STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume ${\bf L},$ Number 1, March 2005

PROJECTORS AND HALL π -SUBGROUPS IN FINITE π -SOLVABLE GROUPS

RODICA COVACI

Abstract. Let π be a set of primes and \underline{X} be a π -closed Schunck class with the P property. The paper gives conditions with respect to which an \underline{X} -projector H of a finite π -solvable group G is an Hall π -subgroup of G, and consequently we have that $N_G(N_G(H)) = N_G(H)$.

1. Preliminaries

All groups considered in the paper are finite. Let π be a set of primes, π' the complement to π in the set of all primes and $O_{\pi'}(G)$ the largest normal π' -subgroup of a group G.

We first give some useful definitions.

Definition 1.1. ([8], [11]) a) A class \underline{X} of groups is a *homomorph* if \underline{X} is epimorphically closed, i.e. if $G \in \underline{X}$ and N is a normal subgroup of G, then $G/N \in \underline{X}$.

b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H with $core_G H = \{1\}$, where $core_G H = \cap \{H^g/g \in G\}$.

c) A homomorph \underline{X} is a *Schunck class* if \underline{X} is *primitively closed*, i.e. if any group G, all of whose primitive factor groups are in \underline{X} , is itself in \underline{X} .

Definition 1.2. a) A positive integer n is said to be a π -number if for any prime divisor p of n we have $p \in \pi$.

b) A finite group G is a π -group if |G| is a π -number.

Received by the editors: 15.12.2004.

²⁰⁰⁰ Mathematics Subject Classification. 20D10.

Key words and phrases. Schunck class, projector, $\pi\text{-solvable group},$ Hall $\pi\text{-subgroup}.$

Definition 1.3. ([6]) A group G is π -solvable if every chief factor of G is either a solvable π -group or a π' -group. For π the set of all primes, we obtain the notion of solvable group.

Definition 1.4. A class \underline{X} of groups is said to be π -closed if

$$G/O_{\pi'}(G) \in \underline{X} \Rightarrow G \in \underline{X}.$$

A π -closed homomorph, respectively a π -closed Schunck class is called π -homomorph, respectively π -Schunck class.

Definition 1.5. ([7], [8]) Let \underline{X} be a class of groups, G a group and H a subgroup of G.

a) H is an <u>X</u>-maximal subgroup of G if: (i) $H \in \underline{X}$; (ii) $H \leq H^* \leq G$, $H^* \in \underline{X}$ imply $H = H^*$.

b) H is an <u>X</u>-projector of G if, for any normal subgroup N of G, HN/N is <u>X</u>-maximal in G/N.

c) H is an <u>X</u>-covering subgroup of G if: (i) $H \in \underline{X}$; (ii) $H \leq K \leq G, K_0 \leq K, K/K_0 \in \underline{X}$ imply $K = HK_0$.

Definition 1.6. ([3], [4]) Let \underline{X} be a class of groups. We say that \underline{X} has the *P* property if, for any π -solvable group *G* and for any minimal normal subgroup *M* of *G* such that *M* is a π' -group, we have $G/M \in \underline{X}$.

The following results are used in this paper.

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a group is abelian.

Theorem 1.8. ([1]) Suppose that G has $a \neq \{1\}$ normal solvable subgroup and let S be a maximal subgroup of G with $\operatorname{core}_G S = \{1\}$. Then, the existence of $a \neq \{1\}$ normal solvable subgroup of S implies the existence of a normal subgroup $N \neq \{1\}$ of S with (|N|, |G: S|) = 1.

Theorem 1.9. ([2]) a) Let \underline{X} be a class of groups, G a group and H a subgroup of G. If H is an \underline{X} -covering subgroup of G or H is an \underline{X} -projector of G, then H is \underline{X} -maximal in G.

PROJECTORS AND HALL π -SUBGROUPS IN FINITE π -SOLVABLE GROUPS

b) If \underline{X} is a homomorph and G is a group, then a subgroup H of G is an \underline{X} -covering subgroup of G if and only if H is an \underline{X} -projector in any subgroup K of G with $H \subseteq K$.

