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QUASIPOSITIVE STURM-LIOUVILLE PROBLEM

YA. M. DYMARSKII

Abstract. We explain a new approach for investigation of quasilinear

boundary problem by means of Sturm-Liouville problem.

1. The main result

In this paper, we consider the following nonlinear problem: find a classical

solution u ∈ C2[0, 1] of equation

−u′′(x) + p(u(x), u′(x), x) · u(x) = f(x), (1)

under Dirichlet condition

u(0) = u(1) = 0. (2)

We assume that

p ∈ C0(R×R× [0, 1]), f ∈ C0[0, 1] (3)

We assume that the function p is non-negative:

p(u, t, x) ≥ 0 for any (u, t, x) ∈ R×R× [0, 1] (4)

and there are such constant C > 0 and continuous function c : R → R that

p(u, t, x) ≤ C(c(u) + t2). (5)
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Let u∗ be a solution of the nonlinear problem (1), (2). Then u∗ is the solution

of the linear problem

[− d2

dx2
+ q(x)]u(x) = f(x), u(0) = u(1) = 0 (6)

with the positive operator [−d2/dx2 + q(x)] and the non-negative potential

q(x) = p(u∗(x), u∗′(x), x) ≥ 0.

Therefore the problem (1), (2) will be named quasipositive. Looking at the solution

of nonlinear problem (1), (2) as a solution of linear problem (6), we shall introduce a

new approach of passage from the boundary problem to a fixed point equation. There

are several methods of passage (see [1-3]). Our approach is analogous to D.Gilbarg

and N.Trudinger one ([2], chapter 11.3). The eigenfunction theory for quasipositive

operators is developed in our papers [4, 5].

We formulate the principal result. Let

K(x, τ) =

 (1− x)τ, 0 ≤ τ ≤ x,

x(1− τ), x < τ ≤ 1.

be the Green function of boundary problem

−u′′(x) = f(x), u(0) = u(1) = 0.

Theorem 1. The problem (1)-(5) has at least one solution u ∈ C2[0, 1]. For any

solution the estimate

∫ 1

0

(u′(x))2dx ≤
∫ 1

0

(∫ 1

0

K ′
x(x, τ)f(τ)dτ

)2

dx. (7)

is true.

We note that the estimate (7) does not depend on ”potential” p = p(u, t, x).

It is a direct consequence of the non-negative condition (4).
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2. The operator equation

Introduce following notations. As usual, we denote Lk(0, 1) (k = 1, 2) the

space of functions on (0, 1) which are k integrable. The Sobolev space of functions

u ∈ L2(0, 1) with distributional derivative which are integrable square we denote

by W 1
2 (0, 1);

◦
W 1

2 (0, 1) ⊂ W 1
2 (0, 1) is the closure in W 1

2 (0, 1) of subspace of C∞-

functions, which are equal to zero outside some segment [α, β] ⊂ (0, 1). The norm

of u ∈ W 1
2 (0, 1) is ||u||1 =

√∫ 1

0
((u′)2(x) + u2(x))dx; the norm of u ∈

◦
W 1

2 (0, 1) is

||u||◦1 =
√∫ 1

0
(u′)2(x)dx. The norms ||u||1 and ||u||◦1 are equivalent on the space

◦
W 2

2 (0, 1) due to the boundary condition (2) (see [1], chapter 13.7). Moreover, space
◦

W 1
2 (0, 1) is Hilbert one with the inner product (u, v)◦ =

∫ 1

0
u′v′dx.

First we are interested in solutions (of problem (1), (2)) from the space
◦

W 1
2

(0, 1). As usual, multiplying both sides of the equation (1) by v ∈
◦

W 1
2 (0, 1) and

integrating by parts, we get∫ 1

0

u′v′dx +
∫ 1

0

(∫ 1

0

K(x, τ)p(u(τ), u′(τ), τ)u(τ)dτ

)′
v′dx

=
∫ 1

0

(∫ 1

0

K(x, τ)f(τ)
)′

v′dx. (8)

A function u ∈
◦

W 1
2 (0, 1) is called a weak solution of the problem (1), (2) if for every

v ∈
◦

W 1
2 (0, 1) the equation (8) is valid. By the inner product, the identity (8) is of the

following form

(u, v)◦ + (P (u), v)◦ = (f , v)◦, (9)

where

P :
◦

W 1
2 (0, 1) →

◦
W 1

2 (0, 1), P (u) =
∫ 1

0

K(x, τ)p(u(τ), u′(τ), τ)u(τ)dτ, (10)

f ∈
◦

W 1
2 (0, 1), f =

∫ 1

0

K(x, τ)f(τ)dτ. (11)

Since (9) is valid for every function v ∈
◦

W 1
2 (0, 1), the identity (9) is equivalent to the

operator equation

u + P (u) = f . (12)
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3. The quasilinear representation of P

Now we investigate the operator P (see (10)) in more detail. By L(
◦

W 1
2 (0, 1))

denote the Banach space of continuous linear maps A which operate in
◦

W 1
2 (0, 1) and

by Lis(
◦

W 1
2 (0, 1)) ⊂ L(

◦
W 1

2 (0, 1)) the open subset of linear isomorphisms. As usually,

the norm ||A|| = sup ||Av||◦1 where ||v||◦1 = 1. Consider the map

A :
◦

W 1
2 (0, 1) → L(

◦
W 1

2 (0, 1)), A(u) = A that ∀v ∈
◦

W 1
2 (0, 1)

Av =
∫ 1

0

K(x, τ)p(u(τ), u′(τ), τ)v(τ)dτ,

Clearly P (u) = A(u)u. We shall call A the quasilinear representation of the map P

[5]. Now the equation (12) is of the following form

(E + A(u))u = f , (13)

where E is identity mapping. Properties of the map A is in next lemma.

