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SPECTRAL RADIUS OF QUOTIENT BOUNDED OPERATOR

SORIN MIREL STOIAN

Abstract. We introduce the spectral radius rP(T ) for a quotient bounded

operator on a locally convex space X. Similarly to the case of bounded

operator on a Banach space we prove that the Neumann series

∞∑
n=0

T n

λn+1

converges to R(λ, T ), whenever |λ| > rP(T ), and |σ(QP , T )| = rP(T ).

1. Introduction

The spectral theory for a linear operator on Banach space X is well developed

and we have useful tools for use this theory. For example, the spectral radius of such

operator T is defined by the Gelfand formula r(T ) = lim
n→∞

n
√
‖Tn‖ and |σ(Q,T )| =

r(T ).

Further it is known that the rezolvent R(λ, T ) is given by the Neumann series
∞∑

n=0

Tn

λn+1
, whenever |λ| > r(T ).

If we want to generalize this theory on locally convex space X one major

difficulty is that is not clear which class of operators we can use, because there are

several non-equivalent ways of defining bounded operators on X. The concept of

bounded element of a locally convex algebra was introduced by Allan [1]. An element

is said to be bounded if some scalar multiple of it generates a bounded semigroup.

Definition 1.1. Let X be a locally convex algebra. The radius of boundness

of an element x ∈ X is the number

β(x) = inf{α > 0| the set {(αx)n}n≥1 is bounded}.
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In this paper we consider the class of quotient bounded operators, which was

introduced in Appendix A by A. Michael [8], and later was studied by T. Moore [9]

and A. Chilana [2].

Throught this paper all locally convex spaces will be assumed Hausdorff, over

complex field C, and all operators will be linear. If X and Y are topological vector

spaces we denote by L(X, Y ) (L(X, Y )) the algebra of linear operators (continuous

operators) from X to Y .

Any family P of seminorms who generate the topology of locally convex

space X (in the sense that the topology of X is the coarsest with respect to which

all seminorms of P are continuous) will be called a calibration on X. A calibration

is characterized by the property, that for every seminorms p ∈ P and every constant

ε > 0 the sets

S(p, ε) = {x ∈ X| p(x) < ε},

constitute a neighbourhoods sub-base at 0. A calibration on X will be principal if it

is directed. The set of calibration for X is denoted by C(X).

Any family of seminorms on a linear space is partially ordered by relation

”≤”, where

p ≤ q ⇔ p(x) ≤ q(x), ∀ x ∈ X.

A family of seminorms is preordered by relation ”≺”, where

p ≺ q ⇔ there exists some r > 0 such that p(x) ≤ rq(x), ∀ x ∈ X.

If p ≺ q and q ≺ p, we write p ≈ q.

Definition 1.2. Two families P1 and P2 of seminorms on a linear space are

called Q-equivalent (denoted P1 ≈ P2) provided:

a) for each p1 ∈ P1 there exists p2 ∈ P2 such that p1 ≈ p2;

b) for each p2 ∈ P2 there exists p1 ∈ P1 such that p2 ≈ p1.

It is obvious that two Q-equivalent and separating families of seminorms on

a linear space generate the same locally convex topology.
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Similar to the norm of an operator on a normed space we define the mixed

operator seminorm of an operator between locally convex spaces. If (X,P), (Y,Q) are

locally convex spaces, then for each p, q ∈ P the application mpq : L(X, Y ) → R∪{∞},

defined by

mpq(T ) = sup
p(x) 6=0

q(Tx)
p(x)

,

is called the mixed operator seminorm of T associated with p and q. When X = Y

and p = q we use notation p̂ = mpp.

Lemma 1.3. (V. Troistky [10]) If (X,P), (Y,Q) are locally convex spaces

and T ∈ L(X, Y ), then

1) mpq(T ) = sup
p(x)=1

q(Tx) = sup
p(x)≤1

q(Tx), ∀ p ∈ P, ∀ q ∈ Q;

2) q(Tx) ≤ mpq(T )p(x), ∀ x ∈ X, whenever mpq(T ) < ∞.

Corollary 1.4. If (X,P), (Y,Q) are locally convex spaces and T ∈ L(X, Y ),

then

mpq(T ) = inf{M > 0| q(Tx) ≤ Mp(x), ∀ x ∈ X},

whenever mpq(T ) < ∞.

Proof. If p, q ∈ P then from previous lemma we have

q(Tx) ≤ mpq(T )p(x), ∀ x ∈ X.

If M > 0 such that

q(Tx) ≤ Mp(x), ∀ x ∈ X,

then using lemma 1.3.(1) we obtain

mpq(T ) = sup
p(x)=1

q(Tx) ≤ M.

