
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

ON THE CONVERGENCE OF COLLOCATION SPLINE METHODS
FOR INTEGRAL DELAY PROBLEMS

F. CALIÒ, E. MARCHETTI AND R. PAVANI

Abstract. In some recent works we proposed a collocation method by

deficient splines to approximate the solution of Neutral Delay Differential

Equations and Volterra Delay Integral Equations. In this work we extend

that method to integro-differential equations. The existence and unique-

ness of the numerical solution is proved. Consistency and convergence of

this method are studied.

1. The problem

In this work we present some remarks about the convergence of a collocation

spline method for a problem which is the synthesis of models recently studied in

collaboration with Professor Georghe Micula.

Precisely we consider the following non linear first-order Fredholm integro-

differential problem with delay:

y′(x) = f(x, y(x), y(g(x)),
∫ T

0
K(x, t, y(t), y(g(t)))dt), x ∈ [0, T ]

y(0) = y0, y(x) = ψ(x), x ∈ [α, 0], α ≤ 0, α = Inf(g(x))
x∈[0,T ]

α ≤ g(x) ≤ x , x ∈ [α, T ]

(1)

where f : [0, T ]×R3 → R , K : [0, T ]×[0, T ]×R2 → R, g ∈ C[α, T ], ψ ∈ Cm−1[α, 0],

m > 1, m ∈ N .

(1) can be considered Volterra delay integro-differential problem by replacing

the upper limit of integration T by x.
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F. CALIÒ, E. MARCHETTI AND R. PAVANI

As usual we write problem (1) in the following form

y′(x) = f(x, y(x), y(g(x)), z(x)), x ∈ [0, T ]

z(x) =
∫ T

0
K(x, t, y(t), y(g(t)))dt

y(0) = y0, y(x) = ψ(x), x ∈ [α, 0], α ≤ 0, α = Inf(g(x))
x∈[0,T ]

α ≤ g(x) ≤ x , x ∈ [α, T ]

(2)

In the following we assume g(x) = x− τ, where τ ∈ R, τ > 0 is the constant

delay. Let yτ = y(x− τ) and T = Mτ for some M ∈ N .

1. Suppose that f(x, y, yτ , z) is a smooth function satisfying the following

Lipschitz condition

||f(x, y1, yτ1, z1)− f(x, y2, yτ2, z2)|| ≤

L1(||y1 − y2||+ ||yτ1 − yτ2||+ ||z1 − z2||)

∀ (x, y1, yτ1, z1), (x, y2, yτ2, z2) ∈ [0, T ]×R3.

2. Suppose also that the kernel K(x, t, y, yτ ) is a smooth bounded function

satisfying the following Lipschitz condition

||K(x, t, y1, yτ1)−K(x, t, y2, yτ2)|| ≤

L2(||y1 − y2||+ ||yτ1 − yτ2||)

∀ (x, t, y1, yτ1), (x, t, y2, yτ2) ∈ [0, T ]× [0, T ]×R2.

In these conditions, the problem (2) has a unique solution (see for example [2]).

To face this mathematical model we propose a numerical model based on

direct collocation spline method using the well known advantages of a collocation

method and of a spline approximation. In particular we construct splines pertaining

to low regularity class and with weak regularity conditions in the junction points.

The collocation allows to recursively define a piecewise approximating poly-

nomial and is characterized (differently from what is suggested by the literature) by

the fact that knowledge gathered in previous steps is completely utilized, thus refining

the approximating solution, even at price of a heavier computational load.

Let r ∈ N , N = rM and ∆ be the following uniform partition of the

interval [0, T ]:

∆ : 0 = x0 < x1 < ... < xk < xk+1 < ... < xN = T , xk = kh, h = T
N .
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Here we approximate the solution of (2) by means of functions pertaining

to the class of spline of degree m ≥ 2 and deficiency 2, denoted by s : [0, T ] → R,

(s ∈ Sm, s ∈ Cm−2).

Precisely, the spline function s is defined in Ik = [xk, xk+1] as:

sk(x) :=
m−2∑
j=0

s
(j)
k−1(xk)(x− xk)j/j! +

ak

(m− 1)!
(x− xk)m−1 +

bk
m!