Theorem 1.10. Let \underline{X} be a homomorph.

a) ([7]) If H is an <u>X</u>-covering subgroup of a group G and N is a normal subgroup of G, then HN/N is an <u>X</u>-covering subgroup of G/N.

b) ([8]) If H is an <u>X</u>-projector of a group G and N is a normal subgroup of G, then HN/N is an X-projector of G/N.

c) ([7]) If H is an <u>X</u>-covering subgroup of G and $H \le K \le G$, then H is an <u>X</u>-covering subgroup of K.

Theorem 1.11. ([5]) Let \underline{X} be a π -homomorph. The following conditions are equivalent:

(1) \underline{X} is a Schunck class;

(2) any π -solvable group has \underline{X} -covering subgroups;

(3) any π -solvable group has <u>X</u>-projectors.

2. Hall π -subgroups in finite π -solvable groups

Of special interest in this paper will be the Hall π -subgroups and some of their properties. The Hall subgroups were given in [9]. Ph. Hall studied them in finite solvable groups. In [6], S. A. Čunihin extended this study to finite π -solvable groups.

Definition 2.1. Let G be a group and H a subgroup of G.

a) *H* is a π -subgroup of *G* if *H* is a π -group.

b) *H* is an *Hall* π -subgroup of *G* if: (i) *H* is a π -subgroup of *G*;

(ii) (|H|, |G:H|) = 1, i.e. |G:H| is a π' -number.

We shall use some properties of the Hall π -subgroups given in [10]:

Theorem 2.2. ([10]) (Ph. Hall, S. A. Čunihin) If G is a π -solvable group, then:

a) G has Hall π -subgroups and G has Hall π '-subgroups;

b) any two Hall π -subgroups of G are conjugate in G; any two Hall π' -subgroups of G are conjugate in G too.

Theorem 2.3. ([10]) Let G be a group and H an Hall π -subgroup of G.

a) If $H \leq K \leq G$, then H is an Hall π -subgroup of K.

b) If N is a normal subgroup of G, then HN/N is an Hall π -subgroup of G/N.

We complete these properties with two new ones, which will be used in the formation theory considerations in the main section of this paper.

Theorem 2.4. Let G be a π -solvable group, H a subgroup of G and N a normal subgroup of G. If HN/N is an Hall π -subgroup of G/N and H is an Hall π -subgroup of HN, then H is an Hall π -subgroup of G.

Proof. (i) *H* is a π -subgroup of *G*, since *H* is a π -subgroup of *HN*.

(ii) We shall prove that |G : H| is a π' -number. Indeed, we know that |G : HN| = |G/N : HN/N| is a π' -number. Further, |HN : H| is a π' -number too. Then |G : H| = |G : HN||HN : H| is a π' -number. \Box

Theorem 2.5. If G is a π -solvable group and H is a Hall π -subgroup of G, then $N_G(N_G(H)) = N_G(H)$.

Proof. We know that

$$N_G(H) = \{g \in G/H^g = H\} \supseteq H$$

and so we have $N_G(H) \subseteq N_G(N_G(H))$. We now prove that $N_G(N_G(H)) \subseteq N_G(H)$. Let $x \in N_G(N_G(H))$. It is known that $N_G(H) \trianglelefteq N_G(N_G(H))$. It follows that $N_G(H)^x = N_G(H)$, hence $H^x \subseteq N_G(H)^x = N_G(H)$, which implies by 2.3.a) that H and H^x are Hall π -subgroups of $N_G(H)$. Applying Hall-Čunihin Theorem 2.2.b), we obtain that H and H^x are conjugate in $N_G(H)$. So there is an element $y \in N_G(H)$ such that $(H^x)^y = H$. It follows that $H^{xy} = H$, hence $xy \in N_G(H)$. But $y \in N_G(H)$ implies $y^{-1} \in N_G(H)$ and so $x = (xy)y^{-1} \in N_G(H)$. \Box PROJECTORS AND HALL π -SUBGROUPS IN FINITE π -SOLVABLE GROUPS

3. Projectors which are Hall π -subgroups in finite π -solvable groups

In [8], W. Gaschütz gives for finite solvable groups the following result: If \underline{X} is a Schunck class, G a solvable group and S an \underline{X} -projector of G such that S is a p-group, then S is a Sylow p-subgroup of G.