Definition 1.5. An operator T on a locally convex space X is quotient

bounded with respect to a calibration P ∈ C(X) if for every seminorm p ∈ P there

exists some cp > 0 such that

p(Tx) ≤ cpp(x), ∀ x ∈ X.
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The class of all quotient bounded operators with respect to a calibration

P ∈ C(X) is denoted by QP(X).

Lemma 1.6. If X is a locally convex space and P ∈ C(X), then for every

p ∈ P the application p̂ : QP(X) → R defined by

p̂(T ) = {r > 0| p(Tx) ≤ rp(x), ∀ x ∈ X},

is a submultiplicative seminorm on QP(X), satisfying p̂(I) = 1.

We denote by P̂ the family {p̂|p ∈ P}.

Proposition 1.7. (G. Joseph [7]) Let X be a locally convex space and P ∈

C(X).

1) QP(X) is a unital subalgebra of the algebra of continuous linear operators

on X;

2) QP(X) is a unital locally multiplicative convex algebra (l.m.c.-algebra) with

respect to the topology determined by P̂;

3) If P ′ ∈ C(X) such that P ≈ P ′, then QP′(X) = QP(X) and P̂ = P̂ ′;

4) The topology generated by P̂ on QP(X) is finer than the topology of uni-

form convergence on bounded subsets of X.

Lemma 1.8. If X is a sequentially complete convex space, then QP(X) is a

sequentially complete m-convex algebra for all P ∈ C(X).

Proof. Let P ∈ C(X) and (Tn)n ⊂ QP(X) be a Cauchy sequence. Then, for

each ε > 0 and each p̂ ∈ P̂ there exists some index np,ε ∈ N such that

|p̂(Tn)− p̂(Tm)| ≤ p̂(Tn − Tm) < ε, ∀ n, m ≥ np,ε. (1)

From the previous relation it follows that (p̂(Tn))n is convergent sequence of

real numbers, for each p̂ ∈ P̂. If x ∈ X, then

p(Tnx− Tmx) ≤ p̂(Tn − Tm)p(x), ∀ p ∈ P, (2)

so (Tn(x))n ⊂ X is a Cauchy sequence. But, since X is sequentially complete and

Hausdorff, there exists an unique element y ∈ X such that

lim
n→∞

Tnx = y.
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Therefore, the operator T : X → X defined by

T (x) = lim
n→∞

Tnx, ∀ x ∈ X,

is well defined. It is obvious that T is linear operator. Using the continuity of

seminorms p̂ ∈ P̂ we have

p(Tx) = p
(

lim
n→∞

Tnx
)

= lim
n→∞

p(Tnx) ≤ lim
n→∞

p̂(Tn)p(x) = cpp(x),

for all x ∈ X and for each p ∈ P (where cp = lim
n→∞

p̂(Tn)).

This implies that T ∈ QP(X). Now we prove that Tn → T in QP(X).

From relations (1) and (2) it follows that for each ε > 0 and each p̂ ∈ P̂ there

exists np,ε ∈ N such that

p(Tnx− Tmx) < εp(x), ∀ n, m ≥ np,ε

so

p(Tnx− Tx) ≤ εp(x), ∀ n ≥ np,ε.

This implies that

p̂(Tn − T ) ≤ ε, ∀ n ≥ np,ε,

which prove that Tn → T in QP(X) and QP(X) is a sequentially complete m-convex

algebra. �

Given (X,P), for each p ∈ P let Np denote the null space {x| p(x) = 0} and

Xp the quotient space X/Np. For each p ∈ P consider the natural mapping

x → xp ≡ x + Np (from X to Xp).

It is obvious that Xp is normed space, for each p ∈ P, with norm defined by

‖xp‖p = p(x). Consider the algebra homomorphism T → T p of QP(X) into L(Xp)

defined by

T p(xp) = (Tx)p, ∀ x ∈ X.
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This operator are well defined because T (Np) ⊂ Np. Moreover, for each

p ∈ P, L(Xp) is a unital normed algebra and we have

‖Tp‖p = sup{‖Tpxp‖p| ‖xp‖p ≤ 1 for xp ∈ Xp} =

= sup{p(Tx)| p(x) ≤ 1 for x ∈ X}.

For p ∈ P consider the normed space (X̃p, ‖·‖p) the completion of (Xp, ‖·‖p).

If T ∈ QP(X), then the operator T p has a unique continuous linear extension T̃ p on

(X̃, ‖ · ‖p).

Definition 1.9. Let (X,P) be a locally convex space and T ∈ QP(X). We

say that λ ∈ ρ(QP , T ) if the inverse of λI − T exists and (λI − T )−1 ∈ QP(X).

Spectral sets σ(QPT ) are defined to be complements of rezolvent sets

ρ(QP , T ).

