STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{L} , Number 1, March 2005

EXTREMAL PROBLEMS OF TURÁN TYPE

IOAN POPA

Abstract. We give estimations of certain weighted L^2 -norms of the kth derivative of polynomials which have a curved majorant. They are obtained as applications of special quadrature formulae.

1. Introduction

The following problem was raised by P. Turán.

Let $\varphi(x) \ge 0$ for $-1 \le x \le 1$ and consider the class $P_{n,\varphi}$ of all polynomials of degree n such that $|p_n(x)| \le \varphi(x)$ for $-1 \le x \le 1$.

How large can $\max_{[-1,1]} \left| p_n^{(k)}(x) \right|$ be if p_n is arbitrary in $P_{n,\varphi}$?

The aim of this paper is to consider the solution in the weighted L^2 -norm for the majorant

$$\varphi(x) = \frac{\alpha - \beta x}{\sqrt{1 - x^2}}, 0 \le \beta \le \alpha.$$

Let us denote by

$$x_i = \cos \frac{(2i-1)\pi}{2n}, i = 1, 2, ..., n, \text{ the zeros of } T_n(x) = \cos n\theta, x = \cos \theta,$$
 (1.1)

the Chebyshev polynomial of the first kind,

$$y_i^{(k)} \text{ the zeros of } U_{n-1}^{(k)}(x), U_{n-1}(x) = \sin n\theta / \sin \theta, x = \cos \theta, \qquad (1.2)$$

the Chebyshev polynomial of the second kind and

$$G_{n-1}(x) = \alpha U_{n-1}(x) - \beta U_{n-2}(x), 0 \le \beta \le \alpha.$$
(1.3)

Received by the editors: 14.03.2005.

 $^{2000\} Mathematics\ Subject\ Classification.\ 41A17,\ 41A05,\ 41A55,\ 65D30.$

Key words and phrases. Bouzitat quadrature, Chebyshev polynomials, curved majorant.

Let $\Pi_{\alpha,\beta}$ be the class of all polynomials p_{n-1} , of degree $\leq n-1$ such that

$$|p_{n-1}(x_i)| \le \frac{\alpha - \beta x_i}{\sqrt{1 - x_i^2}}, i = 1, 2, ..., n,$$
(1.4)

where the x_i 's are given by (1.1) and $0 \le \beta \le \alpha$.

2. Results

Theorem 2.1. If $p_{n-1} \in \Pi_{\alpha,\beta}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx$$

$$\leq \frac{2\pi n \left(n-1 \right) \left[\left(\alpha^2 + \beta^2 \right) \left(n-2 \right) \left(n^2 - 2n + 2 \right) + 5\beta^2 \left(n^2 - n + 1 \right) \right]}{15}$$
(2.1)

with equality for $p_{n-1} = G_{n-1}$.

Two cases are of special interest:

I. Case $\alpha = \beta = 1$, $\varphi(x) = \sqrt{\frac{1-x}{1+x}}$,

$$G_{n-1}(x) = V_{n-1}(x) = \frac{\cos[(n-\frac{1}{2})\arccos x]}{\cos[\frac{1}{2}\arccos x]}.$$

Note that $P_{n-1,\varphi} \subset \Pi_{1,1}, V_{n-1} \notin P_{n-1,\varphi}, V_{n-1} \in \Pi_{1,1}.$

Corollary 2.2. If $p_{n-1} \in \Pi_{1,1}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx \le \frac{2\pi n \left(n-1 \right) \left(2n-1 \right) \left(n^2-n+3 \right)}{15}$$
(2.2)

with equality for $p_{n-1} = V_{n-1}$.

II. Case
$$\alpha = 1, \beta = 0, \varphi(x) = \frac{1}{\sqrt{1-x^2}}, G_{n-1} = U_{n-1}$$
.
Note that $P_{n-1,\varphi} \subset \Pi_{1,0}, U_{n-1} \in P_{n-1,\varphi}, U_{n-1} \in \Pi_{1,0}$.

Corollary 2.3. If $p_{n-1} \in \Pi_{1,0}$ then we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx \le \frac{2\pi n \left(n^4 - 1 \right)}{15}$$
(2.3)

with equality for $p_{n-1} = U_{n-1}$.

