## ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

## CRISTINA-IOANA FĂTU


#### Abstract

The objective of this paper is to give some properties for the Fisher's information measure when $X_{a \leftrightarrow b}$ represents a bilateral truncated random variable that corresponds to a normal random variable $X$ with the probability density function $f(x ; \theta)$, where $\theta=\left(m, \sigma^{2}\right), \theta \in D_{\theta}, D_{\theta} \subseteq \mathbb{R}^{2}$, $m \in \mathbb{R}, \sigma^{2} \in \mathbb{R}^{+}$.


The Fisher's invariance property will be studied in the case of a truncated normal distribution.

Let $X$ be a normal distribution with probability density function

$$
\begin{equation*}
f\left(x ; m, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}\right\}, x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where the parameters $m$ and $\sigma$ have their usual significance, namely: $m=E(X)$, $\sigma^{2}=\operatorname{Var}(X), m \in \mathbb{R}, \sigma>0$.

Definition 1. [1] We say that the random variable $X$ has a normal distribution truncated to the left at $X=a, a \in \mathbb{R}$ and to the right at $X=b, b \in \mathbb{R}$, denoted by $X_{a \leftrightarrow b}$, if its probability density function, denoted by $f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right)$, has the form

$$
f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right)=\left\{\begin{array}{cl}
\frac{k(a, b)}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}\right\} & \text { if } a \leq x \leq b,  \tag{2}\\
0 & \text { if } x<a \text { or } x>b,
\end{array}\right.
$$

where

$$
\begin{equation*}
k(a, b)=\frac{1}{A}=\frac{1}{\Phi\left(\frac{b-m}{\sigma}\right)-\Phi\left(\frac{a-m}{\sigma}\right)} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} \exp \left(-\frac{t^{2}}{2}\right) d t  \tag{4}\\
\Phi(-\infty)=0, \Phi(0)=\frac{1}{2}, \Phi(+\infty)=1, \Phi(-z)=1-\Phi(z) \tag{5}
\end{gather*}
$$

$\Phi(z)$ is the standard normal distribution function corresponding to the standard nor-
mal random variable

$$
\begin{equation*}
Z=\frac{X-m}{\sigma}, E(Z)=0, \operatorname{Var}(Z)=1 \tag{6}
\end{equation*}
$$

The probability density function of the random variable $Z$ has the form

$$
\begin{equation*}
f(z ; 0,1)=f(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right), z \in(-\infty,+\infty) \tag{7}
\end{equation*}
$$

Remark 1. A truncated probability distribution can be regarded as a conditional probability distribution in the sense that if $X$ has an unrestricted distribution with probability density function $f(x)$ then $f_{a \leftrightarrow b}(x)$, as defined above, is the probability density function which governs the behavior of $X$ subject to the condition that $X$ is known to lie in $[a, b]$.

Theorem 1. [2] Let $X_{a \leftrightarrow b}$ be a random variable with a normal distribution truncated to the left at $X=a$ and to the right at $X=b$. Then

$$
\begin{equation*}
E\left(X_{a \hookleftarrow b}\right)=m-\frac{\sigma^{2}}{A}\left[f\left(b ; m, \sigma^{2}\right)-f\left(a ; m, \sigma^{2}\right)\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& f\left(a ; m, \sigma^{2}\right)=\left.f\left(x ; m, \sigma^{2}\right)\right|_{x=a}=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{a-m}{\sigma}\right)^{2}\right)  \tag{9}\\
& f\left(b ; m, \sigma^{2}\right)=\left.f\left(x ; m, \sigma^{2}\right)\right|_{x=b}=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{b-m}{\sigma}\right)^{2}\right) \tag{10}
\end{align*}
$$

Theorem 2. [2] Let $X_{a \leftrightarrow b}$ be a random variable with a normal distribution truncated to the left at $X=a$ and to the right at $X=b$. Then

$$
\begin{equation*}
E\left(X_{a \leftrightarrow b}^{2}\right)=m^{2}+\sigma^{2}-\frac{\sigma^{2}}{A}\left((m+b) f\left(b ; m, \sigma^{2}\right)-(m+a) f\left(b ; m, \sigma^{2}\right)\right) \tag{11}
\end{equation*}
$$

