STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 4, December 2004

ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

CRISTINA-IOANA FĂTU

Abstract. The objective of this paper is to give some properties for the Fisher's information measure when $X_{a \leftrightarrow b}$ represents a bilateral truncated random variable that corresponds to a normal random variable X with the probability density function $f(x;\theta)$, where $\theta = (m, \sigma^2)$, $\theta \in D_{\theta}$, $D_{\theta} \subseteq \mathbb{R}^2$, $m \in \mathbb{R}, \sigma^2 \in \mathbb{R}^+$.

The Fisher's invariance property will be studied in the case of a truncated normal distribution.

Let X be a normal distribution with probability density function

$$f(x;m,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right\}, x \in \mathbb{R},\tag{1}$$

where the parameters m and σ have their usual significance, namely: m = E(X), $\sigma^2 = Var(X), m \in \mathbb{R}, \sigma > 0.$

Definition 1. [1] We say that the random variable X has a normal distribution truncated to the left at $X = a, a \in \mathbb{R}$ and to the right at $X = b, b \in \mathbb{R}$, denoted by $X_{a \leftrightarrow b}$, if its probability density function, denoted by $f_{a \leftrightarrow b}(x; m, \sigma^2)$, has the form

$$f_{a \leftrightarrow b}(x; m, \sigma^2) = \begin{cases} \frac{k(a, b)}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right\} & \text{if } a \le x \le b, \\ 0 & \text{if } x < a \text{ or } x > b, \end{cases}$$
(2)

where

$$k(a,b) = \frac{1}{A} = \frac{1}{\Phi\left(\frac{b-m}{\sigma}\right) - \Phi\left(\frac{a-m}{\sigma}\right)},\tag{3}$$

Received by the editors: 15.12.2004.

 $^{2000\} Mathematics\ Subject\ Classification.\ 62B10,\ 62B05.$

Key words and phrases. Fisher's information, truncated distribution, invariance property.

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{t^2}{2}\right) dt,$$
(4)

$$\Phi(-\infty) = 0, \ \Phi(0) = \frac{1}{2}, \ \Phi(+\infty) = 1, \ \Phi(-z) = 1 - \Phi(z),$$
 (5)

 $\Phi(z)$ is the standard normal distribution function corresponding to the standard nor-

 $mal\ random\ variable$

$$Z = \frac{X - m}{\sigma}, \ E(Z) = 0, Var(Z) = 1.$$
(6)

The probability density function of the random variable Z has the form

$$f(z;0,1) = f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right), z \in (-\infty, +\infty).$$
(7)

Remark 1. A truncated probability distribution can be regarded as a conditional probability distribution in the sense that if X has an unrestricted distribution with probability density function f(x) then $f_{a \leftrightarrow b}(x)$, as defined above, is the probability density function which governs the behavior of X subject to the condition that X is known to lie in [a, b].

Theorem 1. [2] Let $X_{a \leftrightarrow b}$ be a random variable with a normal distribution truncated to the left at X = a and to the right at X = b. Then

$$E(X_{a\leftrightarrow b}) = m - \frac{\sigma^2}{A} \left[f(b; m, \sigma^2) - f(a; m, \sigma^2) \right],$$
(8)

where

$$f(a;m,\sigma^2) = f(x;m,\sigma^2) \mid_{x=a} = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{a-m}{\sigma}\right)^2\right),\tag{9}$$

$$f(b;m,\sigma^2) = f(x;m,\sigma^2) \mid_{x=b} = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{b-m}{\sigma}\right)^2\right).$$
 (10)

Theorem 2. [2] Let $X_{a \leftrightarrow b}$ be a random variable with a normal distribution truncated to the left at X = a and to the right at X = b. Then

$$E(X_{a \leftrightarrow b}^{2}) = m^{2} + \sigma^{2} - \frac{\sigma^{2}}{A} \left((m+b)f(b;m,\sigma^{2}) - (m+a)f(b;m,\sigma^{2}) \right).$$
(11)