For each p ∈ P we denote by σ(Xp, T
p) (σ(X̃p, T̃

p)) the spectral set of the

operator T p in L(Xp) (respectively the rezolvent set of T̃ p in L(X̃p)). The rezolvent

set of the operator T p in L(Xp) (respectively the spectral set of T̃ p in L(X̃p)) is

denoted by ρ(Xp, T
p) (ρ(X̃p, T̃

p)).

Lemma 1.10. (J. R. Gilles, G. Joseph, B. Sims [6]) Let (X,P) be a sequen-

tially complete convex space and T ∈ QP(X). Then T is invertible in QP(X) if and

only if T̃ p is invertible in L(X̃p) for all p ∈ P.

Corollary 1.11. (J. R. Gilles, G. Joseph, B. Sims [6]) If (X,P) is a sequen-

tially complete convex space and T ∈ QP(X), then

σ(QP , T ) = ∪{σ(Xp, T
p)| p ∈ P} = ∪{σ(X̃p, T̃

p)| p ∈ P}.

2. Spectral radius of quotient bounded operators

Let (X,P) be a locally convex space and T ∈ QP(X). We said that T is

bounded element of the algebra QP(X) if it is a bounded element of QP(X) in the

sense of G. R. Allan [1]. The class of bounded elements of QP(X) is denoted by

(QP(X))0.
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Definition 2.1. If (X,P) is a locally convex space and T ∈ QP(X) we

denote by rP(T ) the radius of boundness of operator T in QP(X), i.e.

rP(T ) = inf{α > 0| α−1T generates a bounded semigroup in QP(X)}.

We said that rP(T ) is the P-spectral radius of the operator T .

Proposition 1.7(3) implies that for each P ′ ∈ C(X), P ≈ P ′, we have

QP′(X) = QP(X), so if H is a Q-equivalence class in C(X), then

rP(T ) = rP′(T ), ∀ P,P ′ ∈ H.

Since QP(X) is a m-convex algebra, for each P ∈ C(X), the propositions

2.2-2.5 follows from the results proved by G. A. Allan [1] and I. Colojoara [3].

Proposition 2.2. If X is a locally convex algebra and P ∈ C(X), then for

each T ∈ QP(X) we have:

1) rP(T ) ≥ 0 and

rP(λT ) = |λ|rP(T ), ∀ λ ∈ C,

where by convention 0∞ = ∞;

2) rP(T ) < +∞ if and only if T ∈ (QP(X))0;

3) rP(T ) = inf
{

λ > 0| lim
n→∞

Tn

λn
= 0
}

.

Proposition 2.3. If X is a locally convex algebra and P ∈ C(X), then for

each T ∈ QP(X) we have:

rP(T ) = sup
{

lim sup
n→∞

(p̂(Tn))1/n| p ∈ P
}

=

= sup
{

lim
n→∞

(p̂(Tn))1/n| p ∈ P
}

= sup
{

inf
n≥1

(p̂(Tn))1/n| p ∈ P
}

.

Proposition 2.4. Let X be a locally convex algebra and P ∈ C(X).

1) If T ∈ (QP(X)), then

lim
n→∞

Tn

λn
= 0, ∀ |λ| > rP(T );
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2) If T ∈ (QP(X))0 and 0 < |λ| < rP(T ), then the set
{

Tn

λn

}
n≥1

is un-

bounded;

3) For each T ∈ QP(X) and every n > 0 we have

rP(Tn) = rP(T )n.

Proposition 2.5. Let X be a locally convex algebra and P ∈ C(X). Then:

1) rP(T + S) ≤ rP(T ) + rP(S), ∀ T, S ∈ QP(X) which have property TS =

ST ;

2) rP(TS) ≤ rP(T )rP(S), ∀ T, S ∈ QP(X) which have property TS = ST .

From real analysis we have the following lemma.

Lemma 2.6. (V. Troistky [10]) If (tn)n is a sequence in R∗ ∪ {∞} then

lim sup
n→∞

n
√

tn = inf
{

v > 0| lim
n→∞

tn
vn

= 0
}

.

This lemma implies that for a bounded operator on Banach space we have

r(T ) = lim
n→∞

n
√
‖Tn‖ = inf

{
v > 0| sequence

(
Tn

vn

)
n

converge to zero

in operator norm topology
}

.

If we consider this relation as an alternative definition of the spectral radius,

then proposition 2.2(3) implies that P-spectral radius of an quotient bounded operator

can be considered to be natural generalization of the spectral radius of bounded

operator on Banach space.

Proposition 2.7. Let X be a sequentially complete locally convex algebra and

P ∈ C(X). If T ∈ (QP(X))0 and |λ| > rP(T ), then the Neumann series
∞∑

n=0

Tn

λn+1

converges to R(λ, T ) (in QP(X)) and R(λ, T ) ∈ QP(X).