In this second case we have a more general result:

Theorem 2.4. If $p_{n-1} \in \Pi_{1,0}$ and $0 \le b \le a$ then we have

$$\int_{-1}^{1} (a - bx)^3 (1 - x^2)^{k - 1/2} \left[p_{n-1}^{(k+1)}(x) \right]^2 dx$$

$$\leq \frac{\pi a (n+k+1)!}{(n-k-2)!} \left[\frac{2 \left(n^2 - (k+2)^2 \right) (a^2 + 3b^2)}{(2k+1) (2k+3) (2k+5)} + \frac{2 (k+1) a^2 + 3b^2}{(2k+1) (2k+3)} \right]$$
(2.4)

k=0,...,n-2 , with equality for $p_{n-1}=U_{n-1.}$

Setting a = 1, b = 1 one obtains the following

Corollary 2.5. If $p_{n-1} \in \Pi_{1,1}$ then we have

$$\int_{-1}^{1} (1-x)^{k+5/2} (1+x)^{k-1/2} \left[p_{n-1}^{(k+1)}(x) \right]^2 dx$$

$$\leq \frac{\pi (n+k+1)!}{(n-k-2)!} \times \frac{8 \left(n^2 - (k+2)^2 \right) + (2k+5)^2}{(2k+1) (2k+3) (2k+5)}$$
(2.5)

k = 0, ..., n - 2, with equality for $p_{n-1} = U_{n-1}$.

Setting a = 1, b = 0 one obtains the following

Corollary 2.6. If $p_{n-1} \in \Pi_{1,0}$ then we have

$$\int_{-1}^{1} \left(1 - x^2\right)^{k-1/2} \left[p_{n-1}^{(k+1)}(x)\right]^2 dx$$

$$\leq \frac{2\pi \left(n+k+1\right)!}{(n-k-2)!} \times \frac{n^2 + k^2 + 3k + 1}{(2k+1)(2k+3)(2k+5)}$$
(2.6)

k = 0, ..., n - 2, with equality for $p_{n-1} = U_{n-1}$.

3. Lemmas

Here we state some lemmas which help us in proving our theorems.

Lemma 3.1. Let p_{n-1} be such that $|p_{n-1}(x_i)| \leq \frac{\alpha - \beta x_i}{\sqrt{1-x_i^2}}$, i = 1, 2, ..., n, where the x_i 's are given by (1.1). Then we have

$$\left|p_{n-1}'(y_j)\right| \le \left|G_{n-1}'(y_j)\right|, \ k = 0, 1, ..., n-1, and$$
(3.1)

$$|p'_{n-1}(1)| \le |G'_{n-1}(1)|, |p'_{n-1}(-1)| \le |G'_{n-1}(-1)|.$$
 (3.2)

 $\begin{array}{l} Proof. \text{ By the Lagrange interpolation formula based on the zeros of } T_n \text{ and using } T'_n\left(x_i\right) = \frac{(-1)^{i+1}n}{(1-x_i^2)^{1/2}} \text{ , we can represent any polynomial } p_{n-1} \text{ by } p_{n-1}\left(x\right) = \\ \frac{1}{n} \sum\limits_{i=1}^n \frac{T_n(x)}{x-x_i} \left(-1\right)^{i+1} \left(1-x_i^2\right)^{1/2} p_{n-1}\left(x_i\right). \\ \text{ From } G_{n-1}\left(x_i\right) = (-1)^{i+1} \frac{\alpha - \beta x_i}{\sqrt{1-x_i^2}} \text{ we have } G_{n-1}\left(x\right) = \frac{1}{n} \sum\limits_{i=1}^n \frac{T_n(x)}{x-x_i} \left(\alpha - \beta x_i\right). \\ \text{ Differentiating with respect to } x \text{ we obtain } \\ p'_{n-1}\left(x\right) = \frac{1}{n} \sum\limits_{i=1}^n \frac{T'_n(x)(x-x_i) - T_n(x)}{(x-x_i)^2} \left(-1\right)^{i+1} \left(1-x_i^2\right)^{1/2} p_{n-1}\left(x_i\right). \\ \text{ On the roots of } T'_n\left(x\right) = nU_{n-1}\left(x\right) \text{ and using } (1.4) \text{ we find} \\ \left|p'_{n-1}\left(y_j\right)\right| \leq \frac{1}{n} \sum\limits_{i=1}^n \frac{|T_n(y_j)|}{(y_j-x_i)^2} \left(\alpha - \beta x_i\right) = \frac{|T_n(y_j)|}{n} \sum\limits_{i=1}^n \frac{\alpha - \beta x_i}{(y_j-x_i)^2} = \left|G'_{n-1}\left(y_j\right)\right|. \\ \text{ For } l_i\left(x\right) = \frac{T_n(x)}{x-x_i} \text{ taking into account that } l'_i\left(1\right) > 0 \text{ (see [5]) it follows} \\ \left|p'_{n-1}\left(1\right)\right| \leq \frac{1}{n} \sum\limits_{i=1}^n l'_i\left(1\right) \left(\alpha - \beta x_i\right) = \left|G'_{n-1}\left(1\right)\right|. \\ \end{array}$