Corollary 1. [2] If $X_{a \leftrightarrow b}$ is a random variable with a normal distribution truncated to the left at X = a and to the right at X = b, then

$$Var(X_{a \leftrightarrow b}) = \sigma^{2} + \frac{(\sigma^{2})^{2}}{A^{2}} \left(f(b; m, \sigma^{2}) - f(a; m, \sigma^{2}) \right)^{2} +$$
(12)

+
$$\frac{\sigma^2}{A} \left((m-b)f(b;m,\sigma^2) - (m-a)f(a;m,\sigma^2) \right).$$
 (13)

Corollary 2. [1] For the random variables $X_{a\leftarrow}$, $X_{\rightarrow b}$ and X we have

$$\lim_{a \to -\infty} f_{a \leftrightarrow b}(x; m, \sigma^2) = f_{\rightarrow b}(x; m, \sigma^2) =$$
(14)

$$= \begin{cases} \frac{1}{\Phi\left(\frac{b-m}{\sigma}\right)} & \text{if } x \le b \\ 0 & \text{if } x > b, \end{cases}$$
(15)

$$\lim_{b \to +\infty} f_{a \leftrightarrow b}(x; m, \sigma^2) = f_{a \leftarrow}(x; m, \sigma^2) =$$

$$= \begin{cases} \frac{1}{1 - \Phi\left(\frac{a - m}{\sigma}\right)} & \text{if } x \ge a \\ 0 & \text{if } x < a, \end{cases}$$
(16)
$$(17)$$

and

$$\lim_{\substack{a \to -\infty, \\ b \to +\infty}} f_{a \leftrightarrow b}(x; m, \sigma^2) = f(x; m, \sigma^2) =$$
(18)

$$= \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right) \quad if \ x \in \mathbb{R},$$
(19)

where $f_{\rightarrow b}(x; m, \sigma^2)$ is the probability density function when $X_{\rightarrow b}$ has a normal distribution truncated to the right at X = b; $f_{a\leftarrow}(x; m, \sigma^2)$ is the probability density function when $X_{a\leftarrow}$ has a normal distribution truncated to the left at X = a and $f(x; m, \sigma^2)$ is the probability density function when X has an ordinary normal distribution.

Corollary 3. [1] For the random variables $X_{a\leftarrow}$, $X_{\rightarrow b}$ and X we have

$$E(X_{a\leftarrow}) = \lim_{b \to +\infty} E(X_{a\leftrightarrow b}) =$$
⁽²⁰⁾

$$= m + \frac{\sigma^2}{1 - \Phi\left(\frac{a-m}{\sigma}\right)} f(a; m, \sigma^2), \qquad (21)$$

$$E(X_{\to b}) = \lim_{a \to -\infty} E(X_{a \leftrightarrow b}) =$$
(22)

$$= m - \frac{\sigma^2}{\Phi\left(\frac{b-m}{\sigma}\right)} f(b; m, \sigma^2), \qquad (23)$$

and

$$E(X) = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} E(X_{a \leftrightarrow b}) =$$
(24)

$$=m.$$
 (25)

Corollary 4. [1] For the random variables $X_{a\leftarrow}$, $X_{\rightarrow b}$ and X we have

$$Var(X_{a\leftarrow}) = \lim_{b \to +\infty} Var(X_{a\leftrightarrow b}) =$$
⁽²⁶⁾

$$= \sigma^{2} + \frac{\left(\sigma^{2}\right)^{2} f^{2}(a;m,\sigma^{2})}{\left(1 - \Phi\left(\frac{a-m}{\sigma}\right)\right)^{2}} - \frac{\sigma^{2}(m-a)f(a;m,\sigma^{2})}{1 - \Phi\left(\frac{a-m}{\sigma}\right)},$$
 (27)

$$Var(X_{\to b}) = \lim_{a \to -\infty} Var(X_{a \leftrightarrow b}) =$$
⁽²⁸⁾

$$= \sigma^{2} + \frac{(\sigma^{2})^{2} f^{2}(b;m,\sigma^{2})}{\Phi^{2}(\frac{b-m}{\sigma})} + \frac{\sigma^{2}(m-b)f(b;m,\sigma^{2})}{\Phi(\frac{b-m}{\sigma})},$$
 (29)

and

$$Var(X) = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} Var(X_{a \leftrightarrow b}) = \sigma^2.$$
 (30)

Let consider the case: m-an unknown parameter, σ^2-a known parameter.

