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AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

MARIA DOBRIŢOIU

Abstract. By the fixed point theorem given in the first part of Rus [3]

and an idea of Sotomayor [9], a theorem of differentiability of the solution

of the equation

x(t) =

∫ b

a

K(t, s, x(s), x(ϕ(s)))ds + g(t), t ∈ [α, β]

is given.

1. Notations and preliminaries

Let X be a nonempty set, A : X → X an operator and we shall use the

following notation:

FA := {x ∈ X| A(x) = x} - the fixed point set of A.

Definition 1.1. (Rus [6] or [7]) Let (X, d) be a metric space. An operator

A : X → X is Picard operator if there exists x∗ ∈ X such that:

(a) FA = {x∗}

(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2. (Rus [6] or [7]) Let (X, d) be a metric space. An operator

A : X → X is weakly Picard operator if the sequence (An(x0))n∈N converges for all

x0 ∈ X and the limit (which may depend on x0) is a fixed point of A.

If A is a weakly Picard operator, then we consider the following operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x)
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It is clear that A∞(X) = FA.

In the section 2 we need the following results (see [4] and [3]).

Perov’s theorem. Let (X, d), with d(x, y) ∈ Rm, be a complete generalized

metric space and A : X → X an operator. We suppose that there exists a matrix

Q ∈ Mmm(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y), for all x, y ∈ X;

(ii) Q → 0 as n →∞.

Then

(a) FA = {x∗},

(b) An(x) → x∗ as n →∞ and

d(An(x), x∗) ≤ (I −Q)−1Qnd(x0, A(x0)).

Rus theorem. (Rus [3]) Let (X, d) be a metric space (generalized or not)

and (Y, ρ) be a complete generalized metric space (ρ(x, y) ∈ Rm).

Let A : X × Y → X × Y be a continuous operator. We suppose that:

(i) A(x, y) = (B(x), C(x, y)), for all x ∈ X, y ∈ Y ;

(ii) B : X → X is a weakly Picard operator;

(iii) There exists a matrix Q ∈ Mmm(R+), Qn → 0 as n →∞, such that

ρ(C(x, y1), C(x, y2)) ≤ Qρ(y1, y2),

for all x ∈ X, y1 and y2 ∈ Y .

Then the operator A is weakly Picard operator. Moreover, if B is Picard

operator, then A is Picard operator.

In the section 3 we need the following definition and result (see [8]).

Definition 1.3. (Rus [8]) A matrix Q ∈ Mnn(R) converges to zero if Qk

converges to the zero matrix as k →∞.

Theorem 1.1. (Rus [8]) Let Q ∈ Mnn(R+). The following statements are

equivalent:

(i) Qk → 0 as k →∞;
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(ii) The eigenvalues λk, k = 1, n of the matrix Q, verify the condition

|λk| < 1, k = 1, n;

(iii) The matrix I−Q is non-singular and (I−Q)−1 = I+Q+· · ·+Qn+. . . .

2. The main result

We consider the following Fredholm integral equation with modified argument

x(t) =
∫ b

a

K(t, s, x(s), x(ϕ(s)))ds + g(t), t ∈ [α, β], (1)

where α, β ∈ R, α ≤ β, a, b ∈ [α, β], g ∈ C([α, β], Rm), K ∈ C([α, β]× [α, β]×Rm ×

Rm, Rm), x ∈ C([α, β], Rm) and ϕ ∈ C([α, β], [α, β]).

We have

Theorem 2.1. We suppose that there exists Q ∈ Mmm(R+) such that:

(i) [(β − α)Q]n → 0 as n →∞;

(ii)


|K1(t, s, u, v)−K1(t, s, w, z)|

. . .

|Km(t, s, u, v)−Km(t, s, w, z)|

 ≤ Q


|u1 − w1|+ |v1 − z1|

. . .

|um − wm|+ |vm − zm|


for all u, v, w, z ∈ Rm, t, s ∈ [α, β].

Then

(a) the equation (1) has in C([α, β], Rm) a unique solution, x∗(·, a, b);

(b) for all x0 ∈ C([α, β], Rm) the sequence (xn)n∈N , defined by

xn+1(t; a, b) :=
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

converges uniformly to x∗, for all t, a, b ∈ [α, β], and
|xn

1 (t; a, b)− x∗1(t; a, b)|

. . .

|xn
m(t; a, b)− x∗m(t; a, b)|

 ≤

≤ [I − (β − α)Q]−1[(β − α)Q]n


|x0

1(t; a, b)− x1
1(t; a, b)|

. . .

|x0
m(t; a, b)− x1

m(t; a, b)|
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(c) the function

x∗ : [α, β]× [α, β]× [α, β] → Rm, (t, a, b) → x∗(t; a, b)

is continuous;

(d) if K(t, s, ·, ·) ∈ C1(Rm ×Rm, Rm), for all t, s ∈ [α, β], then

x∗(t; ·, ·) ∈ C1([α, β]× [α, β], Rm), for all t ∈ [α, β].

Proof. Let ‖ · ‖ be a generalized Chebyshev norm on X := C([α, β]3, Rm)

i.e.

‖x‖ :=


‖x1‖∞

. . .

‖xm‖∞

 .

Let we consider the operator B : X → X defined by

B(x)(t; a, b) :=
∫ b

a

K(t, s, x(s; a, b), x(ϕ(s); a, b))ds

for all t, a, b ∈ [α, β].

From (i) and (ii) and the Perov’s theorem we have (a)+(b)+(c).

(d) Let we prove that there exists
∂x∗

∂a
and

∂x∗

∂a
∈ X.