(x− xk)m

We choose to determine coefficients ak, bk by the following system of collocation

conditions s′k(xk + h
2 ) = f(xk + h

2 , sk(xk + h
2 ), sk−r(xk + h

2 − τ), zk(xk + h
2 ))

s′k(xk+1) = f(xk+1, sk(xk+1), sk−r(xk+1 − τ), zk(xk+1))
(3)

where

zk(xk +
h

2
) =

k−1∑
j=0

∫ (j+1)h

jh

K(xk +
h

2
, t, sj(t), sj−r(t− τ))dt+

+
∫ kh+ h

2

kh

K(xk +
h

2
, t, sk(t), sk−r(t− τ))dt

and

zk(xk+1) =
k∑

j=0

∫ (j+1)h

jh

K(xk + h, t, sj(t), sj−r(t− τ))dt

provided that

s
(i)
k (xk) = lim

x→xk

s
(i)
k−1(x), x ∈ [xk−1, xk] for i = 0, ...,m− 2

si(x) = ψ(x), for i = −r, ...,−1.

Our model is thus reduced to compute the solution of the system (3), through

which the spline is determined on the interval Ik.The system can be either non-linear

or linear according to f(x, y(x), y(g(x)), z(x)).
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2. Existence and uniqueness of numerical solution

If we set in [xk, xk+1], k = 0, 1, ..., N − 1:

Ak(x) =
∑m−2

j=0 s
(j)
k−1(xk)(x− xk)j/j! ,

Bk =

 ak (h
2 )m−2

bk (h
2 )m−1

 , Yk =

 A′k(xk + h
2 )

A′k(xk+1)

 ,
P =

1
(m− 2)!

P0 with P0 =

 1 1
m−1

2m−2 2m−1

m−1



Φk(Bk) =


f(xk + h

2 , Ak(xk + h
2 ) + ak

(m−1)! (
h
2 )m−1 + bk

m! (
h
2 )m,

sk−r(xk + h
2 − τ), zk(xk + h

2 ))

f(xk+1, Ak(xk+1) + ak

(m−1)!h
m−1 + bk

m!h
m,

sk−r(xk+1 − τ), zk(xk+1))


then (3) becomes:

PBk = Φk(Bk)−Yk

Taking into account that P0 is non singular ∀m > 1, system (3) is equivalent

to

Bk = (m− 2)!P−1
0 (Φk(Bk)−Yk) (4)

Theorem 1. Let us consider the nonlinear first-order Fredholm integro-differential

equation with delay in (2). If functions f and K satisfy the Lipschitz conditions 1.

and 2. and if h is small enough, then there exists a unique spline approximation

solution s(x) of the problem (2) given by the above construction.

Proof. The proof of Theorem 1 consists of showing that (4) defines for all sufficiently

small h, a contraction mapping. This comes straightforward from the hypotheses and

we omit the details of the proof.
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In general, zk(xk + h
2 ), zk(xk+1) in (3) have to be approximated by numerical

quadrature: zk(xk + h
2 ) ' Zk(xk + h

2 ), zk(xk+1) ' Zk(xk+1), where

Zk(xk +
h

2
) =

k−1∑
l=0

n(l)∑
j=0

w
(l)
j K(xk +

h

2
, t

(l)
j , sl(t

(l)
j ), sl−r(t

(l)
j − τ))

 +

+
n(k)∑
j=0

w
(k)
j K(xk +

h

2
, t

(k)
j , sk(t(k)

j ), sk−r(t
(k)
j − τ))

with xl ≤ t
(l)
j ≤ xl+1 (l = 0, 1, ..., k − 1) xk ≤ t

(k)
j ≤ xk + h

2

Zk(xk+1) =
k∑

l=0

n(l)∑
j=0

w
(l)
j K(xk+1, t

(l)
j , sl(t

(l)
j ), sl−r(t

(l)
j − τ))


with xl ≤ t

(l)
j ≤ xl+1(l = 0, 1, ..., k) and we assume that maxj,l

∣∣∣w(l)
j

∣∣∣ ≤W <∞.

System (3) is then reduced to

Bk = (m− 2)!P−1
0 (Ψk(Bk)−Yk) (5)

with

Ψk(Bk) =

 f(xk + h
2 , sk(xk + h

2 ), sk−r(xk + h
2 − τ), Zk(xk + h

2 ))

f(xk+1, sk(xk+1), sk−r(xk+1 − τ), Zk(xk+1))


Theorem 2. Under the assumptions stated above and if h is small enough, there

exists a unique solution of system (5).

Proof. As in Theorem 1, the proof consists of showing that (5) defines for all suffi-

ciently small h, a contraction mapping.

3. Consistency and convergence of the collocation method

Let y(x) ∈ Cm+1[0, T ], sk(x) be the deficient spline approximating y(x) in

[xk, xk+1] , (k = 0, 1, ..., N − 1) and denote with ek(x) = sk(x) − y(x) the error

function for x ∈ [xk, xk+1].
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Considering y(x) = y(xk) + y′(xk)(x− xk) + ...+ y(m+1)(ηk) (x−xk)m+1

(m+1)!