Theorem 3. [2] If the random variable $X_{a \leftrightarrow b}$ has a bilateral truncated normal distribution, that is, its probability distribution has the form (2), then the Fisher's information measure, about the unknown parameter m, has the following form

$$I_{X_{a\leftrightarrow b}}(m) = \int_{a}^{b} \left(\frac{\partial \ln f_{a\leftrightarrow b}(x;m,\sigma^{2})}{\partial m}\right)^{2} f_{a\leftrightarrow b}(x;m,\sigma^{2}) dx =$$
(31)
$$= \frac{1}{\sigma^{2}} - \frac{[f(b;m,\sigma^{2}) - f(a;m,\sigma^{2})]^{2}}{\sqrt{2\pi\sigma}A^{2}} + \frac{(m-b)f(b;m,\sigma^{2}) - (m-a)f(a;m,\sigma^{2})}{\sigma^{2}A},$$
(32)

where $f(a; m, \sigma^2)$ and $f(b; m, \sigma^2)$ are given in (9) and (10).

Corollary 5. If $a = m - \sigma$, $b = m + \sigma$, then the Fisher's information measure, relative to the unknown parameter m, has the following value

$$I_{X_{m-\sigma \leftrightarrow m+\sigma}}(m) = \frac{1}{\sigma^2} \left(1 - \frac{1}{0,341\sqrt{2\pi e}} \right),$$
(33)

moreover, we obtain the inequality

$$I_{X_{m-\sigma \leftrightarrow m+\sigma}}(m) < I_X(m). \tag{34}$$

Corollary 6. (Invariance of the Fisher information - the first form) If we consider values $a = m, b = m + \sigma$ or $a = m - \sigma, b = m$, then the Fisher's information measures, relative to the unknown parameter m, has the same value, namely

$$I_{X_{m \leftrightarrow m+\sigma}}(m) = I_{X_{m-\sigma \leftrightarrow m}}(m) = \frac{1}{\sigma^2} \left\{ 1 - \left(\frac{\left(1 - \sqrt{e}\right)^2}{\left(\sqrt{2\pi e} \cdot 0, 341\right)^2} + \frac{1}{\sqrt{2\pi e} \cdot 0, 341} \right) \right\},\tag{35}$$

moreover, we have the following inequality

$$I_{X_{m \leftrightarrow m+\sigma}}(m) = I_{X_{m-\sigma \leftrightarrow m}}(m) < I_X(m).$$
(36)

7	1
	-

Corollary 7. If $a = m - k\sigma$, $b = m + k\sigma$, $k \in \mathbb{N}^*$, then the Fisher's information measure, relative to the unknown parameter m, can be written like

$$I_{X_{m-k\sigma \leftrightarrow m+k\sigma}}(m) = \frac{1}{\sigma^2} \left\{ 1 - \frac{2k}{\sqrt{2\pi e^{k^2} (2\Phi(k) - 1)}} \right\}, \ k \in \mathbb{N}^*,$$
(37)

moreover, we obtain the inequality

$$I_{X_{m-k\sigma \leftrightarrow m+k\sigma}}(m) < \frac{1}{\sigma^2} = I_X(m), \ k \in \mathbb{N}^*.$$
(38)

