STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 3, September 2004

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

MARIA DOBRIŢOIU

Abstract. By the fixed point theorem given in the first part of Rus [3] and an idea of Sotomayor [9], a theorem of differentiability of the solution of the equation

$$x(t) = \int_{a}^{b} K(t, s, x(s), x(\varphi(s)))ds + g(t), \quad t \in [\alpha, \beta]$$

is given.

1. Notations and preliminaries

Let X be a nonempty set, $A : X \to X$ an operator and we shall use the following notation:

$$F_A := \{x \in X | A(x) = x\}$$
 - the fixed point set of A.

Definition 1.1. (Rus [6] or [7]) Let (X, d) be a metric space. An operator $A: X \to X$ is *Picard operator* if there exists $x^* \in X$ such that:

(a) $F_A = \{x^*\}$

(b) the sequence $(A^n(x_0))_{n \in N}$ converges to x^* , for all $x_0 \in X$.

Definition 1.2. (Rus [6] or [7]) Let (X, d) be a metric space. An operator $A: X \to X$ is weakly Picard operator if the sequence $(A^n(x_0))_{n \in N}$ converges for all $x_0 \in X$ and the limit (which may depend on x_0) is a fixed point of A.

If A is a weakly Picard operator, then we consider the following operator

$$A^{\infty}: X \to X, \quad A^{\infty}(x) = \lim_{n \to \infty} A^n(x)$$

Received by the editors: 01.06.2004.

²⁰⁰⁰ Mathematics Subject Classification. 45G10, 47H10.

Key words and phrases. Fredholm integral equation with modified argument, Picard operator, data dependence.

MARIA DOBRIŢOIU

It is clear that $A^{\infty}(X) = F_A$.

In the section 2 we need the following results (see [4] and [3]).

Perov's theorem. Let (X, d), with $d(x, y) \in \mathbb{R}^m$, be a complete generalized metric space and $A : X \to X$ an operator. We suppose that there exists a matrix $Q \in M_{mm}(\mathbb{R}_+)$, such that

(i)
$$d(A(x), A(y)) \leq Qd(x, y)$$
, for all $x, y \in X$;
(ii) $Q \to 0$ as $n \to \infty$.

Then

(a) $F_A = \{x^*\},$ (b) $A^n(x) \to x^*$ as $n \to \infty$ and

$$d(A^{n}(x), x^{*}) \leq (I - Q)^{-1}Q^{n}d(x_{0}, A(x_{0})).$$

Rus theorem. (Rus [3]) Let (X, d) be a metric space (generalized or not) and (Y, ρ) be a complete generalized metric space $(\rho(x, y) \in \mathbb{R}^m)$.

Let $A: X \times Y \to X \times Y$ be a continuous operator. We suppose that:

(i) A(x, y) = (B(x), C(x, y)), for all $x \in X, y \in Y$;

(ii) $B: X \to X$ is a weakly Picard operator;

(iii) There exists a matrix $Q \in M_{mm}(R_+)$, $Q^n \to 0$ as $n \to \infty$, such that

$$\rho(C(x, y_1), C(x, y_2)) \le Q\rho(y_1, y_2),$$

for all $x \in X$, y_1 and $y_2 \in Y$.

Then the operator A is weakly Picard operator. Moreover, if B is Picard operator, then A is Picard operator.

In the section 3 we need the following definition and result (see [8]).

Definition 1.3. (Rus [8]) A matrix $Q \in M_{nn}(\mathbb{R})$ converges to zero if Q^k converges to the zero matrix as $k \to \infty$.

Theorem 1.1. (Rus [8]) Let $Q \in M_{nn}(\mathbb{R}_+)$. The following statements are equivalent:

(i) $Q^k \to 0$ as $k \to \infty$;

28

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

(ii) The eigenvalues λ_k , $k = \overline{1, n}$ of the matrix Q, verify the condition $|\lambda_k| < 1$, $k = \overline{1, n}$;

