AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

MARIA DOBRITOIU

Abstract

By the fixed point theorem given in the first part of Rus [3] and an idea of Sotomayor [9], a theorem of differentiability of the solution of the equation $$
x(t)=\int_{a}^{b} K(t, s, x(s), x(\varphi(s))) d s+g(t), \quad t \in[\alpha, \beta]
$$

is given.

1. Notations and preliminaries

Let X be a nonempty set, $A: X \rightarrow X$ an operator and we shall use the following notation:

$$
F_{A}:=\{x \in X \mid A(x)=x\} \text { - the fixed point set of } A .
$$

Definition 1.1. (Rus [6] or [7]) Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is Picard operator if there exists $x^{*} \in X$ such that:
(a) $F_{A}=\left\{x^{*}\right\}$
(b) the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in N}$ converges to x^{*}, for all $x_{0} \in X$.

Definition 1.2. (Rus [6] or [7]) Let (X, d) be a metric space. An operator $A: X \rightarrow X$ is weakly Picard operator if the sequence $\left(A^{n}\left(x_{0}\right)\right)_{n \in N}$ converges for all $x_{0} \in X$ and the limit (which may depend on x_{0}) is a fixed point of A.

If A is a weakly Picard operator, then we consider the following operator

$$
A^{\infty}: X \rightarrow X, \quad A^{\infty}(x)=\lim _{n \rightarrow \infty} A^{n}(x)
$$

Received by the editors: 01.06.2004.
2000 Mathematics Subject Classification. 45G10, 47 H 10 .
Key words and phrases. Fredholm integral equation with modified argument, Picard operator,
data dependence.

It is clear that $A^{\infty}(X)=F_{A}$.
In the section 2 we need the following results (see [4] and [3]).
Perov's theorem. Let (X, d), with $d(x, y) \in R^{m}$, be a complete generalized metric space and $A: X \rightarrow X$ an operator. We suppose that there exists a matrix $Q \in M_{m m}\left(R_{+}\right)$, such that
(i) $d(A(x), A(y)) \leq Q d(x, y)$, for all $x, y \in X$;
(ii) $Q \rightarrow 0$ as $n \rightarrow \infty$.

Then
(a) $F_{A}=\left\{x^{*}\right\}$,
(b) $A^{n}(x) \rightarrow x^{*}$ as $n \rightarrow \infty$ and

$$
d\left(A^{n}(x), x^{*}\right) \leq(I-Q)^{-1} Q^{n} d\left(x_{0}, A\left(x_{0}\right)\right)
$$

Rus theorem. (Rus [3]) Let (X, d) be a metric space (generalized or not) and (Y, ρ) be a complete generalized metric space $\left(\rho(x, y) \in R^{m}\right)$.

Let $A: X \times Y \rightarrow X \times Y$ be a continuous operator. We suppose that:
(i) $A(x, y)=(B(x), C(x, y))$, for all $x \in X, y \in Y$;
(ii) $B: X \rightarrow X$ is a weakly Picard operator;
(iii) There exists a matrix $Q \in M_{m m}\left(R_{+}\right), Q^{n} \rightarrow 0$ as $n \rightarrow \infty$, such that

$$
\rho\left(C\left(x, y_{1}\right), C\left(x, y_{2}\right)\right) \leq Q \rho\left(y_{1}, y_{2}\right)
$$

for all $x \in X, y_{1}$ and $y_{2} \in Y$.
Then the operator A is weakly Picard operator. Moreover, if B is Picard operator, then A is Picard operator.

In the section 3 we need the following definition and result (see [8]).
Definition 1.3. (Rus [8]) A matrix $Q \in M_{n n}(\mathbb{R})$ converges to zero if Q^{k} converges to the zero matrix as $k \rightarrow \infty$.

Theorem 1.1. (Rus [8]) Let $Q \in M_{n n}\left(\mathbb{R}_{+}\right)$. The following statements are equivalent:
(i) $Q^{k} \rightarrow 0$ as $k \rightarrow \infty$;

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT
(ii) The eigenvalues $\lambda_{k}, k=\overline{1, n}$ of the matrix Q, verify the condition $\left|\lambda_{k}\right|<1, k=\overline{1, n} ;$
(iii) The matrix $I-Q$ is non-singular and $(I-Q)^{-1}=I+Q+\cdots+Q^{n}+\ldots$.

2. The main result

We consider the following Fredholm integral equation with modified argument

$$
\begin{equation*}
x(t)=\int_{a}^{b} K(t, s, x(s), x(\varphi(s))) d s+g(t), \quad t \in[\alpha, \beta], \tag{1}
\end{equation*}
$$

where $\alpha, \beta \in R, \alpha \leq \beta, a, b \in[\alpha, \beta], g \in C\left([\alpha, \beta], R^{m}\right), K \in C\left([\alpha, \beta] \times[\alpha, \beta] \times R^{m} \times\right.$ $\left.R^{m}, R^{m}\right), x \in C\left([\alpha, \beta], R^{m}\right)$ and $\varphi \in C([\alpha, \beta],[\alpha, \beta])$.