If we suppose that there exists
∂x∗

∂a
, then from (1) we have

∂x∗(t; a, b)
∂a

= −K(t, a, x∗(a; a, b), x∗(ϕ(a); a, b))+

+
∫ b

a

[(
∂Kj(t, s, x∗(s; a, b), x∗(ϕ(s); a, b))

∂xi

)
∂x∗(s; a, b)

∂a
+

+
(

∂Kj(t, s, x∗(s; a, b), x∗(ϕ(s); a, b))
∂xi

)
∂x∗(ϕ(s); a, b)

∂a

]
ds.

This relation suggest to consider the following operator

C : X ×X → X,
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C(x, y)(t; a, b) := −K(t, a, x(a; a, b), x(ϕ(a); a, b))+ (2)

+
∫ b

a

[(
∂Kj(t, s, x(s; a, b), x(ϕ(s); a, b))

∂xi

)
y(s; a, b)+

+
(

∂Kj(t, s, x(s; a, b), x(ϕ(s); a, b))
∂xi

)
y(ϕ(s); a, b)

]
ds.

From (ii), we remark that(∣∣∣∣∂Kj(t, s, u, v)
∂xi

∣∣∣∣) ≤ Q (3)

for all t, s ∈ [α, β] and u, v ∈ Rm.

From (2) and (3) it follows that

‖C(x, y1)− C(x, y2)‖ ≤ (β − α)Q,

for all x, y1, y2 ∈ X.

If we take the operator

A : X ×X → X ×X, A = (B,C),

then we are in the conditions of the Rus theorem. From this theorem, the operator

A is a Picard operator and the sequences

xn+1(t; a, b) =
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

yn+1(t; a, b) := −K(t, a, xn(a; a, b), xn(ϕ(a); a, b))+

+
∫ b

a

[(
∂Kj(t, s, xn(s; a, b), xn(ϕ(s); a, b))

∂xi

)
yn(s; a, b)+

+
(

∂Kj(t, s, xn(s; a, b), xn(ϕ(s); a, b))
∂xi

)
yn(ϕ(s); a, b)

]
ds

converges uniformly (with respect to t, a, b ∈ [α, β]) to (x∗, y∗) ∈ FA, for all

x0, y0 ∈ X.

If we take x0 = y0 = 0, then y1 =
∂x1

∂a
. By induction we prove that

yn =
∂xn

∂a
. Thus

xn unif.−→ x∗ as n →∞,
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∂xn

∂a

unif.−→ y∗ as n →∞.

These imply that there exists
∂x∗

∂a
and

∂x∗

∂a
= y∗.

By a similar way we prove that there exists
∂x∗

∂b
. �

3. Example

In what follows we consider the following system of Fredholm integral equa-

tions 
x1(t) =

∫ b

a

[
1
8
(t + s)x1(s) +

1
4
x1(s/2)

]
ds + 1− cos t

x2(t) =
∫ b

a

[
1
2
x1(x) +

2t + s

4
x2(s) +

3
4
x2(s/2)

]
ds + sin t

, (4)

t, a, b ∈ [0, 1], where a, b ∈ [0, 1], g ∈ C([0, 1], R2), g(t) = (g1(t), g2(t)), g1(t) =

1− cos t, g2(t) = sin t, K ∈ C([0, 1]× [0, 1]× R2 × R2, R2),

K(t, s, x(s), x(ϕ(s))) = (K1(t, s, x(s), x(ϕ(s))),K2(t, s, x(s), x(ϕ(s)))),

K1 =
1
8
(t + s)x1(s) +

1
4
x1(s/2), K2 =

1
2
x1(x) +

2t + s

4
x2(s) +

3
4
x2(s/2),

ϕ ∈ C([0, 1], [0, 1]), ϕ(s) = s/2 and x ∈ C([0, 1], R2).

From the condition (ii) of the theorem 2.1 we have |K1(t, s, x(s), x(s/2))−K1(t, s, x(s), z(s/2))|

|K2(t, s, x(s), x(s/2))−K2(t, s, x(s), z(s/2))|

 ≤

≤

 1/4 0

1/2 3/4

  |x1(s)− z1(s)|+ |x1(s/2)− z1(s/2)|

|x2(s)− z2(s)|+ |x2(s/2)− z2(s/2)|

 , t, s ∈ [0, 1],

which lead to matrix

Q =

 1/4 0

1/2 3/4

 , Q ∈ M22(R+),

that according to the theorem 1.1 and definition 1.3, converges to zero,

Therefore the conditions of the theorem 2.1 are satisfies and we have

- the system of equations (4) has in C([0, 1], R2) a unique solution x∗(·, a, b);
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- for all x0 ∈ C([0, 1], R2) the sequence (xn)n∈N, defined by

xn+1(t; a, b) :=
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

converges uniformly to x∗, for all t, a, b ∈ [0, 1], and
|xn

1 (t; a, b)− x∗1(t; a, b)|

. . .

|xn
m(t; a, b)− x∗m(t; a, b)|

 ≤ [I −Q]−1Qn


|x0

1(t; a, b)− x1
1(t; a, b)

. . .

|x0
m(t; a, b)− x1

m(t; a, b)


- the function

x∗ : [0, 1]× [0, 1]× [0, 1] → R2, (t; a, b) → x∗(t; a, b)

is continuous;

- if K(t, s, ·, ·) ∈ C1(R2 × R2, R2), for all t, s ∈ [0, 1], then

x∗(t; ·, ·) ∈ C1([0, 1]× [0, 1], R2), for all t ∈ [0, 1].
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