(iii) The matrix I-Q is non-singular and $(I-Q)^{-1} = I+Q+\cdots+Q^n+\ldots$

2. The main result

We consider the following Fredholm integral equation with modified argument

$$x(t) = \int_{a}^{b} K(t, s, x(s), x(\varphi(s)))ds + g(t), \quad t \in [\alpha, \beta],$$
(1)

where $\alpha, \beta \in R, \alpha \leq \beta, a, b \in [\alpha, \beta], g \in C([\alpha, \beta], R^m), K \in C([\alpha, \beta] \times [\alpha, \beta] \times R^m \times R^m, R^m), x \in C([\alpha, \beta], R^m)$ and $\varphi \in C([\alpha, \beta], [\alpha, \beta]).$

We have

Theorem 2.1. We suppose that there exists $Q \in M_{mm}(R_+)$ such that: (i) $[(\beta - \alpha)Q]^n \to 0$ as $n \to \infty$;

$$(ii) \begin{pmatrix} |K_1(t, s, u, v) - K_1(t, s, w, z)| \\ \dots \\ |K_m(t, s, u, v) - K_m(t, s, w, z)| \end{pmatrix} \le Q \begin{pmatrix} |u_1 - w_1| + |v_1 - z_1| \\ \dots \\ |u_m - w_m| + |v_m - z_m| \end{pmatrix}$$
for all $u, v, w, z \in \mathbb{R}^m$, $t, s \in [\alpha, \beta]$.

Then

$$x^{n+1}(t;a,b) := \int_{a}^{b} K(t,s,x^{n}(s;a,b),x^{n}(\varphi(s);a,b))ds + g(t)$$

converges uniformly to x^* , for all $t, a, b \in [\alpha, \beta]$, and

$$\begin{pmatrix} |x_1^n(t;a,b) - x_1^*(t;a,b)| \\ \dots \\ |x_m^n(t;a,b) - x_m^*(t;a,b)| \end{pmatrix} \leq \\ \leq [I - (\beta - \alpha)Q]^{-1} [(\beta - \alpha)Q]^n \begin{pmatrix} |x_1^0(t;a,b) - x_1^1(t;a,b)| \\ \dots \\ |x_m^0(t;a,b) - x_m^1(t;a,b)| \end{pmatrix}$$

2	9

MARIA DOBRIŢOIU

(c) the function

$$x^*: [\alpha, \beta] \times [\alpha, \beta] \times [\alpha, \beta] \to R^m, \quad (t, a, b) \to x^*(t; a, b)$$

is continuous;

(d) if $K(t, s, \cdot, \cdot) \in C^1(\mathbb{R}^m \times \mathbb{R}^m, \mathbb{R}^m)$, for all $t, s \in [\alpha, \beta]$, then $x^*(t; \cdot, \cdot) \in C^1([\alpha, \beta] \times [\alpha, \beta], \mathbb{R}^m)$, for all $t \in [\alpha, \beta]$.

Proof. Let $\|\cdot\|$ be a generalized Chebyshev norm on $X := C([\alpha, \beta]^3, R^m)$ i.e.

$$\|x\| := \left(\begin{array}{c} \|x_1\|_{\infty} \\ \\ \\ \\ \|x_m\|_{\infty} \end{array}\right).$$

Let we consider the operator $B: X \to X$ defined by

$$B(x)(t;a,b):=\int_a^b K(t,s,x(s;a,b),x(\varphi(s);a,b))ds$$

for all $t, a, b \in [\alpha, \beta]$.

From (i) and (ii) and the Perov's theorem we have (a)+(b)+(c). (d) Let we prove that there exists $\frac{\partial x^*}{\partial a}$ and $\frac{\partial x^*}{\partial a} \in X$. If we suppose that there exists $\frac{\partial x^*}{\partial a}$, then from (1) we have

$$\begin{aligned} \frac{\partial x^*(t;a,b)}{\partial a} &= -K(t,a,x^*(a;a,b),x^*(\varphi(a);a,b)) + \\ &+ \int_a^b \left[\left(\frac{\partial K_j(t,s,x^*(s;a,b),x^*(\varphi(s);a,b))}{\partial x_i} \right) \frac{\partial x^*(s;a,b)}{\partial a} + \\ &+ \left(\frac{\partial K_j(t,s,x^*(s;a,b),x^*(\varphi(s);a,b))}{\partial x_i} \right) \frac{\partial x^*(\varphi(s);a,b)}{\partial a} \right] ds. \end{aligned}$$