We have
Theorem 2.1. We suppose that there exists $Q \in M_{m m}\left(R_{+}\right)$such that:
(i) $[(\beta-\alpha) Q]^{n} \rightarrow 0$ as $n \rightarrow \infty$;
(ii) $\left(\begin{array}{c}\left|K_{1}(t, s, u, v)-K_{1}(t, s, w, z)\right| \\ \ldots \\ \left|K_{m}(t, s, u, v)-K_{m}(t, s, w, z)\right|\end{array}\right) \leq Q\left(\begin{array}{c}\left|u_{1}-w_{1}\right|+\left|v_{1}-z_{1}\right| \\ \cdots \\ \left|u_{m}-w_{m}\right|+\left|v_{m}-z_{m}\right|\end{array}\right)$
for all $u, v, w, z \in R^{m}, t, s \in[\alpha, \beta]$.
Then
(a) the equation (1) has in $C\left([\alpha, \beta], R^{m}\right)$ a unique solution, $x^{*}(\cdot, a, b)$;
(b) for all $x^{0} \in C\left([\alpha, \beta], R^{m}\right)$ the sequence $\left(x^{n}\right)_{n \in N}$, defined by

$$
x^{n+1}(t ; a, b):=\int_{a}^{b} K\left(t, s, x^{n}(s ; a, b), x^{n}(\varphi(s) ; a, b)\right) d s+g(t)
$$

converges uniformly to x^{*}, for all $t, a, b \in[\alpha, \beta]$, and

$$
\begin{gathered}
\left(\begin{array}{c}
\left|x_{1}^{n}(t ; a, b)-x_{1}^{*}(t ; a, b)\right| \\
\ldots \\
\left|x_{m}^{n}(t ; a, b)-x_{m}^{*}(t ; a, b)\right|
\end{array}\right) \leq \\
\leq[I-(\beta-\alpha) Q]^{-1}[(\beta-\alpha) Q]^{n}\left(\begin{array}{c}
\left|x_{1}^{0}(t ; a, b)-x_{1}^{1}(t ; a, b)\right| \\
\ldots \\
\\
\left|x_{m}^{0}(t ; a, b)-x_{m}^{1}(t ; a, b)\right|
\end{array}\right)
\end{gathered}
$$

(c) the function

$$
x^{*}:[\alpha, \beta] \times[\alpha, \beta] \times[\alpha, \beta] \rightarrow R^{m}, \quad(t, a, b) \rightarrow x^{*}(t ; a, b)
$$

is continuous;
(d) if $K(t, s, \cdot, \cdot) \in C^{1}\left(R^{m} \times R^{m}, R^{m}\right)$, for all $t, s \in[\alpha, \beta]$, then $x^{*}(t ; \cdot, \cdot) \in C^{1}\left([\alpha, \beta] \times[\alpha, \beta], R^{m}\right)$, for all $t \in[\alpha, \beta]$.

Proof. Let $\|\cdot\|$ be a generalized Chebyshev norm on $X:=C\left([\alpha, \beta]^{3}, R^{m}\right)$ i.e.

$$
\|x\|:=\left(\begin{array}{c}
\left\|x_{1}\right\|_{\infty} \\
\cdots \\
\left\|x_{m}\right\|_{\infty}
\end{array}\right) .
$$

Let we consider the operator $B: X \rightarrow X$ defined by

$$
B(x)(t ; a, b):=\int_{a}^{b} K(t, s, x(s ; a, b), x(\varphi(s) ; a, b)) d s
$$

for all $t, a, b \in[\alpha, \beta]$.
From (i) and (ii) and the Perov's theorem we have (a)+(b)+(c).
(d) Let we prove that there exists $\frac{\partial x^{*}}{\partial a}$ and $\frac{\partial x^{*}}{\partial a} \in X$.