Lemma 1. 1) For every u ∈
◦

W 1
2 (0, 1) the linear operator A(u) ∈ L(

◦
W 1

2 (0, 1)) is

completely continuous.

2) The map A is completely continuous.

3) For every u ∈
◦

W 1
2 (0, 1) the map E + A(u) ∈ Lis(

◦
W 1

2 (0, 1)) and

||(E + A(u))−1|| < 1. (14)

Proof. Since for any u, v ∈
◦

W 1
2 (0, 1)

((A(u)v)(x))′ =
∫ 1

0

K ′
x(x, τ)p(u(τ), u′(τ), τ)v(τ)dt

and the function r(ξ) = p(u(ξ), u′(ξ), ξ)v(ξ) ∈ L1(0, 1) is integrable one (see (5)), the

function (A(u)v)′ ∈ C0[0, 1]. Thus the map A = A(u) :
◦

W 1
2 (0, 1) → {C1[0, 1]∩(2)} is

continuous. Embedding im : {C1[0, 1]∩(2)} ⊂
◦

W 1
2 (0, 1) is completely continuous ([1],

chapter 26.24). Hence the linear operator A(u) = im ·A(u) is completely continuous

as the composition of continuous and completely continuous maps [6].

To prove the second statement, we represent the map A in the form

A(u)v = −x

∫ 1

0

(∫ τ

0

(∫ ξ

0

p(u(ν), u′(ν), ν)dν

)
v′(ξ)dξ

)
dτ+
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0

(∫ τ

0

(∫ ξ

0

p(u(ν), u′(ν), ν)dν

)
v′(ξ)dξ

)
dτ.

Write map A as the composition of four maps: A = δ · γ · β · α, where

α :
◦

W 1
2 (0, 1) → L1(0, 1), α(u) := p(u(ξ), u′(ξ), ξ) = q

β : L1(0, 1) → C0[0, 1], β(q) :=
∫ ξ

0

q(ν)dν = s;

γ : C0[0, 1] ⊂ L2(0, 1), γ(s) := s is the natural embedding;

δ : L2(0, 1) → L(
◦

W 1
2 (0, 1)), δ(s) = A that ∀v ∈

◦
W 1

2 (0, 1)

A(v) = −x

∫ 1

0

(∫ τ

0

s(ξ)v′(ξ)dξ

)
dτ +

∫ x

0

(∫ τ

0

s(ξ)v′(ξ)dξ

)
dτ.

These maps are continuous and the map γ is completely continuous. This completes

the proof of the second statement.

For any u, v ∈
◦

W 1
2 (0, 1) we have

(||(E + A(u))v||◦1)2 = (v, v)◦ + 2(A(u)v, v)◦ + (A(u)v,A(u)v)◦ ≥

(||v||◦1)2 + 2(A(u)v, v)◦.

Since (see (4))

(A(u)v, v)◦ =
∫ 1

0

p(u(x), u′(x), x)v2(x)dx ≥ 0,

then

(||(E + A(u))v||◦1)2 ≥ (||v||◦1)2.

Whence we obtain the third statement. �
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4. Proof of Theorem

Next step is the passage from the non-homogeneous equation (13) to a fixed

point equation.

Lemma 2. 1) The equation (13) is equivalent to the operator equation

u = (E + A(u))−1f . (15)

2) For any weak solution u the following a priori estimate is valid:

||u||◦1 ≤ ||f ||◦1. (16)

3) The map

B :
◦

W 1
2 (0, 1) →

◦
W 1

2 (0, 1), B(u) := (E + A(u))−1f

is completely continuous.

Proof. The first statement follows from the third statement of Lemma 1.

The second statement follows from the first one and third statement of Lemma 1 (see

(14)).

The map B is the composition:

u → A(u) → E + A(u) → (E + A(u))−1 → (E + A(u))−1f .

The first map is completely continuous (see the second statement of Lemma 1) and

the others maps are continuous. This completes the proof [6]. �

Note that the map B = (E+A(u))−1f depends on the u in the operator part

only. Thus properties of equation (15) follow from properties of map A.

To proof Theorem, we apply Leray-Schauder degree. Let the ball TR =

{u ∈
◦

W 1
2 (0, 1) : ||u||◦1 ≤ R}, where the constant R > ||f ||◦1. Let the sphere SR =

{u ∈
◦

W 1
2 (0, 1) : ||u||◦1 = R}. By (14) and (15), for any u ∈ SR we obtain ||u||◦1 >

||B(u)||◦1. Therefore on SR the completely continuous vector field u−B(u) 6= 0 and

degree of B is equal to one [6]. Consequently there is a solution u ∈ TR of equation

(15). The existence of a weak solution is proved.

38



QUASIPOSITIVE STURM-LIOUVILLE PROBLEM

By (16) and (11) we obtain∫ 1

0

(u′(x))2dx ≤
∫ 1

0

{(∫ 1

0

K(x, τ)f(τ)dτ

)′
x

}2

dx =
∫ 1

0

(∫ 1

0

K ′
x(x, τ)f(τ)dτ

)2

dx.

The estimate (7) is proved.

Actually, the weak solution u ∈
◦

W 1
2 (0, 1) is the classical solution, i.e. u ∈

C2[0, 1]. This follows from well known theorem about regularity of weak solution (see

[1], §17). Theorem is proved. �
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