Corollary 1. [2] If $X_{a \leftrightarrow b}$ is a random variable with a normal distribution truncated to the left at $X=a$ and to the right at $X=b$, then

$$
\begin{align*}
\operatorname{Var}\left(X_{a \leftrightarrow b}\right) & =\sigma^{2}+\frac{\left(\sigma^{2}\right)^{2}}{A^{2}}\left(f\left(b ; m, \sigma^{2}\right)-f\left(a ; m, \sigma^{2}\right)\right)^{2}+  \tag{12}\\
& +\frac{\sigma^{2}}{A}\left((m-b) f\left(b ; m, \sigma^{2}\right)-(m-a) f\left(a ; m, \sigma^{2}\right)\right) . \tag{13}
\end{align*}
$$

Corollary 2. [1] For the random variables $X_{a \leftarrow,} X_{\rightarrow b}$ and $X$ we have

$$
\begin{align*}
\lim _{a \rightarrow-\infty} f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right) & =f_{\rightarrow b}\left(x ; m, \sigma^{2}\right)=  \tag{14}\\
& =\left\{\begin{array}{cl}
\frac{1}{\Phi\left(\frac{b-m}{\sigma}\right)} \cdot f\left(x ; m, \sigma^{2}\right) & \text { if } x \leq b \\
0 & \text { if } x>b,
\end{array}\right. \tag{15}
\end{align*}
$$

$$
\begin{align*}
\lim _{b \rightarrow+\infty} f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right) & =f_{a \leftarrow}\left(x ; m, \sigma^{2}\right)=  \tag{16}\\
& =\left\{\begin{array}{cl}
\frac{1}{1-\Phi\left(\frac{a-m}{\sigma}\right)} \cdot f\left(x ; m, \sigma^{2}\right) & \text { if } x \geq a \\
0 & \text { if } x<a
\end{array}\right. \tag{17}
\end{align*}
$$

and

$$
\begin{align*}
\lim _{\substack{a \rightarrow-\infty \\
b \rightarrow+\infty}} f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right) & =f\left(x ; m, \sigma^{2}\right)=  \tag{18}\\
& =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^{2}\right) \quad \text { if } x \in \mathbb{R} \tag{19}
\end{align*}
$$

where $f_{\rightarrow b}\left(x ; m, \sigma^{2}\right)$ is the probability density function when $X_{\rightarrow b}$ has a normal distribution truncated to the right at $X=b ; f_{a \leftarrow}\left(x ; m, \sigma^{2}\right)$ is the probability density function when $X_{a \leftarrow ~ h a s ~ a ~ n o r m a l ~ d i s t r i b u t i o n ~ t r u n c a t e d ~ t o ~ t h e ~ l e f t ~ a t ~} X=a$ and $f\left(x ; m, \sigma^{2}\right)$ is the probability density function when $X$ has an ordinary normal distribution.

## CRISTINA-IOANA FĂTU

Corollary 3. [1] For the random variables $X_{a \leftarrow}, X_{\rightarrow b}$ and $X$ we have

$$
\begin{align*}
& E\left(X_{a \leftarrow}\right)=\lim _{b \rightarrow+\infty} E\left(X_{a \leftrightarrow b}\right)=  \tag{20}\\
& =m+\frac{\sigma^{2}}{1-\Phi\left(\frac{a-m}{\sigma}\right)} f\left(a ; m, \sigma^{2}\right),  \tag{21}\\
& E\left(X_{\rightarrow b}\right)=\lim _{a \rightarrow-\infty} E\left(X_{a \leftrightarrow b}\right)=  \tag{22}\\
&  \tag{23}\\
& =m-\frac{\sigma^{2}}{\Phi\left(\frac{b-m}{\sigma}\right)} f\left(b ; m, \sigma^{2}\right),
\end{align*}
$$

and

$$
\begin{align*}
E(X) & =\lim _{\substack{a \rightarrow-\infty \\
b \rightarrow+\infty}} E\left(X_{a \leftrightarrow b}\right)=  \tag{24}\\
& =m . \tag{25}
\end{align*}
$$

Corollary 4. [1] For the random variables $X_{a \leftarrow}, X_{\rightarrow b}$ and $X$ we have