Proof. If |λ| > rP(T ), then there exists β ∈ C such that 0 < |β| < 1 and

rP(T ) < βλ. From proposition 2.4(1) we obtain that for each ε > 0 and every p ∈ P,
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there exists some index np,ε ∈ N, with property

p̂

(
Tn

(βλ)n

)
< ε, ∀ n ≥ np,ε.

Therefore, using corollary 1.4 we obtain

p

(
Tn

(βλ)n
x

)
≤ p̂

(
Tn

(βλ)n

)
p(x) < εp(x), ∀ n ≥ np,ε, ∀ x ∈ X.

Since 0 < |β| < 1, there exists n0 ∈ N, such that

m∑
k=n

|β|k < 1, ∀ m > n ≥ n0.

From a previous relation result that for each ε > 0 and every p ∈ P there

exists an index mp,ε = max{np,ε, n0} ∈ N, for which we have

p

(
m∑

k=n

T k

λk
x

)
≤ ε

(
m∑

k=n

|β|k
)

p(x) < εp(x), (3)

for every m > n ≥ mp,ε and every x ∈ X.

Therefore, for each x ∈ X,

(
m∑

k=0

T k

λk+1
x

)
m≥0

is a Cauchy sequence.

But X is sequentially complete, so for every x ∈ X there exists an unique

element y ∈ X such that

y = lim
m→∞

m∑
k=0

T k

λk+1
x.

We consider the operator S : X → X given by

S(x) = lim
m→∞

m∑
k=0

T k

λk+1
x, ∀ x ∈ X.

It is obvious that S is linear operator. Moreover, from equality

m∑
k=0

T k

λk+1
(λx− Tx) = x− Tm+1

λm+1
x, ∀ x ∈ X,

result that if m →∞ then

S(λx− Tx) = x, ∀ x ∈ X.
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Hence S(λI − T ) = I, we prove (λI − T )S = I. From continuity of the

operator T result that

STx = lim
m→∞

m∑
k=0

T k

λk+1
Tx = lim

m→∞
T

(
m∑

k=0

T k

λk+1
x

)
=

= T

(
lim

m→∞

m∑
k=0

T k

λk+1
x

)
= TSx,

for all x ∈ X, therefore

S(λI − T ) = (λI − T )S = I.

The definition of P-spectral radius implies that family
(

Tn

(βλ)n

)
n

is bounded

in QP(X), therefore for every p ∈ P there exists a constant εp > 0 with property

p̂

(
Tn

(βλ)n

)
< εp, ∀ n ≥ 1.

Using again corollary 1.4 we have

p

(
Tn

λn
x

)
< εp|β|np(x), ∀ n ≥ 1, ∀ x ∈ X.

Therefore, for every p ∈ P there exists some εp > 0 with property

p

(
m∑

k=0

T k

λk+1
x

)
<

εp

|λ|

(
m∑

k=0

|β|k
)

p(x) <
εp

|λ|
1

1− |β|
p(x),

for every m ≥ 1 and every x ∈ X, which implies that S = R(λ, T ) ∈ QP(X).

If we write relation (3) under the form

p

(
m∑

k=0

T k

λk+1
x−

n∑
k=0

T k

λk+1
x

)
<

ε

|λ|
p(x),

then for m →∞ result that for every ε > 0 and every p ∈ P there exists some index

np,ε ∈ N, such that

p

(
Sx−

n∑
k=0

T k

λk+1
x

)
≤ ε

|λ|
p(x), ∀ n ≥ np,ε, ∀ x ∈ X.

This implies that the Neumann series
∞∑

n=0

Tn

λn+1
converges to R(λ, T ) in

QP(X). �
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Proposition 2.8. Let X be a sequentially complete locally convex algebra

and P ∈ C(X). If T ∈ QP(X), then

|σ(QP , T )| = rP(T ).

Proof. Inequality |σ(QP , T )| ≤ rP(T ) is implied by previous proposition.

We prove now the reverse inequality. From corollary 1.11 we have

σ(QP , T ) = ∪{σ(Xp, T
p)| p ∈ P} = ∪{σ(X̃p, T̃

p)| p ∈ P}.

So, if |λ| > |σ(QP , T )|, then

|λ| > |σ(X̃p, T̃
p)|, ∀ p ∈ P.

But, X̃p is Banach space for each p ∈ P, therefore

|σ(S̃p, T̃
p)| = r(X̃p, T̃

p)

where r(X̃p, T̃
p) is spectral radius of bounded operator T̃ p in X̃p.

This observation implies that for each p ∈ P we have
T pn

λn
→ 0 in L(X̃p).

This means that for any ε > 0 we must have ‖Tn‖p ≤ (ε + |σ(QP , T )|)n for large n.

Hence, by proposition 2.3 we have rP(T ) ≤ |σ(QP , T )|.
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