If we suppose that there exists $\frac{\partial x^{*}}{\partial a}$, then from (1) we have

$$
\begin{aligned}
\frac{\partial x^{*}(t ; a, b)}{\partial a} & =-K\left(t, a, x^{*}(a ; a, b), x^{*}(\varphi(a) ; a, b)\right)+ \\
& +\int_{a}^{b}\left[\left(\frac{\partial K_{j}\left(t, s, x^{*}(s ; a, b), x^{*}(\varphi(s) ; a, b)\right)}{\partial x_{i}}\right) \frac{\partial x^{*}(s ; a, b)}{\partial a}+\right. \\
& \left.+\left(\frac{\partial K_{j}\left(t, s, x^{*}(s ; a, b), x^{*}(\varphi(s) ; a, b)\right)}{\partial x_{i}}\right) \frac{\partial x^{*}(\varphi(s) ; a, b)}{\partial a}\right] d s .
\end{aligned}
$$

This relation suggest to consider the following operator

$$
C: X \times X \rightarrow X
$$

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

$$
\begin{align*}
C(x, y)(t ; a, b) & :=-K(t, a, x(a ; a, b), x(\varphi(a) ; a, b))+ \tag{2}\\
& +\int_{a}^{b}\left[\left(\frac{\partial K_{j}(t, s, x(s ; a, b), x(\varphi(s) ; a, b))}{\partial x_{i}}\right) y(s ; a, b)+\right. \\
& \left.+\left(\frac{\partial K_{j}(t, s, x(s ; a, b), x(\varphi(s) ; a, b))}{\partial x_{i}}\right) y(\varphi(s) ; a, b)\right] d s .
\end{align*}
$$

From (ii), we remark that

$$
\begin{equation*}
\left(\left|\frac{\partial K_{j}(t, s, u, v)}{\partial x_{i}}\right|\right) \leq Q \tag{3}
\end{equation*}
$$

for all $t, s \in[\alpha, \beta]$ and $u, v \in R^{m}$.
From (2) and (3) it follows that

$$
\left\|C\left(x, y_{1}\right)-C\left(x, y_{2}\right)\right\| \leq(\beta-\alpha) Q
$$

for all $x, y_{1}, y_{2} \in X$.
If we take the operator

$$
A: X \times X \rightarrow X \times X, \quad A=(B, C),
$$

then we are in the conditions of the Rus theorem. From this theorem, the operator A is a Picard operator and the sequences

$$
\begin{aligned}
& x^{n+1}(t ; a, b)=\int_{a}^{b} K\left(t, s, x^{n}(s ; a, b), x^{n}(\varphi(s) ; a, b)\right) d s+g(t) \\
& y^{n+1}(t ; a, b):=-K\left(t, a, x^{n}(a ; a, b), x^{n}(\varphi(a) ; a, b)\right)+ \\
&+\int_{a}^{b}\left[\left(\frac{\partial K_{j}\left(t, s, x^{n}(s ; a, b), x^{n}(\varphi(s) ; a, b)\right)}{\partial x_{i}}\right) y^{n}(s ; a, b)+\right. \\
&\left.+\left(\frac{\partial K_{j}\left(t, s, x^{n}(s ; a, b), x^{n}(\varphi(s) ; a, b)\right)}{\partial x_{i}}\right) y^{n}(\varphi(s) ; a, b)\right] d s
\end{aligned}
$$

converges uniformly (with respect to $t, a, b \in[\alpha, \beta]$) to $\left(x^{*}, y^{*}\right) \in F_{A}$, for all $x^{0}, y^{0} \in X$.

If we take $x^{0}=y^{0}=0$, then $y^{1}=\frac{\partial x^{1}}{\partial a}$. By induction we prove that $y^{n}=\frac{\partial x^{n}}{\partial a}$. Thus

$$
x^{n} \xrightarrow{\text { unif. }} x^{*} \text { as } n \rightarrow \infty,
$$

$$
\frac{\partial x^{n}}{\partial a} \xrightarrow{\text { unif. }} y^{*} \text { as } n \rightarrow \infty .
$$

These imply that there exists $\frac{\partial x^{*}}{\partial a}$ and $\frac{\partial x^{*}}{\partial a}=y^{*}$.
By a similar way we prove that there exists $\frac{\partial x^{*}}{\partial b}$.

3. Example

In what follows we consider the following system of Fredholm integral equations

$$
\left\{\begin{array}{l}
x_{1}(t)=\int_{a}^{b}\left[\frac{1}{8}(t+s) x_{1}(s)+\frac{1}{4} x_{1}(s / 2)\right] d s+1-\cos t \tag{4}\\
x_{2}(t)=\int_{a}^{b}\left[\frac{1}{2} x_{1}(x)+\frac{2 t+s}{4} x_{2}(s)+\frac{3}{4} x_{2}(s / 2)\right] d s+\sin t
\end{array}\right.
$$

$t, a, b \in[0,1]$, where $a, b \in[0,1], g \in C\left([0,1], \mathbb{R}^{2}\right), g(t)=\left(g_{1}(t), g_{2}(t)\right), g_{1}(t)=$ $1-\cos t, g_{2}(t)=\sin t, K \in C\left([0,1] \times[0,1] \times \mathbb{R}^{2} \times \mathbb{R}^{2}, \mathbb{R}^{2}\right)$,

$$
\begin{gathered}
K(t, s, x(s), x(\varphi(s)))=\left(K_{1}(t, s, x(s), x(\varphi(s))), K_{2}(t, s, x(s), x(\varphi(s)))\right), \\
K_{1}=\frac{1}{8}(t+s) x_{1}(s)+\frac{1}{4} x_{1}(s / 2), \quad K_{2}=\frac{1}{2} x_{1}(x)+\frac{2 t+s}{4} x_{2}(s)+\frac{3}{4} x_{2}(s / 2), \\
\varphi \in C([0,1],[0,1]), \varphi(s)=s / 2 \text { and } x \in C\left([0,1], \mathbb{R}^{2}\right) .
\end{gathered}
$$