Remark 2. In the particular case k = 3 we obtain a bilateral truncated random variable $X_{m-k\sigma\leftrightarrow m+k\sigma}$ and the Fisher's information measure, relative to the unknown parameter m, can be written like

$$I_{X_{m-3\sigma \leftrightarrow m+3\sigma}}(m) = \frac{1}{\sigma^2} \left[1 - \frac{1}{\sqrt{2\pi e}e^4.0, 166} \right],$$
(39)

moreover, we obtain the inequality

$$I_{X_{m-3\sigma\leftrightarrow m+3\sigma}}(m) < \frac{1}{\sigma^2} = I_X(m).$$

$$\tag{40}$$

Corollary 8. For the random variables $X_{a\leftarrow}$, $X_{\rightarrow b}$ and X the Fisher's information measures have the following forms

$$I_{X_{a\leftarrow}}(m) = \lim_{b \to +\infty} I_{X_{a\leftrightarrow b}}(m) =$$
(41)

$$=\frac{1}{\sigma^2} - \frac{(m-a)f(a;m,\sigma^2)}{\sigma^2 \left(1 - \Phi\left(\frac{a-m}{\sigma}\right)\right)} - \frac{.f^2(a;m,\sigma^2)}{\left(1 - \Phi\left(\frac{a-m}{\sigma}\right)\right)^2},\tag{42}$$

$$I_{X \to b}(m) = \lim_{a \to -\infty} I_{X_{a \to b}}(m) =$$
(43)

$$=\frac{1}{\sigma^2} + \frac{(m-b)f(b;m,\sigma^2)}{\sigma^2 \Phi\left(\frac{b-m}{\sigma}\right)} - \frac{f^2(b;m,\sigma^2)}{\Phi^2\left(\frac{a-m}{\sigma}\right)},\tag{44}$$

and

$$I_X(m) = \lim_{\substack{a \to -\infty, \\ b \to +\infty}} I_{X_{a \leftrightarrow b}}(m) = \frac{1}{\sigma^2}.$$
(45)

ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

Corollary 9. If b = m, then from (5) we obtain $\Phi(0) = \frac{1}{2}$ and from (44) it results the inequality

$$I_{X_{\to m}}(m) = \frac{1}{\sigma^2} \left(1 - \frac{2}{\pi} \right) < \frac{1}{\sigma^2} = I_X(m).$$
(46)

Corollary 10. If $b = m - \sigma$, then from (5) we obtain

$$\Phi(-1) = 1 - \Phi(1) = 0,159,\tag{47}$$

and from (44), the following relations

$$I_{X_{\to m-\sigma}}(m) = \frac{1}{\sigma^2} \left(1 + \frac{1}{\sqrt{2\pi e}\Phi(-1)} - \frac{1}{\left(\sqrt{2\pi e}\Phi(-1)\right)^2} \right),$$
 (48)

 $moreover, \ the \ inequalities$

$$I_{X \to m}(m) < I_X(m) < I_{X \to m-\sigma}(m).$$

$$\tag{49}$$

Corollary 11. If $b = m + \sigma$, we have the following relations

$$I_{X \to m+\sigma}(m) = \frac{1}{\sigma^2} \left\{ 1 - \left(\frac{1}{\sqrt{2\pi e} \Phi(1)} + \frac{1}{\left(\sqrt{2\pi e} \Phi(1)\right)^2} \right) \right\},$$
 (50)

moreover, the inequalities

$$I_{X_{\to m+\sigma}}(m) < I_{X_{\to m}}(m) < I_X(m) < I_{X_{\to m-\sigma}}(m).$$

$$\tag{51}$$

Proof. From (44), it results the equality (50) which imply the inequality

$$I_{X_{\to m+\sigma}}(m) = \frac{1}{\sigma^2} \left\{ 1 - \left(\frac{1}{\sqrt{2\pi e} \Phi(1)} + \frac{1}{\left(\sqrt{2\pi e} \Phi(1)\right)^2} \right) \right\} < \frac{1}{\sigma^2} = I_X(m).$$
(52)

Then, from (49) and (52) it results the inequalities

$$I_{X \to m+\sigma}(m) < I_X(m) < I_{X \to m-\sigma}(m).$$
(53)