It is the aim of this paper to study similar properties in the more general case of finite π -solvable groups.

All groups considered in this section are finite π -solvable.

Theorem 3.1. Let \underline{X} be a π -Schunck class with the P property. If G is a π -solvable group, such that there is a minimal normal subgroup M of G which is a π' -group, and if H is an \underline{X} -projector of G which is a π -group, then H is an Hall π -subgroup of G.

Proof. We will show that |G : H| is a π' -number. Let M be a minimal normal subgroup of G, such that M is a π' -group. We know that \underline{X} has the P property, and so, by 1.6., we have $G/M \in \underline{X}$.

On the other side, H being an \underline{X} -projector of G, we have, by 1.10., that HM/M is an \underline{X} -projector of G/M. Now 1.9.a) implies that HM/M is \underline{X} -maximal in G/M. But $G/M \in \underline{X}$. It follows that HM/M = G/M, hence HM = G. From this and from $HM/M \cong H/H \cap M$, we obtain that

$$|G:H| = |HM:H| = |M:H \cap M|.$$

Since $|M : H \cap M|$ divides |M| which is a π' -number, we obtain that $|M : H \cap M|$ is also a π' -number. Hence |G : H| is a π' -number. \Box

In order to renounce to the condition on the group G of having a minimal normal subgroup M which is a π' -group, the next theorem contains the assumption that H is an <u>X</u>-covering subgroup of G. This means, by 1.9.b), that H is a particular <u>X</u>-projector.

Theorem 3.2. Let \underline{X} be a π -Schunck class with the P property. If G is a π -solvable group and H is an \underline{X} -covering subgroup of G which is a π -group, then H is an Hall π -subgroup of G.

Proof. By induction on |G|. We consider two cases:

1) There is a minimal normal subgroup M of G, such that M is a π' -group. By 1.9.b), H is an <u>X</u>-projector of G. Applying theorem 3.1., it follows that H is an Hall π -subgroup of G.

2) Any minimal normal subgroup M of G is a solvable π -group. Hence, by 1.7., M is abelian. If H = G, it follows from $H \pi$ -group that H is an Hall π -subgroup of G = H. Let now $H \neq G$. We distinguish two possibilities:

a) For any minimal normal subgroup M of G we have HM = G.

Let us first prove that H is a maximal subgroup of G. Indeed, we have H < G. Further, if $H \leq H^* < G$, we prove that $H = H^*$. Suppose that $H < H^*$, and let $h^* \in H^* \setminus H$. Let M be a minimal normal subgroup of G. By the above, we have that M is abelian and G = HM. So $h^* = hm$, where $h \in H$, $m \in M$. It follows that $m = h^{-1}h^* \in M \cap H^*$. Let us prove that $M \cap H^* = \{1\}$. Suppose that $M \cap H^* \neq \{1\}$. We have $M \cap H^* \trianglelefteq H^*$. Further, $M \cap H^* \trianglelefteq G$, since if $x \in G = HM = H^*M = MH^*$ and $m \in M \cap H^*$, then $x = m_1h^*$, where $m_1 \in M$, $h^* \in H^*$, and M being abelian, we have:

$$x^{-1}mx = (m_1h^*)^{-1}m(m_1h^*) = (h^*)^{-1}m_1^{-1}mm_1h^* = (h^*)^{-1}mm_1^{-1}m_1h^* =$$
$$= (h^*)^{-1}mh^* \in M \cap H^*.$$

So $M \cap H^* \subseteq G$, $M \cap H^* \subseteq M$, $M \cap H^* \neq \{1\}$. But M is a minimal normal subgroup. Hence $M \cap H^* = M$, which implies that $M \subseteq H^*$ and so $G = H^*M = H^*$, a contradiction with $H^* < G$. It follows that $M \cap H^* = \{1\}$. Hence m = 1 and so $h^* = h \in H$, in contradiction with the choice of h^* . We proved that $H = H^*$. So His a maximal subgroup of G.