$$
\begin{align*}
\operatorname{Var}\left(X_{a \leftarrow}\right) & =\lim _{b \rightarrow+\infty} \operatorname{Var}\left(X_{a \leftrightarrow b}\right)=  \tag{26}\\
& =\sigma^{2}+\frac{\left(\sigma^{2}\right)^{2} f^{2}\left(a ; m, \sigma^{2}\right)}{\left(1-\Phi\left(\frac{a-m}{\sigma}\right)\right)^{2}}-\frac{\sigma^{2}(m-a) f\left(a ; m, \sigma^{2}\right)}{1-\Phi\left(\frac{a-m}{\sigma}\right)},  \tag{27}\\
\operatorname{Var}\left(X_{\rightarrow b}\right) & =\lim _{a \rightarrow-\infty} \operatorname{Var}\left(X_{a \leftrightarrow b}\right)=  \tag{28}\\
& =\sigma^{2}+\frac{\left(\sigma^{2}\right)^{2} f^{2}\left(b ; m, \sigma^{2}\right)}{\Phi^{2}\left(\frac{b-m}{\sigma}\right)}+\frac{\sigma^{2}(m-b) f\left(b ; m, \sigma^{2}\right)}{\Phi\left(\frac{b-m}{\sigma}\right)}, \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(X)=\lim _{\substack{a \rightarrow-\infty, b \rightarrow+\infty}} \operatorname{Var}\left(X_{a \leftrightarrow b}\right)=\sigma^{2} . \tag{30}
\end{equation*}
$$

Let consider the case: $m$-an unknown parameter, $\sigma^{2}-a$ known parameter.

Theorem 3. [2] If the random variable $X_{a \leftrightarrow b}$ has a bilateral truncated normal distribution, that is, its probability distribution has the form (2), then the Fisher's information measure, about the unknown parameter m, has the following form

$$
\begin{align*}
I_{X_{a \leftrightarrow b}}(m) & =\int_{a}^{b}\left(\frac{\partial \ln f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right)}{\partial m}\right)^{2} f_{a \leftrightarrow b}\left(x ; m, \sigma^{2}\right) d x=  \tag{31}\\
& =\frac{1}{\sigma^{2}}-\frac{\left[f\left(b ; m, \sigma^{2}\right)-f\left(a ; m, \sigma^{2}\right)\right]^{2}}{\sqrt{2 \pi} \sigma A^{2}}+ \\
& +\frac{(m-b) f\left(b ; m, \sigma^{2}\right)-(m-a) f\left(a ; m, \sigma^{2}\right)}{\sigma^{2} A}, \tag{32}
\end{align*}
$$

where $f\left(a ; m, \sigma^{2}\right)$ and $f\left(b ; m, \sigma^{2}\right)$ are given in (9) and (10).
Corollary 5. If $a=m-\sigma, b=m+\sigma$, then the Fisher's information measure, relative to the unknown parameter $m$, has the following value

$$
\begin{equation*}
I_{X_{m-\sigma \leftrightarrow m+\sigma}}(m)=\frac{1}{\sigma^{2}}\left(1-\frac{1}{0,341 \sqrt{2 \pi e}}\right), \tag{33}
\end{equation*}
$$

moreover, we obtain the inequality

$$
\begin{equation*}
I_{X_{m-\sigma \leftrightarrow m+\sigma}}(m)<I_{X}(m) . \tag{34}
\end{equation*}
$$

Corollary 6. (Invariance of the Fisher information - the first form) If we consider values $a=m, b=m+\sigma$ or $a=m-\sigma, b=m$, then the Fisher's information measures, relative to the unknown parameter $m$, has the same value, namely

$$
\begin{equation*}
I_{X_{m \hookleftarrow m+\sigma}}(m)=I_{X_{m-\sigma \leftrightarrow m}}(m)=\frac{1}{\sigma^{2}}\left\{1-\left(\frac{(1-\sqrt{e})^{2}}{(\sqrt{2 \pi e} \cdot 0,341)^{2}}+\frac{1}{\sqrt{2 \pi e} \cdot 0,341}\right)\right\}, \tag{35}
\end{equation*}
$$

moreover, we have the following inequality

$$
\begin{equation*}
I_{X_{m \leftrightarrow m+\sigma}}(m)=I_{X_{m-\sigma \leftrightarrow m}}(m)<I_{X}(m) . \tag{36}
\end{equation*}
$$

Corollary 7. If $a=m-k \sigma, b=m+k \sigma, k \in \mathbb{N}^{*}$, then the Fisher's information measure, relative to the unknown parameter $m$, can be written like

$$
\begin{equation*}
I_{X_{m-k \sigma \leftrightarrow m+k \sigma}}(m)=\frac{1}{\sigma^{2}}\left\{1-\frac{2 k}{\sqrt{2 \pi e^{k^{2}}}(2 \Phi(k)-1)}\right\}, k \in \mathbb{N}^{*} \tag{37}
\end{equation*}
$$

moreover, we obtain the inequality

$$
\begin{equation*}
I_{X m-k \sigma \leftrightarrow m+k \sigma}(m)<\frac{1}{\sigma^{2}}=I_{X}(m), k \in \mathbb{N}^{*} \tag{38}
\end{equation*}
$$