Now, from (46), the inequality (51) is reduced to the following inequality

$$I_{X \to m+\sigma}(m) < I_{\to m}(m). \tag{54}$$

Using the relations (46) and (50), we observe that this last inequality is equivalent to the inequalities

$$\frac{1}{\sqrt{2\pi e}\Phi\left(1\right)}+\frac{1}{\left(\sqrt{2\pi e}\Phi\left(1\right)\right)^{2}}<\frac{2}{\sqrt{2\pi e}\Phi\left(1\right)}<\frac{2}{\pi},$$

or to the inequality

$$\pi < \sqrt{2\pi e} \Phi\left(1\right).$$

This last inequality results using the approximations: $\pi \approx 3, 14, e \approx 2, 72, \Phi(1) = 0,841.$

Corollary 12. If a = m, then from (5) we obtain $\Phi(0) = \frac{1}{2}$ and from (42) it results the inequality

$$I_{X_{m-}}(m) = \frac{1}{\sigma^2} \left(1 - \frac{2}{\pi} \right) < \frac{1}{\sigma^2} = I_X(m).$$
(55)

Corollary 13. If $a = m - \sigma$, then from (5) we obtain

$$1 - \Phi(-1) = \Phi(1) = 0,841,\tag{56}$$

and from (42) it results the equality

$$I_{X_{m-\sigma-}}(m) = \frac{1}{\sigma^2} \left\{ 1 - \left(\frac{1}{\sqrt{2\pi e} \Phi(1)} + \frac{1}{\left(\sqrt{2\pi e} \Phi(1)\right)^2} \right) \right\},$$
 (57)

moreover, the inequality

$$I_{X_{m-\sigma}}(m) < I_X(m). \tag{58}$$

Corollary 14. If $a = m + \sigma$, then from (5) we obtain $\Phi(-1) = 0,159$, and from (42) it results the equality

$$I_{X_{m+\sigma}}(m) = \frac{1}{\sigma^2} \left\{ 1 + \left(\frac{1}{\sqrt{2\pi e} \Phi(-1)} - \frac{1}{\left(\sqrt{2\pi e} \Phi(-1)\right)^2} \right) \right\},$$
 (59)

 $moreover, \ the \ inequalities$

$$I_{X_{m-\sigma-}}(m) < I_{m\leftarrow}(m) < I_X(m) < I_{X_{m+\sigma-}}(m)$$
(60)

Proof. From the relation (42), we obtain the equality (59) which imply the inequality

$$I_{X_{m+\sigma-}}(m) = \frac{1}{\sigma^2} \left\{ 1 + \left(\frac{1}{\sqrt{2\pi e} \Phi(-1)} - \frac{1}{\left(\sqrt{2\pi e} \Phi(-1)\right)^2} \right) \right\} > \frac{1}{\sigma^2} = I_X(m).$$
(61)

From (58) and (61) it results the inequalities

$$I_{X_{m-\sigma \leftarrow}}(m) < I_X(m) < I_{X_{m+\sigma \leftarrow}}(m).$$
(62)

Now, regarding the inequalities (55) and (62), we observe that the inequality (60) is reduced to the inequality

$$I_{X_{m-\sigma \leftarrow}}(m) < I_{X_{m \leftarrow}}(m). \tag{63}$$

By the relations (55) and (57), we observe that this last inequality is equivalent to the inequality

$$\frac{1}{\sigma^2} \left\{ 1 - \left(\frac{1}{\sqrt{2\pi e} \Phi\left(1\right)} + \frac{1}{\left(\sqrt{2\pi e} \Phi\left(1\right)\right)^2} \right) \right\} < \frac{1}{\sigma^2} \left(1 - \frac{2}{\pi} \right),$$

or to the inequalities

$$\frac{1}{\sqrt{2\pi e}\Phi\left(1\right)} + \frac{1}{\left(\sqrt{2\pi e}\Phi\left(1\right)\right)^{2}} < \frac{2}{\sqrt{2\pi e}\Phi\left(1\right)} < \frac{2}{\pi}.$$

The last inequality is equivalent to the inequality $\sqrt{2\pi e}\Phi(1) < (\sqrt{2\pi e}\Phi(1))^2$ which imply the inequality

$$\pi < \sqrt{2\pi e} \Phi\left(1\right). \tag{64}$$

Using the approximations: $\pi \approx 3, 14, e \approx 2, 72$ and $\Phi(1) = 0, 841$, the last inequality is true, because

$$\sqrt{2\pi e}\Phi(1) \approx \sqrt{2 \times 3, 14 \times 2, 72}.0, 841 \approx 4, 13.0, 841 \approx 3, 475.$$

The invariance of Fisher's information is ilustrated in the following corollaries.