Let us notice that $core_G H = \{1\}$. Indeed, if we suppose that $core_G H \neq \{1\}$, it follows since $core_G H \trianglelefteq G$ that there exists a minimal normal subgroup M of Gsuch that $M \subseteq core_G H$. We obtain $G = HM \subseteq Hcore_G H = H$, in contradiction with $H \neq G$. So $core_G H = \{1\}$.

We are now in the hypotheses of theorem 1.8.. By 1.8., it follows the existence of a normal subgroup $N \neq \{1\}$ of H, such that (|N|, |G : H|) = 1. But H being a 22 PROJECTORS AND HALL $\pi\mbox{-}{\rm SUBGROUPS}$ IN FINITE $\pi\mbox{-}{\rm SOLVABLE}$ GROUPS

 π -group, N is also a π -group. Then |G:H| is a π' -number. It follows that H is an Hall π -subgroup of G.

b) There is a minimal normal subgroup M of G such that $HM \neq G$.

We apply the induction to the π -solvable group HM, with |HM| < |G|. By 1.10.c), H is an <u>X</u>-covering subgroup of HM. Further, H is a π -group. By the induction, H is an Hall π -subgroup of HM.

We now apply the induction to the π -solvable group G/M, with |G/M| < |G|. By 1.10.a), HM/M is an <u>X</u>-covering subgroup of G/M. Further, we have that $|HM/M| = |H/H \cap M|$ divides |H|, and so HM/M is a π -group. By the induction, HM/M is an Hall π -subgroup of G/M.

Finally, theorem 2.4. leads us to the conclusion that H is an Hall $\pi\text{-subgroup}$ of $G.\ \Box$

Corollary 3.3. Let \underline{X} be a π -Schunck class with the P property. If G is a π -solvable group and H is an X-covering subgroup of G which is a π -group, then $N_G(N_G(H)) = N_G(H).$

Proof. Follows from 3.2. and 2.5.. \Box

References

- Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1, No.2, 1957, 115-187.
- [2] Covaci, R., Projectors and covering subgroups, Studia Univ. Babeş-Bolyai, Math., XXVII, 1982, 33-36.
- [3] Covaci, R., On π-Schunck classes with the P property, Seminar on Algebra, Babeş-Bolyai Univ. Cluj-Napoca, Faculty of Mathematics, Research Seminars, Preprint No.5, 1988, 22-34.
- [4] Covaci, R., π-Closure and the P property, Studia Univ. Babeş-Bolyai, Math.,
 XXXVIII, No.1, 1993, 15-19.
- [5] Covaci, R., A characterization of π-closed Schunck classes, Studia Univ. Babeş-Bolyai, Math., XLVIII, No.3, 2003, 63-70.
- [6] Čunihin, S. A., O teoremah tipa Sylowa, Dokl. Akad. Nauk SSSR, 66, No.2, 1949, 165-168.

- [7] Gascütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, No.4, 1963, 300-305.
- [8] Gascütz, W., Selected topics in the theory of soluble groups, Australian National University, Canberra, 1969.
- [9] Hall, Ph., A note on soluble groups, J. London Math. Soc., 3, 1928, 98-105.
- [10] Huppert, B., Endliche Gruppen I, Berlin New York, Springer Verlag, 1967.
- [11] Schunck, H., <u>H</u>-Untergruppen in endlichen auflösbaren Gruppen, Math. Z., 97, No.4, 1967, 326-330.

BABEŞ-BOLYAI UNIVERSITY, STR. KOGĂLNICEANU 1, CLUJ-NAPOCA, ROMANIA *E-mail address:* rcovaci@math.ubbcluj.ro