Lemma 3.2. (Duffin - Schaeffer)[2] If $q(x) = c \prod_{i=1}^{n} (x - x_i)$ is a polynomial of degree n with n distinct real zeros and if $p \in P_n$ is such that

$$|p'(x_i)| \le |q'(x_i)| \quad (i = 1, 2, ..., n)$$

then for k = 1, 2, ..., n - 1,

$$|p^{(k+1)}(x)| \le |q^{(k+1)}(x)|$$
 whenever $q^{(k)}(x) = 0$

Lemma 3.3. Let p_{n-1} be such that $|p_{n-1}(x_i)| \leq \frac{1}{\sqrt{1-x_i^2}}, i = 1, 2, ..., n$, where the x_i 's are given by (1.1). Then we have

$$\left| p_{n-1}^{(k+1)}(y_j^{(k)}) \right| \le \left| U_{n-1}^{(k+1)}(y_j^{(k)}) \right|, \text{ whenever } U_{n-1}^{(k)}(y_j^{(k)}) = 0, \tag{3.3}$$
$$k = 0, 1, ..., n-1, and$$

$$\left| p_{n-1}^{(k+1)}(1) \right| \le \left| U_{n-1}^{(k+1)}(1) \right|, \left| p_{n-1}^{(k+1)}(-1) \right| \le \left| U_{n-1}^{(k+1)}(-1) \right|$$
(3.4)

Proof. For $\alpha = 1$, $\beta = 0$, $G_{n-1} = U_{n-1}$ and (3.1) give $|p'_{n-1}(y_j)| \le |U'_{n-1}(y_j)|$ and (3.2) $|p'_{n-1}(1)| \le |U'_{n-1}(1)|$, $|p'_{n-1}(-1)| \le |U'_{n-1}(-1)|$.

Now the proof ends by applying Duffin-Schaeffer Lemma.

We need the following quadrature formulae:

Lemma 3.4. For any given n and k, $0 \le k \le n-1$, let $y_i^{(k)}$, i = 1, ..., n-k-1, 114 EXTREMAL PROBLEMS OF TURÁN TYPE

be the zeros of $U_{n-1}^{(k)}$.

Then the quadrature formulae

$$\int_{-1}^{1} (1-x^2)^{k-1/2} f(x) dx = A_0 [f(-1) + f(1)] + \sum_{i=1}^{n-k-1} s_i f\left(y_i^{(k)}\right), \quad (3.5)$$
$$A_0 = \frac{2^{2k-1} (2k+1) \Gamma\left(k+1/2\right)^2 (n-k-1)!}{(n+k)!}, s_i > 0$$

and

$$\int_{-1}^{1} (1 - x^2)^{k - 1/2} f(x) dx = B_0 [f(-1) + f(1)]$$

$$+ C_0 [f'(-1) - f'(1)] + \sum_{i=1}^{n-k-2} v_i f\left(y_i^{(k+1)}\right)$$

$$C_0 = \frac{2^{2k} (2k+3) \Gamma(k+3/2)^2 (n-k-2)!}{(n+k+1)!},$$
(3.6)

$$B_0 = C_0 \frac{2\left(n^2 - (k+2)^2\right)(2k+3) + 4(k+1)(2k+5)}{(2k+1)(2k+5)}$$

have algebraic degree of precision 2n - 2k - 1.

