusion is

strict.

Proof. Straight forward and hence omitted.

Theorem 3.10 Let f, f1, f2 be modulus functions. Then we have

i) [f, θ] (∆m) ⊂ [f ◦ f1, θ] (∆m),

ii) [f1, p, θ] (∆m) ∩ [f2, p, θ] (∆m) ⊂ [f1 + f2, p, θ] (∆m).

Proof. i) Let ε > 0 and choose δ with 0 < δ < 1 such that f(t) < ε for

0 ≤ t ≤ δ. Write yk = f1 (|∆mxk − L|) and consider∑
k∈Ir

f(yk) =
∑
1

f(yk) +
∑
2

f(yk)

where the first summation is over yk ≤ δ and second summation is over yk > δ. Since

f is continuous, we have ∑
1

f(yk) < hrε (2)

and for yk > δ, we use the fact that

yk <
yk

δ
≤ 1 +

yk

δ
.

By the definition of f we have for yk > δ,

f(yk) < 2f(1)
yk

δ
.

Hence ∑
2

f(yk) ≤ 2f(1)δ−1
n∑

k=1

yk. (3)

From(2) and (3), we obtain [f, θ] (∆m) ⊂ [f ◦ f1, θ] (∆m).

ii) The proof of (ii) follows from the following inequality

[(f1 + f2) (|∆mxk − L|)]pk ≤ C [f1 (|∆mxk − L|)]pk + C [f2 (|∆mxk − L|)]pk .
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The following result is a consequence of Theorem 3.10 (i).

Proposition 3.11 ([2]) Let f be a modulus function. Then Nθ (∆m) ⊂

[f, θ] (∆m).

Theorem 3.12 Let 0 < pk ≤ qk and (qk/pk) be bounded. Then [f, q, θ] (∆m)

⊂ [f, p, θ] (∆m).

Proof: If we take wk = [f (|∆mxk − L|)]qk for all k. Following the technique

applied for establishing Theorem 5 of Maddox [13], we can easily prove the theorem.

Theorem 3.13 The sequence space [f, p, θ] (∆m) is neither solid nor sym-

metric nor sequence algebra nor convergence free nor perfect for m ≥ 1.

To show these, consider the examples cited in Lemma 3.8.

Theorem 3.14 Let f be modulus function and supk pk = H. Then

[f, p, θ] (∆m) ⊂ Sθ (∆m) .

Proof. Let x ∈ [f, p, θ] (∆m) and ε > 0 be given. Then

1
hr

∑
k∈Ir

[f (|∆mxk − L|)]pk =
1
hr

∑
k∈Ir

|∆mxk−L|≥ε

[f (|∆mxk − L|)]pk

+
1
hr

∑
k∈Ir|∆mxk − L| < ε

[f (|∆mxk − L|)]pk

≥ 1
hr

∑
k∈Ir

|∆mxk−L|≥ε

[f (|∆mxk − L|)]pk ≥ 1
hr

∑
k∈Ir

[f (ε)]pk

≥ 1
hr

∑
k∈Ir

min
(
[f (ε)]inf pk , [f (ε)]H

)
≥ 1

hr
|{k ∈ Ir : |∆mxk − L| ≥ ε}| min

(
[f (ε)]inf pk , [f (ε)]H

)
.

Hence x ∈ Sθ (∆m) .

Theorem 3.15 Let f be bounded and 0 < h = infk pk ≤ pk ≤ supk pk =

H < ∞. Then Sθ (∆m) ⊂ [f, p, θ] (∆m).

Proof. Suppose that f is bounded and let ε > 0 be given. Then

1
hr

∑
k∈Ir

[f (|∆mxk − L|)]pk =
1
hr

∑
k∈Ir|∆mxk − L| ≥ ε

[f (|∆mxk − L|)]pk
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+
1
hr

∑
k∈Ir|∆mxk − L| < ε

[f (|∆mxk − L|)]pk

≤ 1
hr

∑
k∈Ir

max
(
Kh,KH

)
+

1
hr

∑
k∈Ir

[f (ε)]pk

≤ max
(
Kh,KH

) 1
hr
|{k ∈ Ir : |∆mxk − L| ≥ ε}|

+max
(
f (ε)h

, f (ε)H
)

.

Hence x ∈ [f, p, θ] (∆m).

Theorem 3.16 Let f be bounded and 0 < h = infk pk ≤ pk ≤ supk pk =

H < ∞. Then Sθ (∆m) = [f, p, θ] (∆m) if and only if f is bounded.

Proof. Let f be bounded. By Theorem 3.14 and Theorem 3.15 we have

Sθ (∆m) = [f, p, θ] (∆m).

Conversely suppose that f is unbounded. Then there exists a sequence (tk)

of positive numbers with f (tk) = k2, for k = 1, 2, ... . If we choose

∆mxi =

 tk, i = k2, i = 1, 2, . . .

0, otherwise

then we have
1
n
|{k ≤ n : |∆mxk| ≥ ε}| ≤

√
n

n

for all n and so x ∈ Sθ (∆m) , but x /∈ [f, p, θ] (∆m) for θ = (2r) and pk = 1 for all

k ∈ N. This contradicts to Sθ (∆m) = [f, p, θ] (∆m).
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