Remark 2. In the particular case $k=3$ we obtain a bilateral truncated random variable $X_{m-k \sigma \leftrightarrow m+k \sigma}$ and the Fisher's information measure, relative to the unknown parameter $m$, can be written like

$$
\begin{equation*}
I_{X_{m-3 \sigma \leftrightarrow m+3 \sigma}}(m)=\frac{1}{\sigma^{2}}\left[1-\frac{1}{\sqrt{2 \pi e} e^{4} \cdot 0,166}\right] \tag{39}
\end{equation*}
$$

moreover, we obtain the inequality

$$
\begin{equation*}
I_{X_{m-3 \sigma \leftrightarrow m+3 \sigma}}(m)<\frac{1}{\sigma^{2}}=I_{X}(m) . \tag{40}
\end{equation*}
$$

Corollary 8. For the random variables $X_{a \leftarrow,}, X_{\rightarrow b}$ and $X$ the Fisher's information measures have the following forms

$$
\begin{align*}
& I_{X_{a \leftarrow}}(m)=\lim _{b \rightarrow+\infty} I_{X_{a \leftrightarrow b}}(m)=  \tag{41}\\
& =\frac{1}{\sigma^{2}}-\frac{(m-a) f\left(a ; m, \sigma^{2}\right)}{\sigma^{2}\left(1-\Phi\left(\frac{a-m}{\sigma}\right)\right)}-\frac{. f^{2}\left(a ; m, \sigma^{2}\right)}{\left(1-\Phi\left(\frac{a-m}{\sigma}\right)\right)^{2}}  \tag{42}\\
& I_{X_{\rightarrow b}(m)}=\lim _{a \rightarrow-\infty} I_{X_{a \leftrightarrow b}(m)=}  \tag{43}\\
& \quad=\frac{1}{\sigma^{2}}+\frac{(m-b) f\left(b ; m, \sigma^{2}\right)}{\sigma^{2} \Phi\left(\frac{b-m}{\sigma}\right)}-\frac{f^{2}\left(b ; m, \sigma^{2}\right)}{\Phi^{2}\left(\frac{a-m}{\sigma}\right)} \tag{44}
\end{align*}
$$

and

$$
\begin{equation*}
I_{X}(m)=\lim _{\substack{a \rightarrow-\infty, b \rightarrow+\infty}} I_{X_{a \leftrightarrow b}}(m)=\frac{1}{\sigma^{2}} \tag{45}
\end{equation*}
$$

Corollary 9. If $b=m$, then from (5) we obtain $\Phi(0)=\frac{1}{2}$ and from (44) it results the inequality

$$
\begin{equation*}
I_{X_{\rightarrow m}}(m)=\frac{1}{\sigma^{2}}\left(1-\frac{2}{\pi}\right)<\frac{1}{\sigma^{2}}=I_{X}(m) \tag{46}
\end{equation*}
$$

Corollary 10. If $b=m-\sigma$, then from (5) we obtain

$$
\begin{equation*}
\Phi(-1)=1-\Phi(1)=0,159, \tag{47}
\end{equation*}
$$

and from (44), the following relations

$$
\begin{equation*}
I_{X_{\rightarrow m-\sigma}}(m)=\frac{1}{\sigma^{2}}\left(1+\frac{1}{\sqrt{2 \pi e} \Phi(-1)}-\frac{1}{(\sqrt{2 \pi e} \Phi(-1))^{2}}\right) \tag{48}
\end{equation*}
$$

moreover, the inequalities

$$
\begin{equation*}
I_{X_{\rightarrow m}}(m)<I_{X}(m)<I_{X \rightarrow m-\sigma}(m) . \tag{49}
\end{equation*}
$$

Corollary 11. If $b=m+\sigma$, we have the following relations

$$
\begin{equation*}
I_{X \rightarrow m+\sigma}(m)=\frac{1}{\sigma^{2}}\left\{1-\left(\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}\right)\right\} \tag{50}
\end{equation*}
$$

moreover, the inequalities

$$
\begin{equation*}
I_{X_{\rightarrow m+\sigma}}(m)<I_{X_{\rightarrow m}}(m)<I_{X}(m)<I_{X_{\rightarrow m-\sigma}}(m) . \tag{51}
\end{equation*}
$$