From the condition (ii) of the theorem 2.1 we have

$$
\begin{gathered}
\binom{\left|K_{1}(t, s, x(s), x(s / 2))-K_{1}(t, s, x(s), z(s / 2))\right|}{\left|K_{2}(t, s, x(s), x(s / 2))-K_{2}(t, s, x(s), z(s / 2))\right|} \leq \\
\leq\left(\begin{array}{cc}
1 / 4 & 0 \\
1 / 2 & 3 / 4
\end{array}\right)\binom{\left|x_{1}(s)-z_{1}(s)\right|+\left|x_{1}(s / 2)-z_{1}(s / 2)\right|}{\left|x_{2}(s)-z_{2}(s)\right|+\left|x_{2}(s / 2)-z_{2}(s / 2)\right|}, \quad t, s \in[0,1],
\end{gathered}
$$

which lead to matrix

$$
Q=\left(\begin{array}{cc}
1 / 4 & 0 \\
1 / 2 & 3 / 4
\end{array}\right), \quad Q \in M_{22}\left(\mathbb{R}_{+}\right)
$$

that according to the theorem 1.1 and definition 1.3 , converges to zero,
Therefore the conditions of the theorem 2.1 are satisfies and we have

- the system of equations (4) has in $C\left([0,1], \mathbb{R}^{2}\right)$ a unique solution $x^{*}(\cdot, a, b)$;

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

- for all $x^{0} \in C\left([0,1], \mathbb{R}^{2}\right)$ the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$, defined by

$$
x^{n+1}(t ; a, b):=\int_{a}^{b} K\left(t, s, x^{n}(s ; a, b), x^{n}(\varphi(s) ; a, b)\right) d s+g(t)
$$

converges uniformly to x^{*}, for all $t, a, b \in[0,1]$, and

$$
\left(\begin{array}{c}
\left|x_{1}^{n}(t ; a, b)-x_{1}^{*}(t ; a, b)\right| \\
\cdots \\
\left|x_{m}^{n}(t ; a, b)-x_{m}^{*}(t ; a, b)\right|
\end{array}\right) \leq[I-Q]^{-1} Q^{n}\left(\begin{array}{c}
\mid x_{1}^{0}(t ; a, b)-x_{1}^{1}(t ; a, b) \\
\cdots \\
\mid x_{m}^{0}(t ; a, b)-x_{m}^{1}(t ; a, b)
\end{array}\right)
$$

- the function

$$
x^{*}:[0,1] \times[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}, \quad(t ; a, b) \rightarrow x^{*}(t ; a, b)
$$

is continuous;

- if $K(t, s, \cdot, \cdot) \in C^{1}\left(\mathbb{R}^{2} \times \mathbb{R}^{2}, \mathbb{R}^{2}\right)$, for all $t, s \in[0,1]$, then
$x^{*}(t ; \cdot, \cdot) \in C^{1}\left([0,1] \times[0,1], \mathbb{R}^{2}\right)$, for all $t \in[0,1]$.

References

[1] M. Ambro, Aproximarea solutiilor unei ecuaţii integrale cu argument modificat, Studia Univ. Babeş-Bolyai, Math., 2(1978), 26-32.
[2] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Kluwer, London, 1996.
[3] I. A. Rus, A Fiber generalized contraction theorem and applications, Academie Roumaine Filiale de Cluj-Napoca, Mathematica, Tome 41(64), Nr. 1, 1999, 85-90.
[4] I. A. Rus, Generalized contractions, Univ. of Cluj-Napoca, Preprint Nr. 3, 1983, 1-130
[5] I. A. Rus, C. Iancu, Modelare matematică, Transilvania Press, Cluj-Napoca, 2000.
[6] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 3(1993), 769773.
[7] I. A. Rus, Picard operators and applications, Babeş-Bolyai Univ. of Cluj-Napoca, Preprint Nr. 3, 1996.
[8] I. A. Rus, Principii şi aplicatii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
[9] J. Sotomayor, Smooth dependence of solution of differential equation on initial data: a simple proof, Bol. Soc. Brasil, 4, 1(1973), 55-59.

Faculty of Science, University of Petroşani, Petroşani, Romania E-mail address: mariadobritoiu@yahoo.com