(xk < ηk < x) then

ek(x) = [
m−2∑
j=0

s
(j)
k−1(xk)
j!

(x− xk)j +
ak

(m− 1)!
(x− xk)m−1 +

bk
m!

(x− xk)m] +

−
[
y(xk) + y′(xk)(x− xk) + ...+ y(m+1)(ηk)

(x− xk)m+1

(m+ 1)!

]
(xk < ηk < x)

consequently

ek(x) = ek(xk) +
m−2∑
j=1

s
(j)
k−1(xk)− y(j)(xk)

j!
(x− xk)j +

+
ak − y(m−1)(xk)

(m− 1)!
(x− xk)m−1 +

bk − y(m)(xk)
m!

(x− xk)m +

−y
(m+1)(ηk)
(m+ 1)!

(x− xk)m+1

(xk < ηk < x)

If we set for k = 0, 1, ..., N − 1

βk,m−1 =
ak − y(m−1)(xk)

h2

βk,m =
bk − y(m)(xk)

h

γk,j =
s
(j)
k−1(xk)− y(j)(xk)

hm−j+1
, j = 1, ...,m− 2

ϕk,i(x) =
(x− xk)i

hi
(i = 1, 2, ...)

and

Tk(y(x)) =
y(m+1)(ηk)
(m+ 1)!

, xk < ηk < x

then the error becomes

ek(x) = ek(xk) + hm+1
∑m−2

j=1
γk,j

j! ϕk,j(x)+

+hm+1
[

βk,m−1
(m−1)!ϕk,m−1(x) + βk,m

m! ϕk,m(x)− Tk(y(x))ϕk,m+1(x)
] (6)
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with
e′k(x) = e′k(xk) + hm

∑m−2
j=2

γk,j

(j−1)!ϕk,j−1(x)+

+hm
[

βk,m−1
(m−2)!ϕk,m−2(x) + βk,m

(m−1)!ϕk,m−1(x)− T ′k(y(x))ϕk,m(x)
] (7)

where

T ′k(y(x)) =
y(m+1)(µk)

m!
, xk < µk < x

Lemma 3. Let the hypotheses 1. and 2. hold for f and K, then there exists a

constant c independent of h such that∑m−2
j=1 γk,j = O(h) for all k = 0, 1, ..., N − 1

Proof. The proof comes straightforward from Lemma 4.3 [1].

Lemma 4. (i) Let f(x, y, yτ , z) have continuous derivatives of order one with respect

to y, yτ , z in [0, T ]

(ii) Let K(x, t, y, yτ ) have continuous derivatives of order one with respect to

y, yτ in T

then |βk,m−1|+ |βk,m| ≤ B for all k = 0, 1, ..., N − 1, where B is a real constant.

Proof. Let k = 0, then e0(0) = e′0(0) = 0 as x0 = 0. We observe that ϕ0,ν(h
2 ) = 1

2ν

and ϕ0,ν(h) = 1, ν = 1, 2, ...,m+1, taking account of Lemma 3, from (7) we obtain:
β0,m−1
(m−2)!

1
2m−2 + β0,m

(m−1)!
1

2m−1 = T ′0(y(
h
2 )) 1

2m + e′0(
h
2 ) +O(h)

β0,m−1
(m−2)! + β0,m

(m−1)! = T ′0(y(h)) + e′0(h) +O(h)
(8)

In order to prove that (8) has a unique limited solution, we follow Theorem

1 in [2], taking account of the delay terms.

We observe that a simple calculation yields for k = 0, 1, ..., N − 1, using the

hypotheses on f and K

e′k(xk +
h

2
) =

∂

∂y
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) ek(xk +

h

2
) +

+
∂

∂yτ
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) ek(xk +

h

2
− τ) +

+
∂

∂z
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) δk(xk +

h

2
)

where:
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y∗k is between y(xk + h
2 ) and sk(xk + h

2 ),

y∗kτ between y(xk + h
2 − τ) and sk(xk + h

2 − τ),

z∗k between z(xk + h
2 ) and zk(xk + h

2 ),

ek(xk + h
2 − τ) = sk(xk + h

2 − τ)− y(xk + h
2 − τ) and

δk(xk +
h

2
) =

∫ xk+ h
2

x0

[
∂

∂y
K(xk +

h

2
, t, y∗(t), y∗τ (t− τ))e(t) +

∂

∂yτ
K(xk +

h

2
, t, y∗(t), y∗τ (t− τ))e(t− τ)]dt

y∗(t) being between y(t) and s(t), y∗τ (t− τ) between y(t− τ) and s(t− τ).