For $r(x) = (a - bx)^3$, $0 \le b \le a$ the formulae

$$\int_{-1}^{1} r(x) (1 - x^2)^{k-1/2} f(x) dx = A_1 f(-1) + B_1 f(1)$$

$$+ \sum_{i=1}^{n-k-1} s_i r\left(y_i^{(k)}\right) f\left(y_i^{(k)}\right)$$

$$A_1 = \frac{2^{2k-1} (2k+1) \Gamma\left(k+1/2\right)^2 (n-k-1)! (a+b)^3}{(n+k)!},$$
(3.7)

$$B_1 = \frac{2^{2k-1} (2k+1) \Gamma (k+1/2)^2 (n-k-1)! (a-b)^3}{(n+k)!}$$

and

$$\int_{-1}^{1} r(x) (1-x^2)^{k-1/2} f(x) dx = C_1 f(-1) + D_1 f(1)$$

$$+ C_2 f'(-1) - D_2 f'(1) + \sum_{i=1}^{n-k-2} v_i r\left(y_i^{(k+1)}\right) f\left(y_i^{(k+1)}\right),$$

$$C_1 = B_0 (a+b)^3 - 3C_0 b(a+b)^2, D_1 = B_0 (a-b)^3 + 3C_0 b(a-b)^2,$$

$$C_2 = C_0 (a+b)^3, D_2 = C_0 (a-b)^3,$$
(3.8)

have algebraic degree of precision 2n - 2k - 4.

Proof. The first quadrature formula (3.5) is the Bouzitat quadrature formula of the second kind [3, formula (4.8.1)], for the zeros of $U_{n-1}^{(k)} = cP_{n-k-1}^{\left(k+\frac{1}{2},k+\frac{1}{2}\right)}$. Setting $\alpha = \beta = k - 1/2, m = n - k - 1$ in [3, formula (4.8.5)] we find A_0 and $s_i > 0$ (cf. [3, formula (4.8.4)]).

If in the above quadrature formula (3.6), we put

$$f(x) = (1-x) (1+x)^2 P_{n-k-2}^{\left(k+\frac{3}{2},k+\frac{3}{2}\right)}(x),$$
$$U_{n-1}^{\left(k+1\right)}(x) = c P_{n-k-2}^{\left(k+\frac{3}{2},k+\frac{3}{2}\right)}(x),$$

we obtain C_0 , and for

$$f(x) = (1+x)^2 P_{n-k-2}^{\left(k+\frac{3}{2},k+\frac{3}{2}\right)}(x)$$

we find B_0 .

If in formula (3.5) we replace f(x) with r(x) f(x) we get (3.7) and if in formula (3.6) we replace f(x) with r(x) f(x) we get (3.8).

4. Proof of the Theorems

Proof of Theorem 2.1

Setting k = 0 in (3.5) we find the formula

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \frac{\pi}{2n} \left[f(-1) + f(1) \right] + \frac{\pi}{n} \sum_{i=1}^{n-1} f(y_i)$$
(4.1)

According to this quadrature formula and using (3.1) and (3.2) we have

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[p'_{n-1}(x) \right]^2 dx = \frac{\pi}{2n} \left(p'_{n-1}(-1) \right)^2 + \frac{\pi}{2n} \left(p'_{n-1}(1) \right)^2 + \frac{\pi}{n} \sum_{i=1}^{n-1} \left(p'_{n-1}(y_i) \right)^2 \\
\leq \frac{\pi}{2n} \left(G'_{n-1}(-1) \right)^2 + \frac{\pi}{2n} \left(G'_{n-1}(1) \right)^2 + \frac{\pi}{n} \sum_{i=1}^{n-1} \left(G'_{n-1}(y_i) \right)^2 = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \left[G'_{n-1}(x) \right]^2 dx. \\
\text{Using the following formula } (k = 0 \text{ in } (3.6)) \\
\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \frac{3\pi (3n^2 - 2)}{10n(n^2 - 1)} \left[f(-1) + f(1) \right] + \frac{3\pi}{4n(n^2 - 1)} \left[f'(-1) - f'(1) \right] + \sum_{i=1}^{n-2} v_i f(y'_i) \\
\text{we find } \int_{-1}^{1} \frac{\left[U'_{n-1}(x) \right]^2}{\sqrt{1-x^2}} = \frac{2\pi n (n^4 - 1)}{15}, \int_{-1}^{1} \frac{\left[U'_{n-2}(x) \right]^2}{\sqrt{1-x^2}} = \frac{2\pi n (n-1)(n-2)(n^2 - 2n + 2)}{15} \\
\text{and } \int_{-1}^{1} \frac{\left[G'_{n-1}(x) \right]^2}{\sqrt{1-x^2}} dx = \frac{2\pi n (n-1) \left[(\alpha^2 + \beta^2)(n+1)(n^2 + 1) - 5\beta^2(n^2 - n + 1) \right]}{15}. \\
\text{ Proof of Theorem 2.4}$$