This relation suggest to consider the following operator

$$C: X \times X \to X,$$

30

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

$$C(x,y)(t;a,b) := -K(t,a,x(a;a,b),x(\varphi(a);a,b)) +$$

$$+ \int_{a}^{b} \left[\left(\frac{\partial K_{j}(t,s,x(s;a,b),x(\varphi(s);a,b))}{\partial x_{i}} \right) y(s;a,b) + \left(\frac{\partial K_{j}(t,s,x(s;a,b),x(\varphi(s);a,b))}{\partial x_{i}} \right) y(\varphi(s);a,b) \right] ds.$$

$$(2)$$

From (ii), we remark that

$$\left(\left| \frac{\partial K_j(t, s, u, v)}{\partial x_i} \right| \right) \le Q \tag{3}$$

for all $t, s \in [\alpha, \beta]$ and $u, v \in \mathbb{R}^m$.

From (2) and (3) it follows that

$$||C(x, y_1) - C(x, y_2)|| \le (\beta - \alpha)Q_1$$

for all $x, y_1, y_2 \in X$.

If we take the operator

$$A: X \times X \to X \times X, \quad A = (B, C),$$

then we are in the conditions of the Rus theorem. From this theorem, the operator A is a Picard operator and the sequences

$$\begin{split} x^{n+1}(t;a,b) &= \int_a^b K(t,s,x^n(s;a,b),x^n(\varphi(s);a,b))ds + g(t) \\ y^{n+1}(t;a,b) &:= -K(t,a,x^n(a;a,b),x^n(\varphi(a);a,b)) + \\ &+ \int_a^b \left[\left(\frac{\partial K_j(t,s,x^n(s;a,b),x^n(\varphi(s);a,b))}{\partial x_i} \right) y^n(s;a,b) + \\ &+ \left(\frac{\partial K_j(t,s,x^n(s;a,b),x^n(\varphi(s);a,b))}{\partial x_i} \right) y^n(\varphi(s);a,b) \right] ds \end{split}$$

converges uniformly (with respect to $t, a, b \in [\alpha, \beta]$) to $(x^*, y^*) \in F_A$, for all $x^0, y^0 \in X$.

If we take $x^0 = y^0 = 0$, then $y^1 = \frac{\partial x^1}{\partial a}$. By induction we prove that $y^n = \frac{\partial x^n}{\partial a}$. Thus $x^n \stackrel{unif.}{\longrightarrow} x^*$ as $n \to \infty$,

31

MARIA DOBRIŢOIU

 $\frac{\partial x^n}{\partial a} \xrightarrow{unif.} y^* \text{ as } n \to \infty.$ These imply that there exists $\frac{\partial x^*}{\partial a}$ and $\frac{\partial x^*}{\partial a} = y^*.$ By a similar way we prove that there exists $\frac{\partial x^*}{\partial b}$. \Box

3. Example

In what follows we consider the following system of Fredholm integral equations

$$\begin{cases} x_1(t) = \int_a^b \left[\frac{1}{8} (t+s) x_1(s) + \frac{1}{4} x_1(s/2) \right] ds + 1 - \cos t \\ x_2(t) = \int_a^b \left[\frac{1}{2} x_1(x) + \frac{2t+s}{4} x_2(s) + \frac{3}{4} x_2(s/2) \right] ds + \sin t \end{cases},$$
(4)

 $t, a, b \in [0, 1], \text{ where } a, b \in [0, 1], g \in C([0, 1], \mathbb{R}^2), g(t) = (g_1(t), g_2(t)), g_1(t) = 1 - \cos t, g_2(t) = \sin t, K \in C([0, 1] \times [0, 1] \times \mathbb{R}^2 \times \mathbb{R}^2, \mathbb{R}^2),$

$$K(t, s, x(s), x(\varphi(s))) = (K_1(t, s, x(s), x(\varphi(s))), K_2(t, s, x(s), x(\varphi(s)))),$$

$$K_1 = \frac{1}{8}(t+s)x_1(s) + \frac{1}{4}x_1(s/2), \quad K_2 = \frac{1}{2}x_1(x) + \frac{2t+s}{4}x_2(s) + \frac{3}{4}x_2(s/2),$$