Proof. From (44), it results the equality (50) which imply the inequality

$$
\begin{equation*}
I_{X_{\rightarrow m+\sigma}}(m)=\frac{1}{\sigma^{2}}\left\{1-\left(\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}\right)\right\}<\frac{1}{\sigma^{2}}=I_{X}(m) \tag{52}
\end{equation*}
$$

Then, from (49) and (52) it results the inequalities

$$
\begin{equation*}
I_{X_{\rightarrow m+\sigma}}(m)<I_{X}(m)<I_{X_{\rightarrow m-\sigma}}(m) . \tag{53}
\end{equation*}
$$

Now, from (46), the inequality (51) is reduced to the following inequality

$$
\begin{equation*}
I_{X_{\rightarrow m+\sigma}}(m)<I_{\rightarrow m}(m) . \tag{54}
\end{equation*}
$$

Using the relations (46) and (50), we observe that this last inequality is equivalent to the inequalities

$$
\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}<\frac{2}{\sqrt{2 \pi e} \Phi(1)}<\frac{2}{\pi}
$$

or to the inequality

$$
\pi<\sqrt{2 \pi e} \Phi(1)
$$

This last inequality results using the approximations: $\pi \approx 3,14, e \approx 2,72, \Phi(1)=$ 0,841 .

Corollary 12. If $a=m$, then from (5) we obtain $\Phi(0)=\frac{1}{2}$ and from (42) it results the inequality

$$
\begin{equation*}
I_{X_{m \leftarrow}}(m)=\frac{1}{\sigma^{2}}\left(1-\frac{2}{\pi}\right)<\frac{1}{\sigma^{2}}=I_{X}(m) . \tag{55}
\end{equation*}
$$

Corollary 13. If $a=m-\sigma$, then from (5) we obtain

$$
\begin{equation*}
1-\Phi(-1)=\Phi(1)=0,841 \tag{56}
\end{equation*}
$$

and from (42) it results the equality

$$
\begin{equation*}
I_{X_{m-\sigma \leftarrow}}(m)=\frac{1}{\sigma^{2}}\left\{1-\left(\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}\right)\right\} \tag{57}
\end{equation*}
$$

moreover, the inequality

$$
\begin{equation*}
I_{X_{m-\sigma \leftarrow}}(m)<I_{X}(m) \tag{58}
\end{equation*}
$$

Corollary 14. If $a=m+\sigma$, then from (5) we obtain $\Phi(-1)=0,159$, and from (42) it results the equality

$$
\begin{equation*}
I_{X_{m+\sigma} \leftarrow}(m)=\frac{1}{\sigma^{2}}\left\{1+\left(\frac{1}{\sqrt{2 \pi e} \Phi(-1)}-\frac{1}{(\sqrt{2 \pi e} \Phi(-1))^{2}}\right)\right\} \tag{59}
\end{equation*}
$$

moreover, the inequalities

$$
\begin{equation*}
I_{X_{m-\sigma}}(m)<I_{m \leftarrow}(m)<I_{X}(m)<I_{X_{m+\sigma}}(m) \tag{60}
\end{equation*}
$$

Proof. From the relation (42), we obtain the equality (59) which imply the inequality

$$
\begin{equation*}
I_{X_{m+\sigma} \leftarrow}(m)=\frac{1}{\sigma^{2}}\left\{1+\left(\frac{1}{\sqrt{2 \pi e} \Phi(-1)}-\frac{1}{(\sqrt{2 \pi e} \Phi(-1))^{2}}\right)\right\}>\frac{1}{\sigma^{2}}=I_{X}(m) . \tag{61}
\end{equation*}
$$

From (58) and (61) it results the inequalities

$$
\begin{equation*}
I_{X_{m-\sigma \leftarrow}}(m)<I_{X}(m)<I_{X_{m+\sigma}}(m) . \tag{62}
\end{equation*}
$$

Now, regarding the inequalities (55) and (62), we observe that the inequality (60) is reduced to the inequality

$$
\begin{equation*}
I_{X_{m-\sigma}}(m)<I_{X_{m \leftarrow}}(m) . \tag{63}
\end{equation*}
$$

By the relations (55) and (57), we observe that this last inequality is equivalent to the inequality

$$
\frac{1}{\sigma^{2}}\left\{1-\left(\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}\right)\right\}<\frac{1}{\sigma^{2}}\left(1-\frac{2}{\pi}\right)
$$

or to the inequalities

$$
\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}<\frac{2}{\sqrt{2 \pi e} \Phi(1)}<\frac{2}{\pi} .
$$