According to the quadrature formula (3.7), positivitiness of s_i 's, and using (3.3) and (3.4) we have

$$\int_{-1}^{1} (a - bx)^{3} (1 - x^{2})^{k-1/2} \left[p_{n-1}^{(k+1)}(x) \right]^{2} dx$$

$$= A_{1} \left[p_{n-1}^{(k+1)}(-1) \right]^{2} + B_{1} \left[p_{n-1}^{(k+1)}(1) \right]^{2} + \sum_{i=1}^{n-k-1} s_{i}r\left(y_{i}^{(k)} \right) \left[p_{n-1}^{(k+1)}\left(y_{i}^{(k)} \right) \right]^{2}$$

$$\leq A_{1} \left[U_{n-1}^{(k+1)}(-1) \right]^{2} + B_{1} \left[U_{n-1}^{(k+1)}(1) \right]^{2} + \sum_{i=1}^{n-k-1} s_{i}r\left(y_{i}^{(k)} \right) \left[U_{n-1}^{(k+1)}\left(y_{i}^{(k)} \right) \right]^{2}$$

$$= \int_{-1}^{1} (a - bx)^{3} (1 - x^{2})^{k-1/2} \left[U_{n-1}^{(k+1)}(x) \right]^{2} dx$$

In order to complete the proof we apply formula (3.8) to $f = \left[U_{n-1}^{(k+1)}(x)\right]^2$. Having in mind $U_{n-1}^{(k+1)}\left(y_i^{(k+1)}\right) = 0$ and the following relations deduced from [1] $U_{n-1}^{(k+1)}(1) = \frac{n(n^2 - 1^2) \dots (n^2 - (k+1)^2)}{1.3 \dots (2k+3)}$, $U_{n-1}^{(k+2)}(1) = \frac{n^2 - (k+2)^2}{2k+5} U_{n-1}^{(k+1)}(1)$,

$$U_{n-1}^{(k+1)}(1) = \frac{n(k-1)m(k-(k+1))}{1.3...(2k+3)}, U_{n-1}^{(k+2)}(1) = \frac{n-(k+2)}{2k+5}U_{n-1}^{(k+1)}(1)$$
$$U_{n-1}^{(k+1)}(-1)U_{n-1}^{(k+2)}(-1) = -U_{n-1}^{(k+1)}(1)U_{n-1}^{(k+2)}(1),$$

we find

$$\begin{split} &\int_{-1}^{1} \left(a - bx\right)^3 \left(1 - x^2\right)^{k - 1/2} \left[p_{n-1}^{(k+1)}\left(x\right)\right]^2 dx = C_1 \left[U_{n-1}^{(k+1)}\left(-1\right)\right]^2 + D_1 \left[U_{n-1}^{(k+1)}\left(1\right)\right]^2 \\ &+ 2C_2 U_{n-1}^{(k+1)}\left(-1\right) U_{n-1}^{(k+2)}\left(-1\right) - 2D_2 U_{n-1}^{(k+1)}\left(1\right) U_{n-1}^{(k+2)}\left(1\right) \\ &= \frac{\pi a (n + k + 1)!}{(n - k - 2)!} \left[\frac{2[n^2 - (k + 2)^2](a^2 + 3b^2)}{(2k + 1)(2k + 3)(2k + 5)} + \frac{2(k + 1)a^2 + 3b^2}{(2k + 1)(2k + 3)}\right]. \end{split}$$

References

 Dimitrov, D. K., Markov Inequalities for Weight Functions of Chebyshev Type, J.Approx.Theory, 83(1995), 175–181.

- [2] Duffin, R. J., Schaeffer, A. C., A refinement of an inequality of the brothers Markoff, Trans.Amer.Math.Soc., 50(1941), 517–528.
- [3] Ghizzetti, A., Ossicini, A., Quadrature formulae, Akademie-Verlag, Berlin, 1970.
- [4] Lupaş, A., Numerical Methods, Constant Verlag, Sibiu, 2001.
- [5] Pierre, R., Rahman, Q. I., On polynomials with curved majorants, in Studies in Pure Mathematics, Budapest, (1983), 543–549.

STR. CIORTEA 9/43, 3400 CLUJ-NAPOCA *E-mail address*: ioanpopa.cluj@personal.ro