 $\varphi \in C([0,1],[0,1]), \, \varphi(s) = s/2 \text{ and } x \in C([0,1],\mathbb{R}^2).$

From the condition (ii) of the theorem 2.1 we have

$$\begin{pmatrix} |K_1(t, s, x(s), x(s/2)) - K_1(t, s, x(s), z(s/2))| \\ |K_2(t, s, x(s), x(s/2)) - K_2(t, s, x(s), z(s/2))| \end{pmatrix} \leq \\ \leq \begin{pmatrix} 1/4 & 0 \\ 1/2 & 3/4 \end{pmatrix} \begin{pmatrix} |x_1(s) - z_1(s)| + |x_1(s/2) - z_1(s/2)| \\ |x_2(s) - z_2(s)| + |x_2(s/2) - z_2(s/2)| \end{pmatrix}, \quad t, s \in [0, 1],$$

which lead to matrix

$$Q = \begin{pmatrix} 1/4 & 0\\ 1/2 & 3/4 \end{pmatrix}, \quad Q \in M_{22}(\mathbb{R}_+),$$

that according to the theorem 1.1 and definition 1.3, converges to zero,

Therefore the conditions of the theorem 2.1 are satisfies and we have

- the system of equations (4) has in $C([0,1], \mathbb{R}^2)$ a unique solution $x^*(\cdot, a, b)$;

AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

- for all $x^0 \in C([0,1], \mathbb{R}^2)$ the sequence $(x^n)_{n \in \mathbb{N}}$, defined by

$$x^{n+1}(t;a,b) := \int_{a}^{b} K(t,s,x^{n}(s;a,b),x^{n}(\varphi(s);a,b))ds + g(t)$$

converges uniformly to x^* , for all $t, a, b \in [0, 1]$, and

$$\begin{pmatrix} |x_1^n(t;a,b) - x_1^*(t;a,b)| \\ \dots \\ |x_m^n(t;a,b) - x_m^*(t;a,b)| \end{pmatrix} \leq [I-Q]^{-1}Q^n \begin{pmatrix} |x_1^0(t;a,b) - x_1^1(t;a,b)| \\ \dots \\ |x_m^0(t;a,b) - x_m^1(t;a,b)| \end{pmatrix}$$

- the function

$$x^*: [0,1] \times [0,1] \times [0,1] \to \mathbb{R}^2, \quad (t;a,b) \to x^*(t;a,b)$$

is continuous;

- if $K(t, s, \cdot, \cdot) \in C^1(\mathbb{R}^2 \times \mathbb{R}^2, \mathbb{R}^2)$, for all $t, s \in [0, 1]$, then $x^*(t; \cdot, \cdot) \in C^1([0, 1] \times [0, 1], \mathbb{R}^2)$, for all $t \in [0, 1]$.

References

- M. Ambro, Aproximarea soluțiilor unei ecuații integrale cu argument modificat, Studia Univ. Babeş-Bolyai, Math., 2(1978), 26-32.
- [2] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Kluwer, London, 1996.
- [3] I. A. Rus, A Fiber generalized contraction theorem and applications, Academie Roumaine Filiale de Cluj-Napoca, Mathematica, Tome 41(64), Nr. 1, 1999, 85-90.
- [4] I. A. Rus, Generalized contractions, Univ. of Cluj-Napoca, Preprint Nr. 3, 1983, 1-130.
- [5] I. A. Rus, C. Iancu, Modelare matematică, Transilvania Press, Cluj-Napoca, 2000.
- [6] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 3(1993), 769-773.
- [7] I. A. Rus, *Picard operators and applications*, Babeş-Bolyai Univ. of Cluj-Napoca, Preprint Nr. 3, 1996.
- [8] I. A. Rus, Principii și aplicații ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
- [9] J. Sotomayor, Smooth dependence of solution of differential equation on initial data: a simple proof, Bol. Soc. Brasil, 4, 1(1973), 55-59.

FACULTY OF SCIENCE, UNIVERSITY OF PETROŞANI, PETROŞANI, ROMANIA *E-mail address:* mariadobritoiu@yahoo.com