In the same way we obtain

e′k(xk+1) =
∂

∂y
f(xk+1, y

∗, y∗τ , z
∗) ek(xk+1) +

+
∂

∂yτ
f(xk+1, y

∗, y∗τ , z
∗) ek(xk+1 − τ) +

+
∂

∂z
f(xk+1, y

∗, y∗τ , z
∗) δk(xk+1)

with suitable y∗k , y∗kτ , z∗k, y
∗(t), y∗τ (t− τ) and an obvious definition of

ek(xk+1 − τ) and δk(xk+1).

Consequently we obtain

e′0(
h

2
) =

∂

∂y
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) e0(

h

2
) +

+
∂

∂yτ
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) e0(

h

2
− τ) +

+
∂

∂z
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) δ0(

h

2
)

and

e′0(h) =
∂

∂y
f(h, y∗0, y

∗
0τ , z

∗
0) e0(h) +

+
∂

∂yτ
f(h, y∗0, y

∗
0τ , z

∗
0) e0(h− τ) +

+
∂

∂z
f(h, y∗0, y

∗
0τ , z

∗
0) δ0(h)

24



ON THE CONVERGENCE OF COLLOCATION SPLINE METHODS FOR INTEGRAL DELAY PROBLEMS

so that, according to Lemma 1 in [2], the unique solution β0,m−1, β0,m of the system
β0,m−1
(m−2)!

1
2m−2 + β0,m

(m−1)!
1

2m−1 = 1
2mT

′
0(y(

h
2 ))

β0,m−1
(m−2)! + β0,m

(m−1)! = T ′0(y(h))

can be regarded as the solution β0,m−1, β0,m of the system (8) for h→ 0 and

β0,ν = β0,ν +O(h), ν = m− 1,m.

Let k = 1, we observe from (6) and (7) that e1(x1) = e0(x1) = O(hm+1) and

e′1(x1) = e′0(x1) = O(hm+1), we proceed by induction on k in the same way as for

k = 0. The proof of the Lemma follows immediately.

Theorem 5. Under the assumptions stated in Lemma 4, then there exists a constant

C independent of h such that the error function e(x) satisfies for all x ∈ [0, T ] the

following inequalities

|e(x)| ≤ C hm+1

|e′(x)| ≤ C hm

Proof. We initially prove the Theorem for x = xk. If we set Mm+1 = max |T ′k(y(x))|
k,x∈[0,T ]

,

then |Tk(y(x))| ≤ Mm+1 for all x ∈ [0, T ]; from (6) and Lemma 3 the following

relation holds:

|ek(xk)| ≤
∣∣ek−1(xk−1)

∣∣ + hm+1(c+B +Mm+1)

where c is real constant.

Taking into account that |e1(x1)| ≤ hm+1(B +Mm+1) then

|e2(x2)| ≤ |e1(x1)|+ hm+1(c+B +Mm+1) ≤ hm+1(c+ 2(B +Mm+1)),

and

|ek(xk)| ≤ Nhm+1(c+B +Mm+1) (9)

It follows that |ek(xk)| ≤ C1h
m+1.

Taking into account of (6) we obtain for x ∈ [xk, xk+1]

|ek(x)| ≤ |ek(xk)|+ hm+1
∑m−2

j=1
|γk,j |

j! ϕk,j(x)+

+hm+1
∣∣∣βk,m−1
(m−1)!ϕk,m−1(x) + βk,m

(m)! ϕk,m(x)− Tk(y(x))ϕk,m+1(x)
∣∣∣
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from (9), Lemma 3 and Lemma 4 and |ϕk,j(x)| ≤ 1, j = 1, ...,m+ 1 we obtain

|ek(x)| ≤ Nhm+1(c+B +Mm+1) + c hm+1
m−2∑
j=1

1
j!

+

+hm+1

∣∣∣∣B(
1

(m− 1)!
+

1
(m)!

) +Mm+1

∣∣∣∣
it follows |ek(x)| ≤ C hm+1.

Analogously we obtain

|e′k(x)| ≤ Nhm(c+B +Mm+1) + c hm
m−2∑
j=2

1
(j − 1)!

+

+hm

∣∣∣∣B(
1

(m− 2)!
1 +

1
(m− 1)!

) +Mm+1

∣∣∣∣
It follows |e′k(x)| ≤ C1 h

m.

Because any upper bound for |ek(x)| and for |e′k(x)| is independent of k, the

thesis follows.
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