75

Corollary 15. (the second form)

$$I_{X_{\to m+\sigma}}(m) = I_{X_{-\infty \leftrightarrow m+\sigma}}(m) =$$
(65)

$$= \frac{1}{\sigma^2} \left\{ 1 - \left(\frac{1}{\sqrt{2\pi e} \Phi\left(1\right)} + \frac{1}{\left(\sqrt{2\pi e} \Phi\left(1\right)\right)^2} \right) \right\} =$$
(66)

$$=I_{X_{m-\sigma}\leftarrow}(m)=I_{X_{m-\sigma}\leftrightarrow+\infty}(m).$$
(67)

Proof. Using the relations (50) and (57), the proof is obviously. \Box

Corollary 16. (the third form)

$$I_{X_{\to m-\sigma}}(m) = I_{X_{-\infty \leftrightarrow m-\sigma}}(m) =$$
(68)

$$=\frac{1}{\sigma^2}\left(1+\frac{1}{\sqrt{2\pi e}\Phi\left(-1\right)}-\frac{1}{\left(\sqrt{2\pi e}\Phi\left(-1\right)\right)^2}\right)=I_{X_{m+\sigma\leftrightarrow+\infty}}(m).$$
 (69)

Proof. Using the relations (48) and (59), the proof is obviously.

Corollary 17. (the fourth form)

$$I_{X_{\to m}}(m) = I_{X_{-\infty \leftrightarrow m}}(m) = \frac{1}{\sigma^2} \left(1 - \frac{2}{\pi} \right) = I_{X_{m \leftarrow}}(m) = I_{X_{m \leftrightarrow +\infty}}.$$
 (70)

Proof. Using the relations (46) and (55), the proof is obviously. \Box

References

- I. Mihoc, C. I. Fătu, Fisher's Information Measures for the Truncated Normal Distribution (I), Analysis, Functional Equations, Approximation and Convexity, Proceedings of the Conference Held in Honour Professor Elena Popoviciu on the Occasion of the 75thBirthday, Editura Carpatica 1999, 171-182.
- [2] I. Mihoc, C. I. Fătu, Fisher's Information Measures and Truncated Normal Distributions (II), Seminarul de teoria celei mai bune aproximări, convexitate şi optimizare, 1960-2000, ,,Omagiu memoriei academicianului Tiberiu Popoviciu la 25 de ani de la moarte", 26-29 octombrie, 2000, 153-155.
- [3] I. Mihoc, C. I. Fătu, Some Observations about Fisher's information Measures, "The 130^{-th} Pannonian Applied Mathematical Meeting", July15-22, 2000, Cluj-Napoca-Miercurea-Ciuc (Gábor Dénes-Foundation Cluj) (Interuniversity Network in Central

ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

Europe), Bulletins for Applied & Computer Mathematics, Caretaked by the PAMM-Center at the Technical University of Budapest, Budapest, 2000, BAM-1788, 183-193.

- [4] I. Mihoc, C. I. Fătu, Calculul probabilităților şi statistică matematică, Casa de Editură Transilvania Pres, Cluj-Napoca, 2003.
- [5] C. R. Rao, *Liniar Statistical Inference and Its Applications*, John Wiley and Sons, Inc., New York, 1965.
- [6] A. Rényi, Probability Theory, Akadémiai Kiado, Budapest, 1970.
- [7] M. J. Schervish, Theory of Statistics, Springer-Verlag New York, Inc. 1995

FACULTY OF ECONOMICAL SCIENCES AT CHRISTIAN UNIVERSITY, "DIMITRIE CANTEMIR", 3400, CLUJ-NAPOCA, ROMANIA *E-mail address*: cfatu@cantemir.cluj.astral.ro