The last inequality is equivalent to the inequality $\sqrt{2 \pi e} \Phi(1)<(\sqrt{2 \pi e} \Phi(1))^{2}$ which imply the inequality

$$
\begin{equation*}
\pi<\sqrt{2 \pi e} \Phi(1) . \tag{64}
\end{equation*}
$$

Using the approximations: $\pi \approx 3,14, e \approx 2,72$ and $\Phi(1)=0,841$, the last inequality is true, because

$$
\sqrt{2 \pi e} \Phi(1) \approx \sqrt{2 \times 3,14 \times 2,72} .0,841 \approx 4,13.0,841 \approx 3,475
$$

The invariance of Fisher's information is ilustrated in the following corollaries.

Corollary 15. (the second form)

$$
\begin{align*}
I_{X_{\rightarrow m+\sigma}}(m) & =I_{X_{-\infty \leftrightarrow m+\sigma}}(m)=  \tag{65}\\
& =\frac{1}{\sigma^{2}}\left\{1-\left(\frac{1}{\sqrt{2 \pi e} \Phi(1)}+\frac{1}{(\sqrt{2 \pi e} \Phi(1))^{2}}\right)\right\}=  \tag{66}\\
& =I_{X_{m-\sigma}}(m)=I_{X_{m-\sigma} \leftrightarrow+\infty}(m) . \tag{67}
\end{align*}
$$

Proof. Using the relations (50) and (57), the proof is obviously.
Corollary 16. (the third form)

$$
\begin{align*}
I_{X_{\rightarrow m-\sigma}}(m) & =I_{X_{-\infty \leftrightarrow m-\sigma}}(m)=  \tag{68}\\
& =\frac{1}{\sigma^{2}}\left(1+\frac{1}{\sqrt{2 \pi e} \Phi(-1)}-\frac{1}{(\sqrt{2 \pi e} \Phi(-1))^{2}}\right)=I_{X_{m+\sigma \leftrightarrow+\infty}}(m) \tag{69}
\end{align*}
$$

Proof. Using the relations (48) and (59), the proof is obviously.
Corollary 17. (the fourth form)

$$
\begin{equation*}
I_{X_{\rightarrow m}}(m)=I_{X_{-\infty \leftrightarrow m}}(m)=\frac{1}{\sigma^{2}}\left(1-\frac{2}{\pi}\right)=I_{X_{m \leftarrow}}(m)=I_{X_{m \hookleftarrow+\infty}} \tag{70}
\end{equation*}
$$

Proof. Using the relations (46) and (55), the proof is obviously.

## References

[1] I. Mihoc, C. I. Fătu, Fisher's Information Measures for the Truncated Normal Distribution (I), Analysis, Functional Equations, Approximation and Convexity, Proceedings of the Conference Held in Honour Professor Elena Popoviciu on the Occasion of the $75^{\text {th }}$ Birthday, Editura Carpatica 1999, 171-182.
[2] I. Mihoc, C. I. Fătu, Fisher's Information Measures and Truncated Normal Distributions (II), Seminarul de teoria celei mai bune aproximări, convexitate şi optimizare, 1960-2000, „Omagiu memoriei academicianului Tiberiu Popoviciu la 25 de ani de la moarte", 26-29 octombrie, 2000, 153-155.
[3] I. Mihoc, C. I. Fătu, Some Observations about Fisher's information Measures, "The $130^{-t h}$ Pannonian Applied Mathematical Meeting", July15-22, 2000, Cluj-Napoca-Miercurea-Ciuc (Gábor Dénes-Foundation Cluj) (Interuniversity Network in Central

ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

Europe), Bulletins for Applied \& Computer Mathematics, Caretaked by the PAMMCenter at the Technical University of Budapest, Budapest, 2000, BAM-1788, 183-193.
[4] I. Mihoc, C. I. Fătu, Calculul probabilităţilor şi statistică matematică, Casa de Editură Transilvania Pres, Cluj-Napoca, 2003.
[5] C. R. Rao, Liniar Statistical Inference and Its Applications, John Wiley and Sons, Inc., New York, 1965.
[6] A. Rényi, Probability Theory, Akadémiai Kiado, Budapest, 1970.
[7] M. J. Schervish, Theory of Statistics, Springer-Verlag New York, Inc. 1995

Faculty of Economical Sciences at Christian University, "Dimitrie Cantemir", 3400, Cluj-Napoca, Romania

E-mail address: cfatu@cantemir.cluj.astral.ro

